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1. Introduction. Let K be any Galois extension of Q, and UK be the
unit group of K. For any place v of K, let Uv be the group of local units
of Kv. Recently, the second author and Xianke Zhang [6] considered the
problem of whether there exists an odd prime p such that the map

UK/U
2
K →

∏
v|p

Uv/U
2
v

is injective. In fact, they proved that the existence of such primes is equiv-
alent to Hom(UK/U2

K , {±1}) is a cyclic F2[Gal(K/Q)]-module. Moreover,
they also proved that if the class number hQ(ζpr )+ is odd, then such primes
exist for Q(ζpr)+ and Q(ζpr), where p is an odd prime and Q(ζpr)+ is the
maximal real subfield of Q(ζpr).

Let K be a geometric Galois extension of the rational function field
k = Fq(t). Let OK be the integral closure of Fq[t] in K. Let UK be the group
of units of OK and Uv be the group of local units of Kv. In this note, we will
generalize the second author and Zhang’s methods to consider the question
whether there exists a finite place P of Fq(t) such that the map

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective, where d > 1 is a factor of q−1. Let µd be the group of dth roots of
unity. We will prove there exist such places P if and only if Hom(UK/UdK , µd)
is a cyclic Z/dZ[Gal(K/k)]-module. When K is a quadratic function field,
we will prove in Section 4 that there exist such places if and only if either
K is imaginary, or K is real and d is odd, or K is real, d is even and there
exists a fundamental unit ε0 of OK such that N(ε0) is a generator of F∗q .
Let A be a monic irreducible polynomial. Suppose that K = k(ΛA) is the
Ath cyclotomic function field and K+ is the maximal real subfield of K. In
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Section 5, we will prove that such places exist for K and K+ if the class
number of OK+ is relatively prime to d. It should be noted that the proof
heavily relies on Galovich and Rosen’s work on Sinnott’s circular units in
cyclotomic function fields [3].

2. Preliminaries. For each d | q − 1, define L = K( d
√
UK). Since Fq

contains dth roots of unity, L is an abelian extension of K of exponent d.
Set Gal(L/K) = H and Gal(K/Fq(t)) = G. Define an action of G on H
by gh = g̃hg̃−1, where g ∈ G, h ∈ H and g̃ is a lift of g in Gal(L/Fq(t)).
By Kummer theory (e.g. Theorem 8.1 of [5]), there is a non-degenerate
G-equivariant bilinear pairing

H × UK/UdK → µd, (h, ū) =
h( d
√
u)

d
√
u

.

Therefore we have H ∼= Hom(UK/UdK , µd) as G-modules. The action of G
on Hom(UK/UdK , µd) is defined by

gf(ū) = f(g−1ū)

for g ∈ Gal(K/Fq(t)), f ∈ Hom(UK/UdK , µd), ū ∈ UK/UdK .
Assume the infinite place (1/t) of Fq(t) splits into r places of K. By

Dirichlet’s unit theorem, the rank of UK/UdK as Z/dZ-module is equal to r.
Let {u1, . . . , ur} ⊂ UK be representatives such that u1, . . . , ur form a Z/dZ-
basis of UK/UdK . Then it is easy to show that

H ' Gal(K( d
√
u1)/K)× · · · ×Gal(K( d

√
ur)/K).

The isomorphism is given by restriction to the subfields.
The following is Chebotarev’s density theorem for global function fields

(Theorem 9.13A of [7]).

Theorem 2.1 (Chebotarev). Let L/K be a Galois extension of global
function fields and Gal(L/K) = H. Let C ⊂ H be a conjugacy class and S′K
be the set of primes of K which are unramified in L. Then

δ({p ∈ S′K | (p, L/K) = C}) = #C/#H,

where δ means Dirichlet density. In particular , every conjugacy class C is
of the form (p, L/K) for infinitely many places p of K.

Lemma 2.2. Let u ∈ UK and p be a place of K which is unramified in L.
Then u ∈ Udp if and only if (p, L/K) fixes K( d

√
u), where L = K( d

√
UK) (see

the beginning of this section).

Proof. u ∈ Udp is equivalent to p splitting completely in K( d
√
u). Since

p is unramified in K( d
√
u), this is equivalent to (p,K( d

√
u)/K) = Id. As the

Artin symbol satisfies (p, L/K)|K( d√u) = (p,K( d
√
u)/K), the result follows.
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3. Proof of the main result

Proposition 3.1. The natural map UK/U
d
K →

∏
v Uv/U

d
v is injective,

where v runs over all finite places of K.

Proof. Let u belong to the kernel of the map. Then u ∈ Udv for all v.
By Lemma 2.2, (v,K( d

√
u)/K) = Id for all finite places v. Consequently,

δ({p ∈ S′K | (p, L/K) = Id}) = 1. By Chebotarev’s density theorem, the
extension K( d

√
u)/K is trivial. Thus u ∈ UdK .

Proposition 3.2. There exist places p1, . . . , pr of K such that the nat-
ural map

UK/U
d
K →

∏
1≤i≤r

Upi/U
d
pi

is injective.

Proof. Let σ1, . . . , σr ∈ H be such that the restriction of σi to K( d
√
uj)

is trivial when j 6= i and is a generator of Gal(K( d
√
uj)/K) for j = i. By

Chebotarev’s density theorem, there exist finite places p1, . . . , pr of K such
that (pi, L/K) = σi. If u belongs to the kernel, then u ∈ UdKpi

. By Lemma
2.2, σi fixes K( d

√
u). By construction, σ1, . . . , σr generate H, so K( d

√
u) = K

by Galois theory. Thus u ∈ UdK .

Proposition 3.3. Let P be a finite place of Fq(t). Then the natural map

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective if and only if for some place v |P (hence for all v |P ), (v, L/K)
is a Z/dZ[G] generator of H.

Proof. Let u be any unit of K. By Lemma 2.2,

u ∈ Udv , ∀v |P ⇔ (v, L/K) fixes K( d
√
u), ∀v |P.

It is obvious that
u ∈ UdK ⇔ K( d

√
u) = K.

Thus, UK/UdK →
∏
v|P Uv/U

d
v being injective is equivalent to

∀u ∈ UK , (v, L/K) fixes K( d
√
u), ∀v |P ⇒ K( d

√
u) = K.

By Galois theory, this is equivalent to the subgroup generated by (v, L/K)
for all v |P being equal to H. Recall the definition of the action of G on H in
Section 2: (gv, L/K) = g̃(v, L/K)g̃−1 = g(v, L/K). This is also equivalent
to (v, L/K) being a Z/dZ[G] generator of H for any v |P .

Theorem 3.4. There exists a finite place P of Fq(t) such that the map

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective if and only if Hom(UK/UdK , µd) is a cyclic Z/dZ[G]-module.
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Proof. Since H is isomorphic to Hom(UK/UdK , µd) as Z/dZ[G]-modules,
the “only if” part follows easily from Proposition 3.3. Conversely, if H is a
cyclic module, let σ ∈ H be a Z/dZ[G] generator of H. By Chebotarev’s
density theorem, there exists a finite place p such that (p, L/K) = σ. Also by
Proposition 3.3, we conclude that UK/UdK →

∏
g∈G Ugp/U

d
gp is injective.

The following definition can be found on page 371 of [8].

Definition 3.5. An extension K of k = Fq(t) is called totally real if the
prime at infinity of k (which corresponds to 1/t) splits completely in K.

Lemma 3.6. Let G be a finite group and V be a free Z/dZ-module of rank
r = #G. Assume G acts on V linearly. Then V is a cyclic Z/dZ[G]-module
if and only if V ∗ = Hom(V,Z/dZ) is a cyclic Z/dZ[G]-module.

Theorem 3.7. If K is a totally real geometric Galois extension of Fq(t),
there exists a finite place P of Fq(t) such that the natural map

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective if and only if UK/UdK is a cyclic Z/dZ[G]-module.

Proof. Suppose that [K : Fq(t)] = n. By Definition 3.5, K has n in-
finite places. By Dirichlet’s unit theorem, UK/UdK is a free Z/dZ-module
of rank n. By Theorem 3.4, the injectivity in question is equivalent to
Hom(UK/UdK , µd) being a cyclic Z/dZ[G]-module. Applying Lemma 3.6 to
V = UK/U

d
K , we get the desired result.

A unit u is called a Minkowski unit if its Galois conjugates generate a
subgroup of finite index in the whole unit group. We know that such units
always exist (see [9, Lemma 5.27], the proof is the same for global function
fields).

Corollary 3.8. Let K/Fq(t) be a totally real geometric Galois exten-
sion. There exists a finite place P of Fq(t) such that the natural map

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective if and only if there exists a Minkowski unit ε such that the index
of Z[G]ε in UK is relatively prime to d.

Proof. By Theorem 3.4, the existence of such P is equivalent to UK/UdK
being a cyclic Z/dZ[G]-module. This means that there exists a unit ε such
that UK = UdK(Z[G]ε). Let E = Z[G]ε. We get

UK = EUdK ⇔ UK/E = (UK/E)d ⇔ (#UK/E, d) = 1.

This completes the proof of the corollary.
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4. The case of quadratic function fields. In this section, we assume
K is a quadratic extension of k = Fq(t) and 2 - q. We will use the theory de-
veloped in Section 3 to investigate the situation of quadratic function fields.
Such fields can be written as k(

√
D), where D is a square free polynomial

of Fq[t]. They were systematically studied by E. Artin [1].
Fix a generator g of F∗q . Then we can assume that the leading coefficient

of D is 1 or g. The infinite place (1/t) is splitting, inertial, or ramified in K
when, respectively: the degree of D is even and sgn(D) = 1; the degree of
D is even and sgn(D) = g; or the degree of D is odd. Then the field K is
called real, inertial imaginary, or ramified imaginary respectively, according
to E. Artin [1]. When K is real, we let ε0 be the fundamental unit of K.
Any fundamental unit is determined only up to multiplication by a constant,
thus its norm is either a square or g times a square. So multiplying ε0 by an
appropriate constant we can assume N(ε0) is 1 or g.

Now we state the main theorem of this section.

Theorem 4.1. Let the notations be as above. There exists a finite place
P of Fq(t) such that

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective if and only if either K is imaginary , or K is real and d is odd ,
or K is real , d is even and N(ε0) = g.

Proof. If K is imaginary, then UK = F∗q and UK/UdK = F∗q/F∗dq is a cyclic
group. Thus Hom(UK/UdK ,Z/dZ) is a cyclic Z/dZ[G]-module. By Theorem
3.4, there exists a finite place P of Fq(t) such that

UK/U
d
K →

∏
v|P

Uv/U
d
v

is injective.
If K is real, then UK = 〈ε0〉 × F∗q . By Corollary 3.8, the existence of

such places is equivalent to the existence of a Minkowski unit ε such that
(#UK/Z[G]ε, d) = 1. If N(ε0) = g, we can take ε = ε0, and then UK = Z[G]ε.
If N(ε0) = 1 and d is odd, we can take ε = gε0, and then

Z[G]ε = Zε⊕ 〈N(ε)〉 = Zε⊕ 〈g2〉.

Thus #UK/Z[G]ε = 2 is prime to d. If N(ε0) = 1 and d is even, for any
Minkowski unit ε, write ε = εk0g

l, k, l ∈ Z, k 6= 0. As above,

Z[G]ε = Zε⊕ 〈N(ε)〉 = Zε⊕ 〈g2l〉 ⊂ Zε⊕ 〈g2〉.

Thus 2 |#UK/Z[G]ε, so 2 | (#UK/Z[G]ε, d). The proof is complete.
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5. The case of cyclotomic function fields. Before stating the main
theorem of this section, we must introduce some notation. Write k = Fq(t)
and R = Fq[t]. Let kac be the algebraic closure of k. In order to construct the
explicit class field theory for k, Carlitz [2] introduced an R-module structure
on kac, called the Carlitz module (see also [4]). Let End(kac) be the ring of
Fq-algebra endomorphisms of kac. Let

ρ : R→ End(kac), M 7→ ρM ,

be a ring homomorphism defined by

ρa(α) = aα, ρt(α) = tα+ αq,

where a ∈ Fq and α ∈ kac. Let

ΛM = {α ∈ kac | ρM (α) = 0},

which is called the M -torsion module of kac. If M is monic, k(ΛM ) is called
the Mth cyclotomic function field. Chapter 12 of [7] gives a nice exposition
of the theory of cyclotomic function fields. Let S∞(k(ΛM )) be the set of
infinite places of k(ΛM ) and UM be the group of S∞(k(ΛM ))-units of k(ΛM ).
For simplicity, let P(3) denote the following property: there exists a finite
place P in Fq(t) such that UK/UdK →

∏
v|P Uv/U

d
v is injective, where K is

a geometric Galois extension of Fq(t). Now we can state the main theorem
of this section.

Theorem 5.1. Let A be a monic irreducible polynomial in Fq[t], K =
k(ΛA) and K+ be the maximal real subfield of K (for the definitions, see
Theorem 12.14 of [7]). Let hA be the class number of OK and h+

A be the class
number of O+

K . If d | q − 1 and (h+
A, d) = 1, then P(3) holds for K and K+.

Before proving the above theorem, we briefly recall Galovich and Rosen’s
work on Sinnott’s cyclotomic units in cyclotomic function fields [3].

Definition 5.2. Let M be a monic polynomial in Fq[t], and λ be a
primitive M -torsion element. Define

S = {ρB(λ)/λ | B is a monic polynomial, 0 < degB < degM, (B,M) = 1}

(obviously, S ⊂ Uk(ΛM )+). The elements in the subgroup generated by S are
called the Kummer–Hilbert circular units, denoted by Cy(k(ΛM )+). Let G be
the multiplicative subgroup of k(ΛM )∗ generated by F∗q and Λ∗M = ΛM−{0}.
The elements of C = G∩Uk(ΛM ) and C+ = C∩Uk(ΛM )+ are called the Sinnott
circular units of k(ΛM ) and k(ΛM )+, respectively.

Remark 5.3. Since A is irreducible, from [3] we know that

UK = UK+ , C = C+ and C+ = F∗qCy(K+).
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In this case, Galovich and Rosen proved (see [3])

Theorem 5.4 (Galovich–Rosen). [UK : C] = [UK+ : C+] = h+
A.

Now we can start the proof of Theorem 5.1.

Proof of Theorem 5.1. Let

G = Gal(K/k) and G+ = Gal(K+/k).

From Remark 5.3, we have UK/UdK = UK+/UdK+ . Thus Hom(UK/UdK , µd)
is a cyclic Z/dZ[G]-module if and only if Hom(UK+/UdK+ , µd) is a cyclic
Z/dZ[G+]-module. By Theorem 3.4, P(3) holds for K if and only if P(3)
holds for K+. From Theorem 5.4, h+

A = [UK+ : C+], so ([UK+ : C+], d) = 1
by assumption. If we can show that C+ is a cyclic Z/dZ[G+]-module, then
by Corollary 3.8, we will complete the proof. Suppose M is a generator of
(Fq[t]/AFq[t])∗. Since by Remark 5.3, C+ = F∗qCy(K+), C+ is generated by
the set

S̃ = {ρM i(λ)/λ | 1 ≤ i ≤ qdegA − 1}.
For each polynomial W relatively prime to A there is a unique element

σW ∈ G such that σW (λ) = ρW (λ) where λ is a primitive A-torsion element
(see Theorem 12.8 of [7]). Using the definition of the group ring action, the
multiplicity of σN , and cancellation in a telescoping product, we have

ρM i+1(λ)
λ

=
σM i+1(λ)

λ

= (1 + σM + σM2 + · · ·+ σM i)
σM (λ)
λ

.

Thus

C+ = Z[G]
σM (λ)
λ

= Z[G+]
σM (λ)
λ

is a cyclic module, and the proof is finished.
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