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1. Introduction. Two classical results of Wilhelm Ljunggren [6], [7] are
the complete solution in positive integers of the two Diophantine equations

X2 − 2Y 4 = −1, X2 − 5Y 4 = −4.

In particular, Ljunggren proved that apart from (X,Y ) = (1, 1), only the
former equation has another positive integer solution, with the only such
solution being (X,Y ) = (239, 13). The solution of the latter equation can
be viewed as the major hurdle in determining that 1 and 144 are the only
perfect squares in the Fibonacci sequence. We remark that since Ljunggren
completely solved the Diophantine equation X2 − 2Y 4 = −1, many other
proofs have been given, most recently in [2].

The two Diophantine equations above can be regarded as the first two
members of the family of quartic equations

(1.1) X2 − (22m + 1)Y 4 = −22m.

In a recent paper [4], the authors used a recent theorem of Akhtari to prove
that (1.1) has at most 12 solutions in odd positive integers (X,Y ). It is
worth noting that (X,Y ) = (103, 5) is the only non-trivial solution in the
case m = 2, and moreover, that for all 3 ≤ m ≤ 17, a MAGMA computation
shows that (1.1) has only the solution (X,Y ) = (1, 1) in odd positive integers
X,Y . One would therefore expect that the bound of 12 is not sharp, but
rather an artifact of the method used in [4]. Indeed, it is the goal of this
paper to prove the following result for the family of equations in (1.1).

Theorem 1.1. For all m ≥ 0, the equation X2 − (22m + 1)Y 4 = −22m

has at most three solutions in odd positive integers (X,Y ).
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2. Preliminary results. We begin our analysis with the following use-
ful observation.

Lemma 2.1. If (X,Y ) 6= (1, 1) is a solution in positive integers to

X2 − (22m + 1)Y 4 = −22m,

then we have

±X ± 2ai = (1 + 2ai)(s± ri)4, Y = s2 + r2, r > s > 0.

Proof. All coprime integer solutions (x, y) to the quadratic equation

x2 − (22m + 1)y2 = −22m

are given by

(2.1) x+ y
√

1 + 22m = ±(±1 +
√

1 + 22m)(2m +
√

1 + 22m)2i

for some integer i (see [5] or [4]).
For brevity, let a = 2m−1, and let α = T +U

√
1 + 22m = 2m+

√
1 + 22m.

For i ≥ 0, define sequences {Ti} and {Ui} by

αi = Ti + Ui
√

1 + 22m.

Therefore, a solution in odd positive integers (X,Y ) 6= (1, 1) to X2 −
(22m + 1)Y 4 = −22m is equivalent to a solution to

(2.2) Y 2 = T2k ± U2k, X = (4a2 + 1)U2k ± T2k

for some k ≥ 1, since (4a2 + 1)U2k > T2k > U2k.
We first consider the case that the signs appearing in (2.2) are positive.

By the well known identities T2k = T 2
k +(1+4a2)U2

k and U2k = 2TkUk, (2.2)
shows that

Y 2 = (Tk + Uk)2 + (2aUk)2,

and the terms involved in this equality are pairwise coprime since a = 2m−1,
Y is odd and gcd(Tk, Uk) = 1. Thus, there are coprime non-negative integers
r and s, of opposite parity, for which

Y = r2 + s2, Tk + Uk = r2 − s2, 2aUk = 2rs.

If r is even, then a divides r, and so by putting R = r/a, solving each of the
expressions for Tk and Uk, substituting the result into T 2

k−(1+4a2)U2
k = ±1,

and then simplifying, we are led to the equation

(s2 +Rs−R2a2)2 − (1 + 4a2)R2s2 = ±1,

or more simply

s4 + 2s3R− 6a2R2s2 − 2a2R3s+ a4R4 = ±1.

This equation can be written as

(1 + 2ai)(s+ ri)4 − (1− 2ai)(s− ri)4 = ±4ai,
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where we have used the fact that r = aR. Let X0 be the integer such that

2X0 = (1 + 2ai)(s+ ri)4 + (1− 2ai)(s− ri)4;

then

X0 = s4 − 8as3r − 6s2r2 + 8asr3 + r4

= (Tk + Uk)2 − 4a2U2
k + 8a2Uk(Tk + Uk) = X.

We therefore deduce that

(2.3) X ± 2ai = (1 + 2ai)(s+ ri)4.

Now consider the case that s is even. Then a divides s, and so by putting
S = s/a, solving each of the expressions for Tk and Uk, substituting the
result into T 2

k − (1 + 4a2)U2
k = ±1, and then simplifying, we arrive at the

equation
(r2 − (Sr + S2a2))2 − (1 + 4a2)S2r2 = ±1,

or more simply

r4 − 2r3S − 6a2S2r2 + 2a2S3r + a4S4 = ±1.

This equation can be rewritten as

(1 + 2ai)(r − si)4 − (1− 2ai)(r + si)4 = ±4ai,

which upon multiplication by i4 can be written as

(1 + 2ai)(s+ ri)4 − (1− 2ai)(s− ri)4 = ±4ai.

Therefore, we similarly have equation (2.3).
Next we consider the case that the signs appearing in (2.2) are negative.

By the same argument as above, we have

(1 + 2ai)(s− ri)4 − (1− 2ai)(s+ ri)4 = ±4ai, Y = s2 + r2, s > r > 0.

Let X0 be the integer such that

2X0 = (1 + 2ai)(s− ri)4 + (1− 2ai)(s+ ri)4.

Similarly to the previous case, we have

X0 = s4 + 8as3r − 6s2r2 − 8asr3 + r4

= (Tk − Uk)2 − 4a2U2
k − 8a2Uk(Tk − Uk) = −X,

and therefore
−X ± 2ai = (1 + 2ai)(s− ri)4.

Lemma 2.2. Suppose that (X1, Y1) and (X2, Y2) are two solutions in odd
positive integers to X2−(22m+1)Y 4 = −22m, Yj = s2j+r2j , sj > rj (j = 1, 2)
and Y2 > Y1 > 1. Then Y2 > 2Y 3

1 .

Proof. Suppose that (X1, Y1) and (X2, Y2) are two solutions in odd pos-
itive integers to equation (1.1), with Yj = s2j + r2j , sj > rj (j = 1, 2) and
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Y2 > Y1 > 1. By the remarks in the Introduction, we may assume that
m > 17, thus Y 2

2 > Y 2
1 ≥ T2 − U2 = 1 + 8a2 − 4a > 22m ≥ 236. Then by

Lemma 2.1 we have

±Xj ± 2ai = (1 + 2ai)(sj ± rji)4, j = 1, 2.

We will assume that

X1 ± 2ai = (1 + 2ai)(s1 + r1i)4, X2 ± 2ai = (1 + 2ai)(s2 + r2i)4,

as the arguments for the other cases are identical. It follows that

(2.4) (1 + 2ai)(sj + rji)4 − (1− 2ai)(sj − rji)4 = ±4ai, j = 1, 2.

Let

ω =
1− 2ai
1 + 2ai

= eiθ, ω1/4 = eiθ/4.

By (2.4) we have

(2.5)
∣∣∣∣ω − (sj + rji

sj − rji

)4∣∣∣∣ =
4a√

1 + 4a2 Y 2
j

<
1

235
, j = 1, 2.

Let tj ∈ {0, 1, 2, 3} be the integer such that∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji

∣∣∣∣ = min
0≤k≤3

∣∣∣∣ω1/4 − ekπi/2 sj + rji

sj − rji

∣∣∣∣, j = 1, 2.

By (2.5) we may assume that∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji

∣∣∣∣ ≤ 1
28
, j = 1, 2.

Since∣∣∣∣ω − (sj + rji

sj − rji

)4∣∣∣∣ =
∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji

∣∣∣∣
×
∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji
+ 2etjπi/2

sj + rji

sj − rji

∣∣∣∣
×
∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji
+ (1 + i)etjπi/2

sj + rji

sj − rji

∣∣∣∣
×
∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji
+ (1− i)etjπi/2 sj + rji

sj − rji

∣∣∣∣,
it follows that∣∣∣∣ω − (sj + rji

sj − rji

)4∣∣∣∣ ≥ (2− 1
28

)(√
2− 1

28

)2∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji

∣∣∣∣
≥ 3.8

∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji

∣∣∣∣, j = 1, 2,
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and so ∣∣∣∣ω1/4 − etjπi/2 sj + rji

sj − rji

∣∣∣∣ < 1
1.9Y 2

j

, j = 1, 2,

by (2.5). Now, by the inequality

1√
Y1Y2

≤
∣∣∣∣et1πi/2 s1 + r1i

s1 − r1i
− et2πi/2 s2 + r2i

s2 − r2i

∣∣∣∣
≤
∣∣∣∣ω1/4 − et1πi/2 s1 + r1i

s1 − r1i

∣∣∣∣+
∣∣∣∣ω1/4 − et2πi/2 s2 + r2i

s2 − r2i

∣∣∣∣,
we derive

Y2 > 2Y 3
1 .

3. Proof of the main theorem. We now prove Theorem 1.1.
A MAGMA computation shows that the theorem holds for 0 ≤ m ≤ 17,

so we may assume that m > 17 in the following proof.
Suppose that (X1, Y1), (X2, Y2) and (X3, Y3) are solutions in odd positive

integers to X2−(22m+1)Y 4 = −22m, with Yj = s2j +r2j , sj > rj (j = 1, 2, 3)
and Y3 > Y2 > Y1 > 1. Then by Lemma 2.1 we have

±Xj ± 2ai = (1 + 2ai)(sj ± rji)4, j = 1, 2, 3.

We will assume that

X1 ± 2ai = (1 + 2ai)(s1 + r1i)4, X3 ± 2ai = (1 + 2ai)(s3 + r3i)4,

as the arguments for the other cases are identical. It follows that

(1 + 2ai)(s1 + r1i)4 − (1− 2ai)(s1 − r1i)4 = ± 4ai,

(1 + 2ai)(s3 + r3i)4 − (1− 2ai)(s3 − r3i)4 = ± 4ai.

Since X1 ± 2ai = (1 + 2ai)(s1 + r1i)4, we have

(X1± 2ai)(s1− r1i)4(s3 + r3i)4− (X1∓ 2ai)(s1 + r1i)4(s3− r3i)4 = ±Y 4
1 4ai.

Define x, y by
x+ yi = (s1 − r1i)(s3 + r3i).

It follows that

(3.1) |(X1 ± 2ai)(x+ yi)4 − (X1 ∓ 2ai)(x− yi)4| = 4aY 4
1 .

Now recall that X1 = (1+4a2)U2k±T2k, k ≥ 1. Assuming that k > 1, we
apply Corollary 2.3 of [8] to equation (3.1) with A = 2X1, B = a, N = aY 4

1 .
Then, since m > 17,

A = 2X1 ≥ 2(4a2 + 1)U4 − 2T4 = 16a(4a2 + 1)(8a2 + 1)− 4(8a2 + 1)2 + 2

> 308(2a)4 > 308B4,
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the hypothesis of Corollary 2.3 of [8] is satisfied and we find that

x2 + y2 = Y1Y3 ≤ max
{

100X2
1

64a2
,
4a2Y 8

1

2X1

}
,

and the fact that X2
1 < (4a2 + 1)Y 4

1 shows that Y3 ≤ 2a2Y 7
1 /X1. It follows

from Lemma 2.2 that

16Y 9
1 ≤ 2Y 3

2 ≤ Y3 ≤ 2a2Y 7
1 /X1,

which is impossible, and hence that k = 1.
If k = 1, then

Y 2
1 = T2 ± 4a = (2a)2 + (2a± 1)2.

Since a = 2m−1, we get

Y1 + 2a± 1 = 2a2, Y1 − (2a± 1) = 2.

It follows that 2a ± 1 = a2 − 1, and so a = 2. In this case the equation
X2−17Y 4 = −16 has a non-trivial positive solution (X,Y ) = (103, 5). This
completes the proof of Theorem 1.1.

Final Remark. The method presented here is considerably different
than that used in [4]. For the sake of the reader, we wish to explain that the
approach for bounding the number of solutions to (1.1) taken up in [4] can
be refined considerably. In particular, using the arguments contained in the
proof of the main result in [1], it can be shown that there are at most four
integer solutions (s,R) to the Thue equation

s4 + 2s3R− 6a2s2R2 − 2a2sR3 + a4R4 = ±1 (a = 2m−1)

which arise from positive integer solutions (X,Y ) to (2.2) satisfying k > 16.
Furthermore, it is easily verified that an integer solution to Y 2 = T2k±U2k,
with 2 ≤ k ≤ 16, gives rise to an integer point (2m, Y ) on a hyperelliptic
curve Y 2 = P2k(x), where P2k(x) is a polynomial of degree 2k. Using the
methods described in [3], one can determine the set of rational points on
these curves with x-coordinate being a power of 2, thereby proving that
Y 2 = T2k ±U2k is in fact not solvable for 2 ≤ k ≤ 16 (we note that the case
k = 1 was dealt with in the preceding section). Therefore, this analysis allows
one to assert that there are at most four positive integer solutions (X,Y ) to
equation (1.1) other than the solution (1, 1) (that is, at most one solution
for each of the four roots of the dehomogenized quartic). Furthermore, using
an elementary modular argument, it can be shown that integer solutions
(s,R) to the above Thue equation which arise from solutions to equation
(1.1) have the property that s/R can be close to only three of the four
roots of the dehomogenized quartic, which therefore implies a bound of four
positive integer solutions to (1.1) in total, falling just short of the bound in
Theorem 1.1.
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