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1. Results. We denote by Lis the p-adic polylogarithm function defined
for an integer s and p-adic number x € C, by

+o00

. x
Lis(x) = Z T
k=1

for |z|, < 1. We denote by Lis(z) the complex polylogarithm defined by the
same series and for complex numbers z and s such that |z] < 1.

The p-adic polylogarithms have applications to number fields (cf. [Col])
and p-adic L-functions (cf. [Fu]).

In the archimedian case, we have the following diophantine results. The
results of M. Hata (cf. [Ha]) improved by G. Rhin and C. Viola (cf. [Rh])
give

THEOREM 1. For any integer q such that |q| > 6, the number Liz(1/q)
is irrational.

M. Hata also gives explicit conditions on the integer m and the rational
number z for Li,,(z) to be an irrational number.
In [Ri], T. Rivoal proves

THEOREM 2. Let x be a rational number such that |x| < 1. The set
{Lis(z) }sen contains infinitely many irrational numbers linearly independent
over Q.

R. Marcovecchio proved this result for  an algebraic number (cf. [Mal]).
In the p-adic case, the diophantine results are fewer than in the archi-
median case. In this paper, we prove the following new results.

THEOREM 3. Let K = Q(0) be a number field and p a prime number.
Consider K as embedded into C, and denote by K, the completion of this
embedding. Suppose that |§], > 1 and let d(5) be the denominator of 6. For
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any integer A > 2, the dimension 7 of the K-vector space spanned by 1 and

(Lis(671))sen,a) satisfies
Xy — /X2 - 2X1 X3

1 >
1) = < ,

where
X1 =[K:Q,
Xo=((A+1)log(A+1)+logd(d) + A(1 +log2))

1
+ D mwlogmax(1,10],) + 5 [K: @),
’UEVOO
X3 = np(A+1)log |d]p.
REMARK 1. Under the hypotheses of Theorem 3, we have the lower
bound

(2) Tz [Kp : Qp)(A+1)log 0],
% 1Q0): QAT 1) Tog(A+1) +log d(8) + A(1+log2)) + 33 7 log max(L,|4].)"

VEV oo

which follows from (1).

COROLLARY 1. For any integer s > 2 and any integer a > 0, if the
prime number p sastisfies

2
alogp > g + slog(s + 1) + s%log(s + 1) + % + s%log2 =: f(s),
then the number Lis(p®), which belongs to Qp, is irrational.

Proof. We apply the inequality (1) with a fixed integer A = s and
d =p~° In this case [K, : Q)] = [K: Q] = 1, log|p™®|, = logd(p™®) =
alogp and log(max(1,|p~*])) = 0. We thus have
Xo — /X2 -2X1 X
lim =2 2 22— Ay
pP—-+o00 X1

Xo—/X2-2X1X3

The equation e = A has one solution in R* which is
p® = e/, We obtain
dimg Vect(1, (Eis(éfl))se[LA}) > A
for alogp > f(A), which completes the proof.

COROLLARY 2. The numbers Liz(234281) and Lio(2'8), which belongs
to Qozq081 and Qo respectively, are irrational.

2. Notations and conventions. In this paper, K represents a number
field and O(K) its ring of algebraic integers. For an algebraic number 3, we
denote by d(f) the denominator of 3, which is defined as the least positive
integer [ for which [3 is an algebraic integer.
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We set d,, = lem(1,...,n). The prime number theorem gives the estimate
d, = en—l—o(n)'

For a prime number p, we denote by v, the p-adic valuation over Q and
|- |, = p~ ") the p-adic norm.

Let v be a place of the number field K. Then K, and Q, denote the
completions of K and Q at this place and 7, stands for the index [K, : Q,].
V, Voo and Vy represent the sets of places, of infinite places and of finite
places respectively.

For any o € K*, we have the product formula

va log ||, = 0.

veY
Moreover,

> ne=[K:Ql.

UEVOO

If o is an element of O(K) \ {0} and p a finite place, as |a|, < 1 for any
finite place v of K, we have

np log |y + Z My log |al, > 0.
vEVoo

3. A criterion of linear independence. This criterion is an adap-
tation in the p-adic case of the criterion used in the complex case by R.
Marcovecchio (cf. [Ma]). The author did not find any statement in this form
in the mathematical literature.

Let m be a positive integer, L = ({1,...,0n) € K™, 0= (01,...,0,) €C
and (L,0) = 0101 + -+ - + £;,0,,. For any place v of K, we define ||L||, =
maxi<j<m |{j]o-

LEMMA 1. Let p be a prime number and K a number field. Fix an em-
bedding of K into C, and denote by K, = Q,(K) its completion. Let 6 =
(01,...,0m) be a nonzero vector of K3'. Suppose that there exist real positive

)

numbers (¢y)vey,,, a real number p, and m sequences (Lq(f)) = ((ﬁg’j)je[lym]),
with n € N and 1 <i <m, of vectors in (O(K))™ such that for all n, the
m vectors LS) are linearly independent over K and enjoy the following prop-
erties:

(i) for any place v € Vy, limsup,, n~! log ||L$f)\|v < ¢y,
(ii) limsup,, n~!log ](LSZ), 0)], < —p.
Then
pKp : Qpl .
ZUEVOO T Cy

(3) 7 = dimg Vect(0y,...,0,) >
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Moreover, if &t divides Es)j for all (i,7) € [1,m]?, we have more precisely

Z chv-i-%[Ki@]—\/( Z UUCv-I-%[KiQ])Q—QPﬁp[Ki@]

VEVoo vE€EVoo
W= K Q)

Proof. By swapping the indices of (6;);c[1,m], we can suppose that 0; is
nonzero. Furthermore, replacing (6;) e(1,m] by (05/01) je[1,m], we assume that
61 = 1.

If 7 is the dimension of the K-vector space spanned by the 6;, then there
exist m — 7 vectors (A(i))i€[7+17m] of (O(K))™, linearly independent over K,
such that (A®),0) =0 for all i € [r + 1, m).

By permutation of ¢, we can suppose that for all n € N, the vectors
(LS), . ,Lg), ATHD A are linearly independent.

Let M,, be the matrix whose rows are the vectors

(L) L0, ACHD | g0m),

ie. LY = (&%

n,l "

. aggl,)nz) and A(Z) = (agi)’ A CL%))

@ i
ES% ..... en@fg)ﬂ
(5) My, = a§7’+1) ag/ 1) (r+1)
agm)aém)ag?)
Since the matrix is nonsingular, we have
(6) A, = det(M,,) # 0.
Since A, belongs to O(K), we deduce from (6) that
(7) 0 < nplog|Aulp + D mulog|Any.
VE€Voo

For the infinite places, the expansion of the determinant (5) gives

Aply < m! 1LY R
[Anly < m (jrg[?f;]l ol ) (J,Efgffm}laz | )
jelin] jelin]

By using assumption (i), this implies that

(8) lim sup

n

v

log | Ap |y < e
—, =
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By multi-linearity of A,, we can add the jth column multiplied by 6; to
the first. We obtain

@ o) a8
L@ e o
n 0 QD %H)

0 agm) a,%n)

By expansion along the first column we obtain

. . . m—1
|Aplp < max \(L?,H)b(max( max w(])- max ]aﬁj)\p>) .

)
jeltr] jelr) P jelrim)

JE[L,n] JE[L,n]
)

Since ES) and a;

i are algebraic integers, we deduce
b

(An)p < max |(LY),0)
JE,T]
and an application of (i) implies that

log | Ay,

9) lim sup o < —p.

n
Dividing (7) by n and using (8) and (9), we have
0< —pnp+7 Y Moco-
’UEVOO
This proves (3), the first lower bound of Lemma 1.

Moreover, if " divides Eq(f)j for all (i, ) € [1,m]?, the expansion of the
determinant of (5) shows that ay st =l gr(m=U/2 Givides A,. Thus
Ay =drT=02)

with A, € O(K).
When n tends to 400, the following asymptotics hold:
log |dn| ~n, logl|dys|p, = o(n).
This implies that

. 1 . 1
(10) ngrfoo E log ’/\n‘p - ngrfoo E log ’An‘p
and
) 1 . 1 (T —1)
(11) nEI-sI-looﬁIOg’)\"b - nll)lfooﬁlogvln’p - Ta
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for any infinite place v. Thus

0 < nplog [Anlp + Z Mo 10g [Ano-
’UGVOO

By dividing by n and using (8)—(11), we conclude that
T(r—1
0< —PNp + T Z nvcv_(z) Z s

vEVoo ’UGVOO
and thus

(1t —1)
2

0< —pmp+7 Y nuey — [K: Q]

VEVoo

This proves (4), the second lower bound of Lemma 1.

4. Simultaneous Padé approximants of (Lis(2))sc(o,4)- The results
of this section and the next are adapted from the article by T. Rivoal
(cf. [Ri]). We construct explicitly the simultaneous Padé approximants of
polylogarithms. These approximations provide us with the linear form used
to apply the linear independence criterion.

For any integers A, n and g which satisfy n >0, A>2and 0 < ¢ < A,

we define . (k — An) an
P (R)A (k)

The R, 4(k) are rational fractions in k of degree —¢g. By partial fraction
expansion, we have
n A

H=3 Y P,

7=0 8*1
where 0 is the Kronecker symbol.
For s € [1, A], we set

an 5 er’I’LqZ

and

P(]nq er],s,n,qz ks +50,q7'

s=1 j=0
We introduce a class of functions qu(z) deﬁned by

“+oo
z) = Z Rn,q(k/’)z_k
k=1
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PROPOSITION 1. The fractions (Psnq(2))selo,a] and the formal series
Snal2) in Q((=")) satisfy
A

Sna(2) = Pomg(2) + ) Pong(2) Lis(=")

s=1
and
ord Sy, 4(2) = An+ 1.

REMARK 2. For ¢ = 0, Sy, 4(2) is not a Padé approximant, because
Po.n0(2) is not a polynomial, but it is the case of (z —1)S, 4(2).

Proof. We have

400
Snale) = 3 R~ -5 (sz )

s=1 j=1
50 —(k+5)
SE D 9 DNy
s=1 1 +‘7
Jj=
50 A N ; J Z_k
- PR [renati ) - 3 ]
s=1 j=1 k=1
A

= Pong(2) + Z Psng Lis(z_l).
s=1

The first assertion is proved. Since R, ;(k) vanishes for k between 1 and An
and Ry, 4(An + 1) is nonzero, we deduce the second assertion.

5. Auxiliary results. We keep the notation of Section 4.

REMARK 3. By construction, for s > 1, the F;, , are polynomials of
degree at most n, and at most n — 1 if s > ¢. Moreover, for ¢ > 1, the
Tngng = (—(A+1)n)an/(—n)a do not vanish, hence P, ,(z) is a polyno-
mial of degree n.

PROPOSITION 2. For all s € [1, A], we have

1
A% Popg(2) € Z[2] and d2 (Po,mq(z) — Gog — 1) € Z[2].
Proof. 1t is sufficient to show that dﬁ_s Tjsn,q 18 an integer. We suppose

that j € [0,n — 1] (the case j = n is similar, with s < ¢). We have

_1\A-—s A—s
riama = gy (5i) om0 = 01y
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We can write

R0 = D = S - (HF ))

where F,(1) = {522 (j — 1) and H(I) = (=1 +n)472.

By partial fraction expansion of F,(l), we obtain

=1+ Y U=

i
0<i<n
where
(=t —cn)y imfcn+1\ (1
12 e = ———"—"—=(—1 .
(12) fie = ~mtts = (o (M) (]
hti
0<h<n
We deduce from (12) that the f;. are integers. Setting Dy = y(%)/\, we
have, for all A > 0,
.7_ fzc
DA(Fe(l)) = do + Z (i — )L
i#]
0<i<n

We have shown that the d)) Dy (Fe(l))=; are integers for all A > 0. More-
over, Dy(H(I))j;=; is an integer.
Using the Lelbmz identity, we have

Da-s[Rug(=1 = 2)(j = D] =Y (D (F1)) -+ (D, (Fa)) (D (H))
(v € N with g+ +v4 = A—s). We deduce from this that d2—* Tj.sm.q
is an integer and thus d;~° P;,, 4(2) is an element of Z[2].

ProrosiTION 3. If 3 is an element of the number field K and if v is
an infinite place of K, then for s € [0, A], we have

limsup | Py o (8)|1™ < (A + 1A 124 max(1,|6],).
n
Proof. 1t is sufficient to bound r; 4. We have

1 s
T’j,s,n,q = ﬁ S qu(t) (t + j) 1 dt
jt+il=1/2

= w (t+5)5 1 dt.

T
[t+5]=1/2
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Hence

1 |(t — An) an| [(t+)* "
Tsnal S g T AR O+
<27° sup M.

tjl=1/2 | (D)t 4+ n)9|
As |t + j| = 1/2, we have

|(t — An) an| = Hlt—k\ H|t+j—k:—j|

<H<+——@<H@Hmm

SO
(An+j +1)!
13 t— An)ap| <
(13) (¢ = Aol < ST
and
n—1 n—1
:Hyt+k|:Hyt+j—j+k|
k=0
1 .
>IIQ—+M—M)28 [T 1eh,
0<k<n-1
k¢{j—1,5,5+1}
SO
(14) |(£)n] > %J!(H—J)';
and
q
(15) |@+nﬂhﬂ@+jj+MWzlnﬂ’22“

We deduce from (13)—(15) that
gtA—s 34 (An+j+ 1)

: <
Pismal = (+ DI (n = )
Thus
(16) onal < 2t (1) (AT
The multinomial series
(km)!
($1+"'+$m)km: Z nyl- - ny! oyt

N1, ,Mm 20
ni+-+nm=km

51

applied to x1 =---=x,, =1 and ny = - - - = n,,, = k gives (km)!/k!I™ < mkm
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Using the upper bounds (An)!/n!4 < A", (7) < 2" and (""JIH) <
(A"XZ“), we deduce that
- An+n+1
[7jssmql < AT szn(AH)nsA( H >
By Stirling’s formula,
(A7) At
n—-+o0o An AA .
Hence
’rj,s,n,q| < ((A + 1)A+12A)n+o(n).

Thus for s > 1,
[ Psn,q(B)|o < Z IPjsmal 1B < (n 4+ 1)((A+ 1D)AH24)m o) max(1,|8],)"

and

A
|P0,nq ZZ anq|z|ﬁ s + d0,q
s=1 k=1

7=0

1
6—1

v

< Aln+ 1)((A+ 1A 24)7 0 max (1, |81,)" + do,q

1
g—1],

This yields the conclusion.

6. Independence of linear forms. The results of this section are
adapted from an article of Marcovecchio (cf. [Ma]). We set

(17) Mp(z) = (Ps,n,q(z))se[o,Ay
qE[O,A]
PROPOSITION 4. There exists a constant v € Q* such that
det M, (z) = v(z —1)7*

Proof. For (s,q) # (0,0), Ps 5,4 is a polynomial whereas P( ) is a rational
fraction with one simple pole at z = 1. Hence the determlnant of (17) is a
rational fraction with at most a simple pole at z = 1. By multi-linearity of
determinant, we add the jth column multiplied by Lis(z~!) to the first. We
obtain

Sn,O(Z) le,,O(Z) Tt PA,n,O(Z)
det M, (2) = : : :

Sna(2) Pina(z) -+ -+ Papa(z)
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The elements of the first column are formal power series in z~! of valu-
ation An + 1 (Proposition 1). The other columns are polynomials of degree
at most n in z (Remark 3). We deduce that the determinant is a rational
fraction in z of degree at most —1. Remark 3 shows that the elements above
the diagonal have degree at most n — 1 in z. Hence only the product of
diagonal elements can be of degree —1 in z, the others have a strictly lower
degree. Remark 3 also implies that P, , ;(z) is exactly of degree n in z. We
thus have an element of degree exactly —1. The degree of det M, (z) in z
is —1, proving the assertion.

7. Transfer from complex to p-adic and proof of Theorem 3

PROPOSITION 5. Let o € Cp, with |a, > 1 and set

A
Unal@) = it (Pona(@) + 3 Pung(@)Lisa™)).
s=1

Then )
lim sup — log |U, 4(@)|p, < —Alog |ap.
n o N

We will prove this proposition using the following two lemmas.

LEMMA 2. We have
o0
Upgqla) = Z ukmofk
k=0

where (ugn) is a sequence of rational numbers independent of o, with

upn =0 for all k < An.
Proof. In the field Q((X 1)) of Laurent series, we have
Un,g(X) = df} S q(X).

Proposition 1 proves that this series has valuation at least An+ 1 in X. We

can write
o0

Ung(X)= Y X
k=An+1

Moreover, the Laurent series Uy, 4(X) is convergent on C,, for | X|, > 1, since
Lis(X 1) is convergent on the same domain and U, ,(c) is the sum of this
series for X = a.

LEMMA 3. The terms uy,y satisfy
[uknlp < (k+n+1)4,

Proof. The p-adic absolute value of the kth term of the expansion of
Lig(X71) in Q((X~1)) is at most k°. As
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© Ung(X) = di}(Pong(X) + 5503 Pang(X)Lis(X 7)),

e d2Ps,, is an element of Z[X] of degree at most n, for v an infinite
place,

e d} Py, is an element of Z[[X!]][X] of degree at most n,

we infer that
|ukn|p (k—l—n+1)

Proof of Proposition 5. Using Lemmas 2 and 3, we find
Ung(@)py < sup (k+n+1)%al,* = ((A+ n+2)%al, "
k>An+1

for n sufficiently large (indeed k — (k+n+ 1)A|04|; ¥ is a decreasing function
on [An + 1, +o0[). Proposition 5 is thus proved.

Proof of Theorem 3. Using Proposition 2 and Remark 3, we find that
d(a)" (o — 1)d2 Ps 4 () is an algebraic integer.
Using Proposition 3, we have

(18) lim sup — log|d( )”'H(oz— 1)dﬁPsyn7q(a)|v

< (A+ 1) log(A+1) + A(1 +log2) + log d(«) + log max(1, |a|y) = ¢

for any infinite place v.
For the p-adic absolute values, using Proposition 5 and the inequality
|d(a)]p < \a\;l, we obtain

~limsup - log |d(a)" (o ~ DdUnq(a)l, > (4+ loglal, = p

Proposmon 4 gives the linear independence of the linear forms (U, 4)4e0, 4]
inl,...,Lia(a™"). Since Y oy, 7v=[K : Q] and the hypotheses of Lemma 1
are checked, we obtain

dimgq) Vect(1, (Lis (ofl))se[l’m)

S [Qp(a) : QpJ(A+1)log|aly
T [Q(a) : Q((A+1)log(A+1) + Alog2+ A+ logd(a)) + > nvlogmax(1,|aly)’

vEVoo

Inequality (2) is thus proved. Using Proposition 2, we can apply inequal-
ity (4) of Lemma 1 to obtain (1).
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