An algorithmic construction of cyclic p-extensions of fields, with characteristic different from p, not containing the p th roots of unity

by
Richard Massy (Valenciennes)

Since the nineteenth century, when Kummer theory was first developed, we know how to build the cyclic p-extensions of fields E / F containing sufficiently many roots of unity, more precisely when F contains the p^{n} th roots where $p^{n}=[E: F]$ is the degree of E / F (cf. [6, p. 289]). In 1989, Karpilovsky [5, p. 389] set the problem of finding an explicit description of all cyclic p extensions. In 2002, the author [7] gave an algorithmic construction of any cyclic p-extension of fields with characteristic different from p, containing only the p th roots of unity. The next and final step is to eliminate any primitive p th root of unity in the extension. This is what is done in the theorem stated below. The method uses the notion of a Galois average introduced in [8] (see also [4]). As a corollary for $p=3$, we exhibit an algorithmic computable primitive element for any cyclic 3 -extension.

Here, the notations of [7] have been changed to be more algorithmic and functional in the cyclotomic descent (so, in this aesthetic sense also, this paper is an improvement of [7]).

To state the theorem we have to recall briefly the definition of a p-Galois average [8, Sect. 2]. Let p be a prime number and F be a field of characteristic not p. Denote by E / F a finite Galois extension where the top field E contains the group μ_{p} of p th roots of unity. Let G_{p} be the characteristic subgroup of $G:=\operatorname{Gal}(E / F)$ generated by all the p-Sylow subgroups of G (with $G_{p}=\mathbf{1}$ whenever $p \nmid|G|)$. A p-Galois average of E / F is an endomorphism of the ($\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$)-vector space

$$
\left(E^{\times} / E^{\times p}\right)^{G_{p}}=\left\{\bar{x} \in E^{\times} / E^{\times p} \mid \forall \gamma \in G_{p} \gamma(\bar{x})=\bar{x}\right\} .
$$

Precisely, for each $\varphi \in \operatorname{Hom}\left(G / G_{p}, \mathbb{F}_{p}^{\times}\right)$, the p-Galois average of E / F for φ,
2000 Mathematics Subject Classification: 12F10, 11R20, 11R32, 11S20.
Key words and phrases: cyclic extensions, p-extensions, primitive elements, constructive aspects of the inverse Galois problem.
which we denote $\operatorname{ga}_{E / F}^{\varphi}$, is defined by

$$
\operatorname{ga}_{E / F}^{\varphi}:\left(E^{\times} / E^{\times p}\right)^{G_{p}} \rightarrow\left(E^{\times} / E^{\times p}\right)^{G_{p}}, \quad \bar{x} \mapsto\left(\prod_{\bar{\gamma} \in G / G_{p}} \gamma(\bar{x})^{\varphi\left(\bar{\gamma}^{-1}\right)}\right)^{d^{-1}}
$$

where d is the order of G / G_{p} and d^{-1} its inverse in \mathbb{F}_{p}^{\times}.
Theorem. Let p be an odd prime number. Let D_{0} be a field, of characteristic different from p, not containing the pth roots of unity: $D_{0} \cap \mu_{p}=\{1\}$. Let D_{m} / D_{0} be a cyclic p-extension of degree $p^{m}(m \in \mathbb{N} \backslash\{0\})$. For each $n \in\{0, \ldots, m\}$, denote by D_{n} the subfield of D_{m} with degree $\left[D_{n}: D_{0}\right]=p^{n}$, and C_{n} its pth cyclotomic translation: $C_{n}=D_{n}\left(\mu_{p}\right)$.
(1) Let ζ_{p} be a primitive pth root of unity. There exists a field $D_{m+1} \supset D_{m}$ such that D_{m+1} / D_{0} is a cyclic p-extension of degree p^{m+1} if and only if there exists an element $\xi \in C_{m}$ with norm ζ_{p} over $C_{0}: N_{C_{m} / C_{0}}(\xi)=\zeta_{p}$.
(2) Assume that in (1) the field D_{m+1} exists. Then:
(2.1) A primitive element x_{m+1} of $C_{m+1}:=D_{m+1}\left(\mu_{p}\right)$ over C_{m} is given by

$$
x_{m+1}^{p}=c_{0(m+1)} y_{m}
$$

where, in succession for each $n \in\{0, \ldots, m\}$, a primitive element x_{n+1} of C_{n+1} over C_{n} is given by

$$
x_{n+1}^{p}=c_{0(n+1)} y_{n}
$$

All of this with the following definitions:

- $c_{02}, \ldots, c_{0(n+1)}, \ldots, c_{0(m+1)}$ are fixed elements of C_{0}^{\times};
- $y_{0} \in C_{0}^{\times} / C_{0}^{\times p}$;
- for all $n \in\{1, \ldots, m\}$,

$$
y_{n}:=x_{n} \prod_{i=1}^{p-1} \sigma_{n}^{i p^{n-1}}\left(z_{n}^{i}\right), \quad z_{n}:=\prod_{j=0}^{p^{n-1}-1} \sigma_{n}^{j}\left(N_{C_{m} / C_{n}}(\xi)\right)
$$

- σ_{n} is the generator of the cyclic group $\operatorname{Gal}\left(C_{n} / C_{0}\right)$ defined by

$$
\frac{\sigma_{n}\left(x_{n}\right)}{x_{n}}=N_{C_{m} / C_{n-1}}(\xi), \quad \forall n \in\{2, \ldots, m\}, \sigma_{n \mid C_{n-1}}=\sigma_{n-1}
$$

(2.2) The trace over D_{m+1} of x_{m+1} in (2.1) provides a primitive element of D_{m+1} over D_{m} :

$$
D_{m+1}=D_{m}\left(\operatorname{Tr}_{D_{m+1} / D_{m}}\left(x_{m+1}\right)\right)
$$

(3) Conversely, assume that there exists an element $\xi \in C_{m}$ with norm $N_{C_{m} / C_{0}}(\xi)=\zeta_{p}(c f .(1))$. As in (2), the datum of the cyclic p-extension D_{m} / D_{0} allows us to define algorithmically the elements

$$
y_{0}, y_{1}, \ldots, y_{m-1}, x_{1}, \ldots, x_{m}, \sigma_{1}, \ldots, \sigma_{m}
$$

$$
\begin{equation*}
\left(C_{m}\left(y_{m}^{1 / p}\right) / C_{0}\right) \text { is a cyclic } p \text {-extension of degree } p^{m+1} \tag{3.1}
\end{equation*}
$$

(3.2) Let $\bar{\eta} \in \operatorname{Hom}\left(\operatorname{Gal}\left(C_{0} / D_{0}\right), \mathbb{F}_{p}^{\times}\right)$be the "cyclotomic homomorphism" defined by

$$
\forall \tau \in \operatorname{Gal}\left(C_{0} / D_{0}\right) \forall \zeta \in \mu_{p} \quad \tau(\zeta)=\zeta^{\bar{\eta}(\tau)} .
$$

For any element x_{m+1} (in an algebraic closure of D_{0} containing C_{m}) such that

$$
\overline{x_{m+1}^{p}}=\operatorname{ga}_{C_{m} / D_{0}}^{\bar{\eta}}\left(\bar{y}_{m}\right),
$$

the following properties hold for the field $C_{m+1}:=C_{m}\left(x_{m+1}\right)$:

- C_{m+1} / C_{0} is a cyclic p-extension of degree p^{m+1};
- C_{m+1} / D_{0} is a Galois extension;
- $\operatorname{Gal}\left(C_{m+1} / C_{0}\right)$ admits a unique complement, say T_{m+1}, in $\operatorname{Gal}\left(C_{m+1} / D_{0}\right)$;
- $\operatorname{Gal}\left(C_{m+1} / D_{0}\right)$ splits into the direct product

$$
\operatorname{Gal}\left(C_{m+1} / D_{0}\right)=\operatorname{Gal}\left(C_{m+1} / C_{0}\right) \times T_{m+1} .
$$

(3.3) Let D_{m+1} be the fixed field of T_{m+1} in $C_{m+1}: D_{m+1}:=C_{m+1}^{T_{m+1}}$. Necessarily D_{m+1} contains D_{m}, and D_{m+1} / D_{0} is a cyclic p-extension of degree p^{m+1}.
(3.4) Finally, a primitive element of D_{m+1} over D_{m} is the following:

$$
D_{m+1}=D_{m}\left(\sum_{\tau \in T_{m+1}} \tau\left(x_{m+1}\right)\right)
$$

where x_{m+1} is any element in (3.2).
Proof. (1) Cf. [8, Prop. 7.3].
(2) (2.1) Since C_{1} / C_{0} is a Kummer extension of degree p, the element y_{0} exists. From y_{0}, we deduce x_{1} by $x_{1}^{p}=y_{0}$ and σ_{1} such that

$$
\sigma_{1}\left(x_{1}\right) / x_{1}=\zeta_{p}=N_{C_{m} / C_{0}}(\xi) .
$$

From x_{1} and σ_{1}, we define

$$
y_{1}:=x_{1} \prod_{i=1}^{p-1} \sigma_{1}^{i}\left(z_{1}^{i}\right), \quad z_{1}:=N_{C_{m} / C_{1}}(\xi) .
$$

Then we deduce x_{2}, σ_{2}, and so on until we find x_{n} and σ_{n}. Assume now that y_{n} is defined as in the statement of the Theorem. We have

$$
\frac{\sigma_{n}\left(y_{n}\right)}{y_{n}}=N_{C_{m} / C_{n-1}}(\xi) \prod_{i=1}^{p-1} \sigma_{n}^{i p^{n-1}}\left(\left(\frac{\sigma_{n}\left(z_{n}\right)}{z_{n}}\right)^{i}\right)
$$

where

$$
\frac{\sigma_{n}\left(z_{n}\right)}{z_{n}}=\frac{\sigma_{n}^{p^{n-1}}\left(N_{C_{m} / C_{n}}(\xi)\right)}{N_{C_{m} / C_{n}}(\xi)} .
$$

Then, by a straightforward calculation, we get

$$
\frac{\sigma_{n}\left(y_{n}\right)}{y_{n}}=\left(N_{C_{m} / C_{n}}(\xi)\right)^{p}
$$

At this point, instead of the proof of [7], it is more convenient to use
Lemma. Let L / K be a cyclic p-extension with $\mu_{p} \subset K$, and $\langle\sigma\rangle=$ $\operatorname{Gal}(L / K)$. Let M / L be a cyclic extension of degree p. For M / K to be a cyclic extension, it is necessary and sufficient that for any $x \in L$ such that $M=L(\sqrt[p]{x})$, there exists $\lambda \in L$ for which

$$
\sigma(x) / x=\lambda^{p}
$$

with the norm $N_{L / K}(\lambda) \neq 1$.
Proof. Standard fact from Galois theory (see [9, p. 15]).
Here, since $N_{C_{n} / C_{0}}\left(N_{C_{m} / C_{n}}(\xi)\right)=N_{C_{m} / C_{0}}(\xi)=\zeta_{p} \neq 1$, the Lemma ensures that $C_{n}\left(y_{n}^{1 / p}\right) / C_{0}$ is a cyclic extension (of degree p^{n+1}). But so is C_{n+1} / C_{0} (by translation of $\left.D_{n+1} / D_{0}\right)$. Let us write $C_{n+1}=C_{n}\left(a_{n}^{1 / p}\right)$ with $a_{n} \in C_{n}$. By the Lemma again, there exist $\lambda_{n} \in C_{n}$ and $i \in \mathbb{F}_{p}^{\times}$for which

$$
\sigma_{n}\left(a_{n}\right) / a_{n}=\lambda_{n}^{p}, \quad N_{C_{n} / C_{0}}\left(\lambda_{n} N_{C_{m} / C_{n}}(\xi)^{-i}\right)=1
$$

Then we apply the Hilbert Theorem 90: there exist $b_{n} \in C_{n}^{\times}$, and consequently $a_{0} \in C_{0}^{\times}$, such that

$$
a_{n}=a_{0} b_{n}^{p} y_{n}^{i}
$$

To complete the proof of (2.1), it suffices to choose $i^{\prime} \in \mathbb{N}$ with $i i^{\prime}=1+$ $q p(q \in \mathbb{N})$; indeed, for

$$
x_{n+1}:=b_{n}^{-i^{\prime}} y_{n}^{-q} a_{n}^{i^{\prime} / p}, \quad c_{0 n}:=a_{0}^{i^{\prime}} \in C_{0}^{\times}
$$

we have $C_{n+1}=C_{n}\left(x_{n+1}\right)$ and $x_{n+1}^{p}=c_{0 n} y_{n}$.
(2.2) Standard fact from number theory: in our situation see [11, Thm. $3.2(2)$] or more generally [2, p. 245, Thm. 5.3.5(2)].
(3) (3.1) By the same calculation as in (2.1), we get

$$
\sigma_{m}\left(z_{m}\right) / z_{m}=\sigma_{m}^{p^{m-1}}(\xi) / \xi, \quad \sigma_{m}\left(y_{m}\right)=\xi^{p} y_{m}
$$

Then it suffices to apply the Lemma.
(3.2) A direct application of [8, Thm. 5.4(1.2)].
(3.3) Here we fill a gap in the proof of [8, Thm. 5.4(2.1)]. Indeed, why does D_{m+1} necessarily have to contain D_{m} ? We have the Galois parallelogram [10]

$$
\left[D_{0}, C_{0}, C_{m+1}, D_{m+1}\right]
$$

By construction, the following restriction homomorphisms exist:

$$
\begin{aligned}
& r_{C_{m+1}, C_{0}}: \operatorname{Gal}\left(C_{m+1} / D_{0}\right) \rightarrow \operatorname{Gal}\left(C_{0} / D_{0}\right), \\
& r_{C_{m+1}, C_{m}}: \operatorname{Gal}\left(C_{m+1} / D_{0}\right) \rightarrow \operatorname{Gal}\left(C_{m} / D_{0}\right), \\
& r_{C_{m}, C_{0}}: \operatorname{Gal}\left(C_{m} / D_{0}\right) \rightarrow \operatorname{Gal}\left(C_{0} / D_{0}\right),
\end{aligned}
$$

and clearly

$$
r_{C_{m+1}, C_{0}}=r_{C_{m}, C_{0}} \circ r_{C_{m+1}, C_{m}} .
$$

From $\left[D_{0}, C_{0}, C_{m+1}, D_{m+1}\right]$, we deduce $\left|T_{m+1}\right|=\left[C_{0}: D_{0}\right] \mid p-1$, and

$$
\begin{aligned}
\left|T_{m+1}\right| & =\left|r_{C_{m+1}, C_{0}}\left(T_{m+1}\right)\right|=\left|r_{C_{m}, C_{0}}\left(r_{C_{m+1}, C_{m}}\left(T_{m+1}\right)\right)\right| \\
& \leq\left|r_{C_{m+1}, C_{m}}\left(T_{m+1}\right)\right| \leq\left|T_{m+1}\right|
\end{aligned}
$$

then

$$
\left|r_{C_{m+1}, C_{m}}\left(T_{m+1}\right)\right|=\left|T_{m+1}\right| \mid p-1
$$

Since $\left[C_{m}: C_{0}\right]=p^{n}$, we get

$$
r_{C_{m+1}, C_{m}}\left(T_{m+1}\right) \cap \operatorname{Gal}\left(C_{m} / C_{0}\right)=\mathbf{1}
$$

Consequently, the image $r_{C_{m+1}, C_{m}}\left(T_{m+1}\right)$ is a complement of $\operatorname{Gal}\left(C_{m} / C_{0}\right)$ into $\operatorname{Gal}\left(C_{m} / D_{0}\right)$. But so is $\operatorname{Gal}\left(C_{m} / D_{m}\right)$ which is a normal subgroup. Then necessarily, by the Hauptsatz of Zassenhaus [3, p. 127, 18.2],

$$
r_{C_{m+1}, C_{m}}\left(T_{m+1}\right)=\operatorname{Gal}\left(C_{m} / D_{m}\right) ;
$$

and so

$$
D_{m}=C_{m}^{\mathrm{Gal}\left(C_{m} / D_{m}\right)}=C_{m}^{r_{C_{m+1}, C_{m}}\left(T_{m+1}\right)} \leq C_{m+1}^{T_{m+1}}=D_{m+1}
$$

To conclude the proof, it now suffices to apply point (2) of Theorem 5.4 in [8].

Corollary. When $p=3$, the conclusion of the Theorem holds for:
(3.2) $\overline{x_{m+1}^{3}}=\overline{N_{C_{m} / D_{m}}\left(y_{m}\right) y_{m}}$;
(3.4) $D_{m+1}=D_{m}\left(x_{m+1}+x_{m+1}^{2} / y_{m}\right)$.

Proof. Indeed, in the definition of the Galois average ga ${ }_{C_{m} / D_{0}}^{\bar{\eta}}$, we have $G_{3}=\operatorname{Gal}\left(C_{m} / C_{0}\right)$, whence $G / G_{3}=\operatorname{Gal}\left(C_{0} / D_{0}\right)$ and $d=2$ so $d^{-1}=2$ (into $\left.\mathbb{F}_{3}^{\times}\right)$. Let us write $\operatorname{Gal}\left(C_{0} / D_{0}\right)=:\left\{1, \tau_{0}\right\}$ where $\bar{\eta}\left(\tau_{0}\right)=2$. The Galois parallelogram $\left[D_{0}, C_{0}, C_{m}, D_{m}\right]$ implies that $\operatorname{Gal}\left(C_{m} / D_{m}\right)=:\left\{1, \tau_{m}\right\}$ with $\bar{\tau}_{m}=\tau_{0}$. Therefore,

$$
\operatorname{ga}_{C_{m} / D_{0}}^{\bar{\eta}}\left(\bar{y}_{m}\right)=\left(\bar{y}_{m} \tau_{m}\left(\bar{y}_{m}\right)^{2}\right)^{2}=\bar{y}_{m}^{2} \tau_{m}\left(\bar{y}_{m}\right)=N_{C_{m} / D_{m}}\left(\bar{y}_{m}\right) \bar{y}_{m}
$$

Now, for any element x_{m+1} such that

$$
\overline{x_{m+1}^{3}}=\overline{N_{C_{m} / D_{m}}\left(y_{m}\right) y_{m}},
$$

let $C_{m+1}:=C_{m}\left(x_{m+1}\right)$ and $D_{m+1}:=C_{m+1}^{T_{m+1}}$ where T_{m+1} is the unique complement of $\operatorname{Gal}\left(C_{m+1} / C_{0}\right)$ into $\operatorname{Gal}\left(C_{m+1} / D_{0}\right)$ (cf. Thm. (3.2)). Following
[8, Thm. 5.4(2.1)], we have the Galois parallelograms

$$
\left[D_{0}, C_{0}, C_{m+1}, D_{m+1}\right], \quad\left[D_{m}, C_{m}, C_{m+1}, D_{m+1}\right] .
$$

For $\operatorname{Gal}\left(C_{m+1} / D_{m+1}\right)=:\left\{1, \tau_{m+1}\right\}$, we then have

$$
\bar{\tau}_{m+1}=\tau_{m+1 \mid C_{m}}=\tau_{m} .
$$

Moreover, following [8, Prop. 2.5(4)],

$$
\overline{x_{m+1}^{3}} \in \operatorname{Im}\left(\mathrm{ga}_{C_{m} / D_{0}}^{\bar{\eta}}\right)=\operatorname{Nor}^{\eta}\left(C_{m} / D_{0}\right),
$$

with $\eta\left(\tau_{m}\right)=\bar{\eta}\left(\bar{\tau}_{m}\right)=\bar{\eta}\left(\tau_{0}\right)=2$. Indeed, for $x_{m+1}^{3}=y_{m}^{2} \tau_{m}\left(y_{m}\right)$,

$$
\frac{\tau_{m}\left(x_{m+1}^{3}\right)}{\left(x_{m+1}^{3}\right)^{\eta\left(\tau_{m}\right)}}=\left(\frac{\tau_{m+1}\left(x_{m+1}\right)}{x_{m+1}^{2}}\right)^{3}=\frac{1}{y_{m}^{3}}
$$

and there exists $\nu \in \mathbb{F}_{3}$ such that

$$
\frac{\tau_{m+1}\left(x_{m+1}\right)}{x_{m+1}^{2}}=\frac{\zeta_{3}^{\nu}}{y_{m}}
$$

But $\tau_{m+1}^{2}=1$. It now suffices to apply $x_{m+1}=\tau_{m+1}^{2}\left(x_{m+1}\right)$ to get $\nu=0$. This completes the proof.

Example. Let us take $D_{0}=\mathbb{Q}_{3}$, the local field of 3-adic numbers. Then $C_{0}=\mathbb{Q}_{3}(j)$ where $j:=e^{2 i \pi / 3}$. For $y_{0}=4+6 j$, we have

$$
\overline{x_{1}^{3}}=\mathrm{ga}_{C_{0} / D_{0}}^{\bar{\eta}}(\overline{4+6 j})=\overline{28} \overline{4+6 j} .
$$

But, following [13, p. 219, Prop. 9], there exists a unique cubic root of 28 in \mathbb{Q}_{3}; we denote it by $\sqrt[3]{28}$. Then we can take $C_{1}=C_{0}\left(x_{1}\right)$ with

$$
x_{1}=(4+6 j)^{1 / 3}
$$

(any fixed cubic root of $4+6 j$). Furthermore,

$$
\left(\frac{\tau_{1}\left(x_{1}\right)}{x_{1}^{2}}\right)^{3}=\frac{\tau_{0}(4+6 j)}{(4+6 j)^{2}}=\left(\frac{\sqrt[3]{28}}{4+6 j}\right)^{3} \Leftrightarrow\left(\exists \nu \in \mathbb{F}_{3} \quad \tau_{1}\left(x_{1}\right)=j^{\nu} \frac{\sqrt[3]{28}}{4+6 j} x_{1}^{2}\right) .
$$

But $\tau_{1}^{2}=1$ and $\tau_{1}(\sqrt[3]{28})=\sqrt[3]{28}\left(\right.$ since $\left.\sqrt[3]{28} \in \mathbb{Q}_{3}\right)$. Therefore $\nu=0$; and by our last assertion (3.4), the extension D_{1} / D_{0} is cyclic of degree 3 with

$$
D_{1}=D_{0}\left(x_{1}+\tau_{1}\left(x_{1}\right)\right)=\mathbb{Q}_{3}\left((4+6 j)^{1 / 3}+\frac{\sqrt[3]{28}}{4+6 j}(4+6 j)^{2 / 3}\right) .
$$

Is it possible now to apply the Theorem one step further? Indeed, we can by using its first point (1), as we deduce from the Hilbert-Artin-Tate symbol [1, p. 163, Thm. 9], for the wild place $1-j$, that $\langle 4+6 j, j\rangle_{(1-j)}=1$; whence, there exists $\xi \in C_{1}$ with norm $N_{C_{1} / C_{0}}(\xi)=j$. To compute such a ξ, we observe, for the valuation $\operatorname{ord}_{(1-j)}$, that

$$
\operatorname{ord}_{(1-j)}\left(1-\frac{11-6 j}{2+3 j}\right)=\operatorname{ord}_{(1-j)}(-9+9 j)=5>3 .
$$

Therefore, following [13, loc. cit.] or [14] with defect theory (generalized in [12]), there exists $\theta \in \mathbb{Q}_{3}(j)$ with $\theta^{3}=(11-6 j) /(2+3 j)$. This allows us to take

$$
\xi:=\frac{2+x_{1}}{(1-j) x_{1}\left(\theta+x_{1}\right)} .
$$

We have just proved that there exists a field $D_{2}>D_{1}$ inducing a cyclic extension D_{2} / D_{0} of degree 9 .

To build such a field, it now suffices to apply the Theorem for $m=1$. Clearly

$$
z_{1}=\xi, \quad y_{1}=x_{1} \sigma_{1}(\xi) \sigma_{1}^{2}\left(\xi^{2}\right)
$$

where σ_{1} is the generator of the cyclic group $\operatorname{Gal}\left(C_{1} / C_{0}\right)$ defined by

$$
\frac{\sigma_{1}\left(x_{1}\right)}{x_{1}}=j=N_{C_{1} / C_{0}}(\xi)
$$

This gives

$$
y_{1}=\frac{j x_{1}\left(2+j x_{1}\right)\left(2+j^{2} x_{1}\right)^{2}}{(1-j)^{3}(4+6 j)\left(\theta+j x_{1}\right)\left(\theta+j^{2} x_{1}\right)^{2}} .
$$

The extension $C_{1}\left(y_{1}^{1 / 3}\right) / \mathbb{Q}_{3}(j)$ is cyclic of degree 9 , but $C_{1}\left(y_{1}^{1 / 3}\right)$ is not Galois over \mathbb{Q}_{3}. To get such a field, we have to take the Galois average of \bar{y}_{1} :

$$
\operatorname{ga}_{C_{1} / D_{0}}^{\bar{y}}\left(\bar{y}_{1}\right)=\bar{y}_{1}^{2} \tau_{1}\left(\bar{y}_{1}\right)
$$

(cf. Cor. (3.2)), where:

- classes are $\bmod C_{1}^{\times 3}$ (for instance, $\overline{4+6 j}=\overline{x_{1}^{3}}=\overline{1}$);
- $\operatorname{Gal}\left(C_{i} / D_{i}\right)=\left\{1, \tau_{i}\right\}(i=0,1),\left.\tau_{1}\right|_{C_{0}}=\tau_{0}, \tau_{0}(j)=j^{2}$
(in particular, for $\theta=m+n j, m, n \in \mathbb{Q}_{3}, \tau_{1}(\theta)=\tau_{0}(\theta)=m+n j^{2}$). Since $\tau_{1}\left(x_{1}\right)=\sqrt[3]{28} x_{1}^{2} /(4+6 j)$, we get

$$
\tau_{1}\left(\bar{y}_{1}\right)=\frac{j^{2} \sqrt[3]{28} x_{1}^{2}\left(8+12 j+j^{2} \sqrt[3]{28} x_{1}^{2}\right)\left(8+12 j+j \sqrt[3]{28} x_{1}^{2}\right)^{2}}{\left((4+6 j) \tau_{0}(\theta)+j^{2} \sqrt[3]{28} x_{1}^{2}\right)\left((4+6 j) \tau_{0}(\theta)+j \sqrt[3]{28} x_{1}^{2}\right)^{2}}
$$

Finally, following (3.4) in the Corollary (or the Theorem), for any x_{2} (in an algebraic closure of \mathbb{Q}_{3} containing $\left.C_{1}=\mathbb{Q}_{3}\left(j,(4+6 j)^{1 / 3}\right)\right)$ such that

$$
\begin{aligned}
\overline{x_{2}^{3}}=\bar{y}_{1}^{2} \tau_{1}\left(\bar{y}_{1}\right)= & \frac{\overline{j \sqrt[3]{28} x_{1}\left(2+j^{2} x_{1}\right)\left(\theta+j x_{1}\right)}}{\frac{\left(2+j x_{1}\right)\left(\theta+j^{2} x_{1}\right)}{\left(8+12 j+j^{2} \sqrt[3]{28} x_{1}^{2}\right)\left((4+6 j) \tau_{0}(\theta)+j \sqrt[3]{28} x_{1}^{2}\right)}}, \\
& \times \frac{\left(8+12 j+j \sqrt[3]{28} x_{1}^{2}\right)\left((4+6 j) \tau_{0}(\theta)+j^{2} \sqrt[3]{28} x_{1}^{2}\right)}{(8+1)}
\end{aligned}
$$

the field

$$
D_{2}=D_{1}\left(x_{2}+x_{2}^{2} / y_{1}\right)
$$

induces a cyclic extension D_{2} / \mathbb{Q}_{3} of degree 9 .

References

[1] E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1967.
[2] H. Cohen, Advanced Topics in Computational Number Theory, Grad. Texts in Math. 193, Springer, New York, 2000.
[3] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1983.
[4] C. U. Jensen and R. Massy, Some remarks on Hilbertian fields (An appendix to the paper "Galois averages" by R. Massy), J. Number Theory 120 (2006), 229-233.
[5] G. Karpilovsky, Topics in Field Theory, North-Holland Math. Stud. 155, Amsterdam, 1989.
[6] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer, New York, 2002.
[7] R. Massy, Une construction algorithmique des p-extensions cycliques de corps, de caractéristique différente de p, contenant les racines p-ièmes de l'unité, Acta Arith. 103 (2002), 21-26.
[8] -, Galois averages, J. Number Theory 113 (2005), 244-275.
[9] —, Les extensions galoisiennes de degré p^{3} d'un corps p-adique, Thèse de 3e Cycle, Université Paris VII, Paris, 1975.
[10] R. Massy et S. Monier-Derviaux, Parallélogrammes galoisiens, J. Algebra 217 (1999), 229-248.
[11] S. Monier, Descente de p-extensions galoisiennes kummériennes, Math. Scand. 79 (1996), 5-24.
[12] T. Nguyen-Quang-Do, Filtration de $K^{*} / K^{* p}$ et ramification sauvage, Acta Arith. 30 (1976), 323-340.
[13] J.-P. Serre, Corps Locaux, 3e éd., Hermann, Paris, 1980.
[14] B. F. Wyman, Wildly ramified gamma extensions, Amer. J. Math. 91 (1969), 135152.

Université Lille Nord de France
UVHC, LAMAV
F-59313 Valenciennes, France
E-mail: Richard.Massy@univ-valenciennes.fr

Received on 2.6.2008
and in revised form on 2.2.2009

