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1. Introduction. In analogy with the Littlewood conjecture, de Mathan
and Teulié [7] proposed recently a “mixed Littlewood conjecture”. For any
prime number p, the usual p-adic absolute value | · |p is normalized in such a
way that |p|p = p−1. We denote by ‖ · ‖ the distance to the nearest integer.

De Mathan–Teulié Conjecture. For every real number α and every
prime number p, we have

(1.1) inf
q≥1

q · ‖qα‖ · |q|p = 0.

Obviously, the above conjecture holds if α is rational or has unbounded
partial quotients in its continued fraction expansion. Thus, it only remains
to consider the case when α is an element of the set Bad1 of badly approx-
imable real numbers, that is,

Bad1 = {α ∈ R : inf
q≥1

q · ‖qα‖ > 0}.

De Mathan and Teulié [7] proved that (1.1) holds for every quadratic real
number α (recall that such a number is in Bad1) but, despite several recent
results [4, 3], the general conjecture is still unsolved.

If we rewrite (1.1) in the form

inf
a,q≥1, gcd(a,q)=1

q2 ·
∣∣∣∣α− a

q

∣∣∣∣ · |q|p = 0,

then we have |q|p = min{|Norm(q/a)|p, 1}. Hence, upon replacing α by 1/α,
the de Mathan–Teulié conjecture can be reformulated as follows: For every
irrational real number α, for every prime number p and every positive real
number ε, there exists a non-zero rational number ξ satisfying

|α− ξ| ·min{|Norm(ξ)|p, 1} < εH(ξ)−2.
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Throughout this paper, the height H(P ) of an integer polynomial P (X) is
the maximal of the absolute values of its coefficients. The height H(ξ) of
an algebraic number ξ is the height of its minimal defining polynomial over
the rational integers a0 + a1X + · · ·+ adX

d, and the norm of ξ, denoted by
Norm(ξ), is the rational number (−1)da0/ad.

The above reformulation suggests asking the following question.

Problem 1. Let d be a positive integer. Let α be a real number that is
not algebraic of degree less than or equal to d. For every prime number p
and every positive real number ε, does there exist a non-zero real algebraic
number ξ of degree at most d satisfying

|α− ξ| ·min{|Norm(ξ)|p, 1} < εH(ξ)−d−1?

The answer to Problem 1 is clearly positive, unless (perhaps) when α is
an element of the set Badd of real numbers that are badly approximable
by algebraic numbers of degree at most d, where

Badd = {α ∈ R : there exists c > 0 such that |α− ξ| > cH(ξ)−d−1

for all algebraic numbers ξ of degree at most d}.
For d ≥ 1, the set Badd contains the set of algebraic numbers of degree
d + 1, but it remains an open problem to decide whether this inclusion is
strict for d ≥ 2; see the monograph [2] for more information. The purpose of
the present note is to give a positive answer to Problem 1 for every positive
integer d and every real algebraic number α of degree d + 1. This extends
the result from [7], which deals with the case d = 1.

2. Results. Throughout this paper, for a prime number p, a number
field K, and a non-Archimedean place v on K lying above p, we normalize
the absolute value | · |v in such a way that | · |v and | · |p coincide on Q.

Our main result includes a positive answer to Problem 1 when α is a real
algebraic number of degree d+ 1.

Theorem 1. Let d be a positive integer. Let α be a real algebraic number
of degree d + 1 and denote by r the unit rank of Q(α). Let p be a prime
number. There exist positive constants c1, c2, c3, depending on α and p, and
infinitely many real algebraic numbers ξ of degree d such that

|α− ξ| < c1H(ξ)−d−1,(2.1)

|ξ|v < c2(log 3H(ξ))−1/(rd)(2.2)

for every absolute value | · |v on Q(ξ) above the prime p, and

(2.3) |α− ξ| ·min{|Norm(ξ)|p, 1} < c3H(ξ)−d−1(log 3H(ξ))−1/r.

Theorem 1 extends Théorème 2.1 of [7], which only concerns the case
d = 1.
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Under the assumptions of Theorem 1, Wirsing [9] established that there
are infinitely many real algebraic numbers ξ satisfying (2.1).

The proof of Theorem 1 is very much inspired by a paper of Peck [8]
on simultaneous rational approximation to real algebraic numbers. Roughly
speaking, we use a method dual to Peck’s to construct integer polynomials
P (X) that take small values at α, and we need an extra argument to ensure
that our polynomials have a root ξ very close to α.

De Mathan [6] used the theory of linear forms in non-Archimedean loga-
rithms to prove that Theorem 1 for d = 1 is best possible, in the sense that
the absolute value of the exponent of log 3H(ξ) in (2.2) cannot be too large.
The next theorem extends this result to all values of d.

Theorem 2. Let p be a prime number , d a positive integer and α a real
algebraic number of degree d+1. Let λ be a positive real number. There exists
a positive real number κ = κ(λ) such that for every non-zero real algebraic
number ξ of degree d satisfying

(2.4) |α− ξ| ≤ λH(ξ)−d−1

we have
|ξ|v ≥ (log 3H(ξ))−κ

for at least one absolute value | · |v on Q(ξ) above the prime p.

As in [6], the proof of Theorem 2 rests on the theory of linear forms in
non-Archimedean logarithms.

Let d be a positive integer. We recall that it follows from the p-adic
version of the Schmidt Subspace Theorem that for every algebraic number
α of degree d+1 and for every positive real number ε, there are only finitely
many non-zero integer polynomials P (X) = a0 +a1X+ · · ·+adX

d of degree
at most d, with a0 6= 0, that satisfy

|P (α)| · |a0|p < H(P )−d−ε.

Let ξ be a real algebraic number of degree at most d, and denote by P (X) =
a0 + a1X + · · ·+ adX

d its minimal polynomial over Z. Then

min{|Norm(ξ)|p, 1} ≥ |a0|p
and there exists a constant c(α), depending only on α, such that

|P (α)| ≤ c(α)H(ξ) · |ξ − α|.

Let ε be a positive real number. Applying the above statement deduced from
the p-adic version of the Schmidt Subspace Theorem to these polynomials
P (X), we deduce that

|α− ξ| ·min{|Norm(ξ)|p, 1} ≥ H(P )−d−1−ε
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holds if H(P ) is sufficiently large. This implies that if ξ satisfies (2.4) and
if H(ξ) is sufficiently large, then

|Norm(ξ)|p ≥ H(ξ)−ε,

accordingly
max
v|p
|ξ|v ≥ H(ξ)−ε/d.

The result of Theorem 2 is more precise, but we cannot obtain a good lower
bound for |Norm(ξ)|p.

We conclude this section by pointing out that Einsiedler and Kleinbock
[4] showed that a slight modification of the de Mathan–Teulié conjecture
easily follows from a theorem of Furstenberg [5, 1].

Theorem EK. Let p1 and p2 be distinct prime numbers. Then

inf
q≥1

q · ‖qα‖ · |q|p1 · |q|p2 = 0

for every real number α.

In view of Theorem EK, we formulate the following question, presumably
easier to solve than Problem 1.

Problem 2. Let d be a positive integer. Let α be a real number that
is not algebraic of degree less than or equal to d. For any distinct prime
numbers p1, p2 and every positive real number ε, does there exist a non-zero
real algebraic number ξ of degree at most d satisfying

|α− ξ| ·min{|Norm(ξ)|p1 , 1} ·min{|Norm(ξ)|p2 , 1} < εH(ξ)−d−1?

Theorem EK gives a positive answer to Problem 2 when d = 1.
The remainder of the paper is organized as follows. We gather several

auxiliary results in Section 3, and Theorems 1 and 2 are established in
Sections 4 and 5, respectively.

In the next sections, we fix a real algebraic number field K of degree
d + 1. The notation A � B means, unless specifically indicated otherwise,
that the implicit constant depends on K. Furthermore, we write A � B if
A� B and B � A simultaneously.

3. Auxiliary lemmas. Let K be a real algebraic number field of degree
d+ 1. Let O denote its ring of integers, and let α0 = 1, α1, . . . , αd be a basis
of K. Let D be a positive integer satisfying

D(Z + α1Z + · · ·+ αdZ) ⊂ O ⊂ 1
D

(Z + α1Z + · · ·+ αdZ)

and the corresponding inequalities for the dual basis β0, . . . , βd defined by

Tr(αiβj) = δi,j ,

where Tr is the trace and δi,j is the Kronecker symbol.
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We denote by σ0 = Id, . . . , σd the complex embeddings of K, numbered
in such a way that σ0, . . . , σr1−1 are real, σr1 , . . . , σd are imaginary and
σr1+r2+j = σr1+j for 0 ≤ j < r2. Set also r = r1 + r2 − 1, and let ε1, . . . , εr
be multiplicatively independent units in K.

Lemma 1. Let η be a unit in O such that −1 < η < 1 and define the
real number N by |η| = N−1. The conditions

|σj(η)| � N1/d, 0 < j ≤ d,(3.1)

and

|σi(η)| � |σj(η)|, 0 < i < j ≤ d,(3.2)

are equivalent. Let γ 6= 0 be in K and let ∆ be a positive integer such that
∆γ ∈ O. If η satisfies (3.1) or (3.2), write

γη = a0 + · · ·+ adαd

with a0, . . . , ad in Q. Then D∆ak ∈ Z for k = 0, . . . , d and

max
k=0,...,d

|ak| � N1/d,

where the implicit constants depend on γ.

Proof. Since η is a unit, we have
∏

0≤j≤d σj(η) = ±1, and (3.1) and (3.2)
are clearly equivalent. The formula

ak = Tr(γηβk) = γηβk +
d∑
j=1

σj(η)σj(γβk)

implies that if η satisfies (3.1), then

|ak| � N1/d, 0 ≤ k ≤ d.
Combined with

σ1(γ)σ1(η) = a0 + · · ·+ adσ1(αd),

this shows that N1/d � |σ1(η)| � maxk=0,...,d |ak|.
Let α be a real algebraic number of degree d + 1. We keep the above

notation with the field K = Q(α) and the basis 1, α, . . . , αd of K over Q,
and we display an immediate consequence of Lemma 1.

Corollary 1. Let η be a unit in O such that −1 < η < 1 and set
N = |η|−1. Then

D∆γη = P (α),

where P (X) is an integral polynomial of degree at most d satisfying

H(P ) � N1/d, |P (α)| � N−1,

and thus |P (α)| � H(P )−d.
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Denote by τj , j = 0, . . . , d the embeddings of K into Cp. Recall that the
absolute value | · |p on Q has an extension to Cp, that we also denote by
| · |p. In Lemmata 2 to 4 below we work in Cp. Let P (X) be an irreducible
integer polynomial of degree n ≥ 1. Let ξ be a complex root of P (X) and
ξ1, . . . , ξn be the roots of P (X) in Cp. We point out that the sets

{|ξ|v : v is above p on Q(ξ)} and {|ξi|p : 1 ≤ i ≤ n}
coincide, since all the absolute values above p over Q(ξ) are obtained by
starting from | · |p over Cp, after embedding Q(ξ) in Cp.

Keeping the notation of Lemma 1, we have the following auxiliary result.

Lemma 2. Assume that γ = αd. Then

|ak|p � max
0≤j≤d

|τj(η)− 1|p, 0 ≤ k < d,

and
|ad − 1|p � max

0≤j≤d
|τj(η)− 1|p.

Proof. Since Tr(αdβk) = 0 for k = 0, . . . , d− 1, we get

ak = Tr(γηβk) = Tr(αd(η − 1)βk) =
d∑
j=0

(τj(η)− 1)τj(αdβk),

and deduce that

|ak|p � max
0≤j≤d

|τj(η)− 1|p, 0 ≤ k < d.

It follows from Tr(αdβd) = 1 that

ad = 1 + Tr(αdβd(η − 1)) = 1 +
d∑
j=0

(τj(η)− 1)τj(αdβd),

and we derive the last conclusion of the lemma.

Lemma 3. Let 0 < δ < 1. There exist arbitrarily large positive real
numbers H and units η satisfying η = H−d,

(3.3)
∣∣∣∣σj(η)
σ1(η)

− 1
∣∣∣∣ ≤ δ, 2 ≤ j ≤ d,

and
|τj(η)− 1|p � (logH)−1/r, 0 ≤ j ≤ d.

Proof. By replacing εi by ε2p
mi (p−1)(p2−1)···(pd+1−1)

i with a suitable posi-
tive integer mi, we can assume that εi is positive, together with its real con-
jugates, and that |τj(εi) − 1|p < p−1/(p−1) for i = 1, . . . , r and j = 0, . . . , d.
This is possible since |τj(εi)|p = 1 for i = 1, . . . , r and j = 0, . . . , d. This
allows us to consider the p-adic logarithms of each τj(εi). Our aim is to
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construct a suitable unit η of the form

η = εµ1ps

1 · · · εµrps

r ,

where µi ∈ Z. The conditions for (3.3) are then

ps
∣∣∣∣µ1 log

|σj(ε1)|
|σ1(ε1)|

+ · · ·+ µr log
|σj(εr)|
|σr(εr)|

∣∣∣∣ ≤ C1, 2 ≤ j ≤ r,

where C1 = C1(δ) > 0 is a constant, and∥∥∥∥ ps2π
(µ1 arg σj(ε1) + · · ·+ µr arg σj(εr))

∥∥∥∥ ≤ C2, r1 ≤ j ≤ r,

with C2 = C2(δ) > 0. Set

Yj = ps
(
µ1 log

|σ1(ε1)|
|σj(ε1)|

+ · · ·+ µr log
|σ1(εr)|
|σj(εr)|

)
, 2 ≤ j ≤ r,

Zk =
ps

2π
(µ1 arg σk(ε1) + · · ·+ µr arg σk(εr)) ∈ R/Z, r1 ≤ k ≤ r.

Taking 0 ≤ µi < M , we have M r points (µi)1≤i≤r. The (Yj , Zk)2≤j≤r, r1≤k≤r
are in the product of intervals Ij , 2 ≤ j ≤ r, of lengths O(Mps) and of
r2 factors identical to R/Z. This set can be covered by C3(Mps)r−1 sets of
diameter at most max{C1, C2}, where C3 is a constant depending on δ. By
Dirichlet’s Schubfachprinzip, choosing M such that

C3(Mps)r−1 < M r,

which can be done with M � p(r−1)s, we deduce that there is (µ1, . . . , µr) ∈
Zr \ {0} such that

max
1≤i≤r

|µi| �M,

|Yj | ≤ C1, 2 ≤ j ≤ r,
‖Zk‖ ≤ C2, r1 ≤ k ≤ r.

Set then η = (εµ1
1 · · · ε

µr
r )p

s
in such a way that 0 < η < 1 (if needed, just

consider 1/η). This choice implies that

|τi(η)− 1|p = |logp τi(η)|p ≤ p−s, 0 ≤ i ≤ d,
and

|log η| � psM � prs.

Lemma 4. Let P (X) = a0 + · · · + adX
d ∈ Cp[X] be a polynomial of

degree d. Let ξi (1 ≤ i ≤ d) be the roots of P (X) in Cp. Let c be a real
number satisfying 0 ≤ c ≤ 1. If

|ξi|p ≤ c, 1 ≤ i ≤ d,
then

(3.4) |ak|p ≤ c|ad|p, 0 ≤ k < d.
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Conversely , if (3.4) holds, then

|ξi|p ≤ c1/d, 1 ≤ i ≤ d.
Proof. Since P (X) = ad

∏
1≤i≤d(X − ξi), if |ξi|p ≤ c ≤ 1 for i = 1, . . . , d

then
|ak|p ≤ c|ad|p for k = 0, . . . , d− 1.

Conversely, if
|ak|p ≤ c|ad|p, 0 ≤ k < d,

and if ξ ∈ Cp is such that adξd + · · · + a0 = 0, then there exists k with
0 ≤ k < d and

|akξk|p ≥ |adξd|p, thus |ξ|dp ≤ |ξ|d−kp ≤ c.
We conclude this section with two lemmas used in the proof of Theo-

rem 2. The first of them was proved by Peck [8].

Lemma 5. There exists a sequence (ηm)m≥1 of positive units in O such
that

ηm � e−dm, |σj(ηm)| � em, 1 ≤ j ≤ d.
Proof. Let us search for the unit ηm in the form ηm = εµ1

1 · · · ε
µr
r with

µi ∈ Z. We construct real numbers ν1, . . . , νr such that

(3.5) ν1 log ε1 + · · ·+ νr log εr = −dm
and

(3.6) ν1 log |σj(ε1)|+ · · ·+ νr log |σj(εr)| = m, 1 ≤ j ≤ d.
Taking into account that, by complex conjugation, the equations (3.6) cor-
responding to an index j with r1 ≤ j < r1 + r2 and to the index j + r2
are identical, and that the sum of (3.5) and (3.6) is zero, we simply have to
deal with a Cramer system, since the matrix (σj(εi))1≤j≤r, 1≤i≤r is regular.
We solve this system and then replace every νi by a rational integer µi such
that |µi − νi| ≤ 1/2.

Lemma 6. Let λ′ be a positive real number. Let (ηm)m≥1 be a sequence of
positive units as in Lemma 5. There exists a finite set Γ = Γ (λ′) of non-zero
elements of K such that for every integer polynomial P (X) of degree at most
d that satisfies

(3.7) |P (α)| ≤ λ′H(P )−d,

there exist a positive integer m and γ in Γ for which

P (α) = γηm.

Proof. Below, all the constants implicit in � depend on K and on λ′.
Let m be a positive integer such that

H(P ) � em,
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and set
γ = P (α)η−1

m .

Since Dαk is an algebraic integer for k = 0, . . . , d, the algebraic number Dγ
is an algebraic integer, and, by (3.7),

|γ| � 1.

Furthermore, for j = 1, . . . , d, we have

|σj(γ)| = |P (σj(α))| · |σj(η−1
m )| � H(P )e−m � 1.

The algebraic integers Dγ ∈ O and all their complex conjugates being
bounded, they form a finite set.

4. Proof of Theorem 1. Let δ be in (0, 1), to be selected later. Apply
Lemma 3 with this δ to get a unit η and apply Lemma 1 with this unit and
with γ = αd. Since D2αdη ∈ Z + · · ·+ αdZ, we obtain

D2ηαd = a0 + a1α+ · · ·+ adα
d = P (α),

where, by Corollary 1, P (X) is an integer polynomial of degree d and

|P (α)| � H(P )−d � H−d.

By Lemmata 2 and 3, each coefficient of P (X) has its p-adic absolute value
� (log 3H(P ))−1/r, except the leading coefficient, whose p-adic absolute
value equals |D|2p.

We then infer from Lemma 4 that all the roots of P (X) in Cp have their
p-adic absolute value � (log 3H(P ))−1/(dr). This proves (2.2).

It now remains to guarantee that P (X) has a root very close to α. To
this end, we proceed to check that

|P ′(α)| � H(P ).

Since
P ′(α) = a1 + · · ·+ dadα

d−1,

we get

P ′(α) = D2(Tr(ηαdβ1) + 2αTr(ηαdβ2) + · · ·+ dαd−1Tr(ηαdβd)),

hence,

P ′(α) = D2
d∑
i=0

d∑
k=1

kαk−1σi(ηαdβk).

Let us write

P ′(α) = D2
d∑
i=0

Aiσi(η)
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with

Ai = σi(αd)
d∑

k=1

kαk−1σi(βk), i = 0, . . . , d.

Observe first that
d∑
i=1

Ai 6= 0.

Indeed, if this is not the case, note that the above formulæ hold for any unit
η in K, thus we can in particular work with the unit η = 1, that is, with
P (X) = D2Xd and P ′(α) = dD2αd−1; we get

dαd−1 = A0 = αd
d∑

k=1

kαk−1βk,

hence,

d =
d∑

k=1

kαkβk.

Taking the trace, and recalling that Tr(αkβk) = 1, we get d(d+1) =
∑d

k=1 k,
a contradiction.

Write

P ′(α) = D2
d∑
i=1

Aiσi(η) +O(H−d) = D2σ1(η)
d∑
i=1

Ai +B

with

|B| ≤ D2
∑

2≤i≤d
|Ai| · |σ1(η)| ·

∣∣∣∣ σi(η)
σ1(η)

− 1
∣∣∣∣+O(H−d).

Selecting now δ such that

δ
∑

2≤i≤d
|Ai| ≤

1
3

∣∣∣ d∑
i=1

Ai

∣∣∣,
we infer from Lemma 3 that

|P ′(α)| ≥ 1
2
D2
∣∣∣σ1(η)

d∑
i=1

Ai

∣∣∣
when H is sufficiently large. This gives

|P ′(α)| � |σ1(η)| � H.

Consequently, P (X) has a root ξ such that

|α− ξ| � H(P )−d−1 � H(ξ)−d−1.
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Classical arguments (see end of the proof of Theorem 2.11 in [2]) show that
ξ must be real and of degree d if H is sufficiently large. This proves (2.1).
Inequality (2.3) follows from (2.1) and (2.2) together with the fact that ξ is
of degree d.

5. Proof of Theorem 2. The constants implicit in � and � below
depend on K, p and λ. By Rolle’s theorem, there exists a positive real number
λ′, depending on λ and on d, such that the minimal polynomial P (X) of
any real number ξ of sufficiently large height and for which (2.4) holds is of
degree d and satisfies

|P (α)| ≤ λ′H(P )−d.

Let (ηm)m≥1 be as in Lemma 5. By Lemma 6, it is sufficient to prove The-
orem 2 for the integer polynomials P (X) as above such that

P (α) = γηm = a0 + a1α+ · · ·+ adα
d.

Let ξi be the roots of P (X) in Cp and set

u := max
1≤i≤d

|ξi|p.

Assume that u ≤ 1. It follows from Lemma 4 that

|ak|p ≤ u|ad|p, 0 ≤ k < d,

thus, taking |ad|pP (X), which is still an integer polynomial, in place of
P (X), we can assume that |ad|p = 1 and

|ak|p ≤ u, 0 ≤ k < d.

For j = 1, . . . , d, we then have

γηmα
−d − τj(γηmα−d) =

d−1∑
k=0

ak(αk−d − τj(αk−d)),

hence,
|γηmα−d − τj(γηmα−d)|p � u.

Since |ηm|p = 1, we get ∣∣∣∣τj(ηm)
ηm

τj(γ)αd

γτj(αd)
− 1
∣∣∣∣
p

� u.

Upon writing
ηm = ε

µ1,m

1 · · · εµr,m
r ,

we thus have

u�
∣∣∣∣(τj(ε1)

ε1

)−µ1,m

· · ·
(
τj(εr)
εr

)−µr,m τj(γ)αd

γτj(αd)
− 1
∣∣∣∣
p

.
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If
τj(ηm)
ηm

=
γτj(αd)
τj(γ)αd

for j = 1, . . . , d, then the number γηmα−d is equal to all its conjugates,
hence is rational, and we have

P (α) = bαd

with b ∈ Q, hence P (X) = bXd, a contradiction. For every m, there thus
exists an index j such that 1 ≤ j ≤ d and(

τj(ε1)
ε1

)−µ1,m

· · ·
(
τj(εr)
εr

)−µr,m τj(γ)αd

γτj(αd)
6= 1.

Consequently, by the theory of linear forms in non-Archimedean logarithms
(see e.g. Yu [10]), there exists a positive constant κ such that

(5.1) u� ( max
1≤i≤r

|µi,m|)−κ.

As in the proof of Lemma 5, the matrix (log |σj(εi)|)1≤i≤r, 1≤j≤r being reg-
ular, we have

|log ηm| � max
1≤i≤r

|µi,m|.

Combined with ηm � H(P )−d and (5.1), this gives

u� (log 3H(ξ))−κ.
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