139.1 (2009)

On a mixed problem in Diophantine approximation

by
Yann Bugeaud (Strasbourg) and Bernard de Mathan (Bordeaux)

1. Introduction. In analogy with the Littlewood conjecture, de Mathan and Teulié [7] proposed recently a "mixed Littlewood conjecture". For any prime number p, the usual p-adic absolute value $|\cdot|_{p}$ is normalized in such a way that $|p|_{p}=p^{-1}$. We denote by $\|\cdot\|$ the distance to the nearest integer.

De Mathan-Teulié Conjecture. For every real number α and every prime number p, we have

$$
\begin{equation*}
\inf _{q \geq 1} q \cdot\|q \alpha\| \cdot|q|_{p}=0 \tag{1.1}
\end{equation*}
$$

Obviously, the above conjecture holds if α is rational or has unbounded partial quotients in its continued fraction expansion. Thus, it only remains to consider the case when α is an element of the set $\boldsymbol{B a d}_{1}$ of badly approximable real numbers, that is,

$$
\boldsymbol{\operatorname { B a d }}_{1}=\left\{\alpha \in \mathbb{R}: \inf _{q \geq 1} q \cdot\|q \alpha\|>0\right\} .
$$

De Mathan and Teulié [7] proved that (1.1) holds for every quadratic real number α (recall that such a number is in $\boldsymbol{B a d}_{1}$) but, despite several recent results [4, 3], the general conjecture is still unsolved.

If we rewrite (1.1) in the form

$$
\inf _{a, q \geq 1, \operatorname{gcd}(a, q)=1} q^{2} \cdot\left|\alpha-\frac{a}{q}\right| \cdot|q|_{p}=0,
$$

then we have $|q|_{p}=\min \left\{|\operatorname{Norm}(q / a)|_{p}, 1\right\}$. Hence, upon replacing α by $1 / \alpha$, the de Mathan-Teulié conjecture can be reformulated as follows: For every irrational real number α, for every prime number p and every positive real number ε, there exists a non-zero rational number ξ satisfying

$$
|\alpha-\xi| \cdot \min \left\{|\operatorname{Norm}(\xi)|_{p}, 1\right\}<\varepsilon H(\xi)^{-2} .
$$

[^0]Throughout this paper, the height $H(P)$ of an integer polynomial $P(X)$ is the maximal of the absolute values of its coefficients. The height $H(\xi)$ of an algebraic number ξ is the height of its minimal defining polynomial over the rational integers $a_{0}+a_{1} X+\cdots+a_{d} X^{d}$, and the norm of ξ, denoted by $\operatorname{Norm}(\xi)$, is the rational number $(-1)^{d} a_{0} / a_{d}$.

The above reformulation suggests asking the following question.
Problem 1. Let d be a positive integer. Let α be a real number that is not algebraic of degree less than or equal to d. For every prime number p and every positive real number ε, does there exist a non-zero real algebraic number ξ of degree at most d satisfying

$$
|\alpha-\xi| \cdot \min \left\{|\operatorname{Norm}(\xi)|_{p}, 1\right\}<\varepsilon H(\xi)^{-d-1} ?
$$

The answer to Problem 1 is clearly positive, unless (perhaps) when α is an element of the set $\boldsymbol{B a d}_{d}$ of real numbers that are badly approximable by algebraic numbers of degree at most d, where
$\boldsymbol{B a d}_{d}=\left\{\alpha \in \mathbb{R}:\right.$ there exists $c>0$ such that $|\alpha-\xi|>c H(\xi)^{-d-1}$
for all algebraic numbers ξ of degree at most $d\}$.
For $d \geq 1$, the set $\boldsymbol{B a d}_{d}$ contains the set of algebraic numbers of degree $d+1$, but it remains an open problem to decide whether this inclusion is strict for $d \geq 2$; see the monograph [2] for more information. The purpose of the present note is to give a positive answer to Problem 1 for every positive integer d and every real algebraic number α of degree $d+1$. This extends the result from [7], which deals with the case $d=1$.
2. Results. Throughout this paper, for a prime number p, a number field \mathbb{K}, and a non-Archimedean place v on \mathbb{K} lying above p, we normalize the absolute value $|\cdot|_{v}$ in such a way that $|\cdot|_{v}$ and $|\cdot|_{p}$ coincide on \mathbb{Q}.

Our main result includes a positive answer to Problem 1 when α is a real algebraic number of degree $d+1$.

Theorem 1. Let d be a positive integer. Let α be a real algebraic number of degree $d+1$ and denote by r the unit rank of $\mathbb{Q}(\alpha)$. Let p be a prime number. There exist positive constants c_{1}, c_{2}, c_{3}, depending on α and p, and infinitely many real algebraic numbers ξ of degree d such that

$$
\begin{align*}
|\alpha-\xi| & <c_{1} H(\xi)^{-d-1} \tag{2.1}\\
|\xi|_{v} & <c_{2}(\log 3 H(\xi))^{-1 /(r d)} \tag{2.2}
\end{align*}
$$

for every absolute value $|\cdot|_{v}$ on $\mathbb{Q}(\xi)$ above the prime p, and

$$
\begin{equation*}
|\alpha-\xi| \cdot \min \left\{|\operatorname{Norm}(\xi)|_{p}, 1\right\}<c_{3} H(\xi)^{-d-1}(\log 3 H(\xi))^{-1 / r} \tag{2.3}
\end{equation*}
$$

Theorem 1 extends Théorème 2.1 of [7], which only concerns the case $d=1$.

Under the assumptions of Theorem 1, Wirsing [9] established that there are infinitely many real algebraic numbers ξ satisfying (2.1).

The proof of Theorem 1 is very much inspired by a paper of Peck [8] on simultaneous rational approximation to real algebraic numbers. Roughly speaking, we use a method dual to Peck's to construct integer polynomials $P(X)$ that take small values at α, and we need an extra argument to ensure that our polynomials have a root ξ very close to α.

De Mathan [6] used the theory of linear forms in non-Archimedean logarithms to prove that Theorem 1 for $d=1$ is best possible, in the sense that the absolute value of the exponent of $\log 3 H(\xi)$ in (2.2) cannot be too large. The next theorem extends this result to all values of d.

Theorem 2. Let p be a prime number, d a positive integer and α a real algebraic number of degree $d+1$. Let λ be a positive real number. There exists a positive real number $\kappa=\kappa(\lambda)$ such that for every non-zero real algebraic number ξ of degree d satisfying

$$
\begin{equation*}
|\alpha-\xi| \leq \lambda H(\xi)^{-d-1} \tag{2.4}
\end{equation*}
$$

we have

$$
|\xi|_{v} \geq(\log 3 H(\xi))^{-\kappa}
$$

for at least one absolute value $|\cdot|_{v}$ on $\mathbb{Q}(\xi)$ above the prime p.
As in [6], the proof of Theorem 2 rests on the theory of linear forms in non-Archimedean logarithms.

Let d be a positive integer. We recall that it follows from the p-adic version of the Schmidt Subspace Theorem that for every algebraic number α of degree $d+1$ and for every positive real number ε, there are only finitely many non-zero integer polynomials $P(X)=a_{0}+a_{1} X+\cdots+a_{d} X^{d}$ of degree at most d, with $a_{0} \neq 0$, that satisfy

$$
|P(\alpha)| \cdot\left|a_{0}\right|_{p}<H(P)^{-d-\varepsilon} .
$$

Let ξ be a real algebraic number of degree at most d, and denote by $P(X)=$ $a_{0}+a_{1} X+\cdots+a_{d} X^{d}$ its minimal polynomial over \mathbb{Z}. Then

$$
\min \left\{|\operatorname{Norm}(\xi)|_{p}, 1\right\} \geq\left|a_{0}\right|_{p}
$$

and there exists a constant $c(\alpha)$, depending only on α, such that

$$
|P(\alpha)| \leq c(\alpha) H(\xi) \cdot|\xi-\alpha| .
$$

Let ε be a positive real number. Applying the above statement deduced from the p-adic version of the Schmidt Subspace Theorem to these polynomials $P(X)$, we deduce that

$$
|\alpha-\xi| \cdot \min \left\{|\operatorname{Norm}(\xi)|_{p}, 1\right\} \geq H(P)^{-d-1-\varepsilon}
$$

holds if $H(P)$ is sufficiently large. This implies that if ξ satisfies (2.4) and if $H(\xi)$ is sufficiently large, then

$$
|\operatorname{Norm}(\xi)|_{p} \geq H(\xi)^{-\varepsilon},
$$

accordingly

$$
\max _{v \mid p}|\xi|_{v} \geq H(\xi)^{-\varepsilon / d}
$$

The result of Theorem 2 is more precise, but we cannot obtain a good lower bound for $|\operatorname{Norm}(\xi)|_{p}$.

We conclude this section by pointing out that Einsiedler and Kleinbock [4] showed that a slight modification of the de Mathan-Teulié conjecture easily follows from a theorem of Furstenberg $[5,1]$.

Theorem EK. Let p_{1} and p_{2} be distinct prime numbers. Then

$$
\inf _{q \geq 1} q \cdot\|q \alpha\| \cdot|q|_{p_{1}} \cdot|q|_{p_{2}}=0
$$

for every real number α.
In view of Theorem EK, we formulate the following question, presumably easier to solve than Problem 1.

Problem 2. Let d be a positive integer. Let α be a real number that is not algebraic of degree less than or equal to d. For any distinct prime numbers p_{1}, p_{2} and every positive real number ε, does there exist a non-zero real algebraic number ξ of degree at most d satisfying

$$
|\alpha-\xi| \cdot \min \left\{|\operatorname{Norm}(\xi)|_{p_{1}}, 1\right\} \cdot \min \left\{|\operatorname{Norm}(\xi)|_{p_{2}}, 1\right\}<\varepsilon H(\xi)^{-d-1} ?
$$

Theorem EK gives a positive answer to Problem 2 when $d=1$.
The remainder of the paper is organized as follows. We gather several auxiliary results in Section 3, and Theorems 1 and 2 are established in Sections 4 and 5 , respectively.

In the next sections, we fix a real algebraic number field \mathbb{K} of degree $d+1$. The notation $A \ll B$ means, unless specifically indicated otherwise, that the implicit constant depends on \mathbb{K}. Furthermore, we write $A \asymp B$ if $A \ll B$ and $B \ll A$ simultaneously.
3. Auxiliary lemmas. Let \mathbb{K} be a real algebraic number field of degree $d+1$. Let \mathcal{O} denote its ring of integers, and let $\alpha_{0}=1, \alpha_{1}, \ldots, \alpha_{d}$ be a basis of \mathbb{K}. Let D be a positive integer satisfying

$$
D\left(\mathbb{Z}+\alpha_{1} \mathbb{Z}+\cdots+\alpha_{d} \mathbb{Z}\right) \subset \mathcal{O} \subset \frac{1}{D}\left(\mathbb{Z}+\alpha_{1} \mathbb{Z}+\cdots+\alpha_{d} \mathbb{Z}\right)
$$

and the corresponding inequalities for the dual basis $\beta_{0}, \ldots, \beta_{d}$ defined by

$$
\operatorname{Tr}\left(\alpha_{i} \beta_{j}\right)=\delta_{i, j}
$$

where Tr is the trace and $\delta_{i, j}$ is the Kronecker symbol.

We denote by $\sigma_{0}=\mathrm{Id}, \ldots, \sigma_{d}$ the complex embeddings of \mathbb{K}, numbered in such a way that $\sigma_{0}, \ldots, \sigma_{r_{1}-1}$ are real, $\sigma_{r_{1}}, \ldots, \sigma_{d}$ are imaginary and $\sigma_{r_{1}+r_{2}+j}=\bar{\sigma}_{r_{1}+j}$ for $0 \leq j<r_{2}$. Set also $r=r_{1}+r_{2}-1$, and let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be multiplicatively independent units in \mathbb{K}.

Lemma 1. Let η be a unit in \mathcal{O} such that $-1<\eta<1$ and define the real number N by $|\eta|=N^{-1}$. The conditions

$$
\begin{equation*}
\left|\sigma_{j}(\eta)\right| \asymp N^{1 / d}, \quad 0<j \leq d \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sigma_{i}(\eta)\right| \asymp\left|\sigma_{j}(\eta)\right|, \quad 0<i<j \leq d \tag{3.2}
\end{equation*}
$$

are equivalent. Let $\gamma \neq 0$ be in \mathbb{K} and let Δ be a positive integer such that $\Delta \gamma \in \mathcal{O}$. If η satisfies (3.1) or (3.2), write

$$
\gamma \eta=a_{0}+\cdots+a_{d} \alpha_{d}
$$

with a_{0}, \ldots, a_{d} in \mathbb{Q}. Then $D \Delta a_{k} \in \mathbb{Z}$ for $k=0, \ldots, d$ and

$$
\max _{k=0, \ldots, d}\left|a_{k}\right| \asymp N^{1 / d}
$$

where the implicit constants depend on γ.
Proof. Since η is a unit, we have $\prod_{0 \leq j \leq d} \sigma_{j}(\eta)= \pm 1$, and (3.1) and (3.2) are clearly equivalent. The formula

$$
a_{k}=\operatorname{Tr}\left(\gamma \eta \beta_{k}\right)=\gamma \eta \beta_{k}+\sum_{j=1}^{d} \sigma_{j}(\eta) \sigma_{j}\left(\gamma \beta_{k}\right)
$$

implies that if η satisfies (3.1), then

$$
\left|a_{k}\right| \ll N^{1 / d}, \quad 0 \leq k \leq d
$$

Combined with

$$
\sigma_{1}(\gamma) \sigma_{1}(\eta)=a_{0}+\cdots+a_{d} \sigma_{1}\left(\alpha_{d}\right)
$$

this shows that $N^{1 / d} \asymp\left|\sigma_{1}(\eta)\right| \ll \max _{k=0, \ldots, d}\left|a_{k}\right|$.
Let α be a real algebraic number of degree $d+1$. We keep the above notation with the field $\mathbb{K}=\mathbb{Q}(\alpha)$ and the basis $1, \alpha, \ldots, \alpha^{d}$ of \mathbb{K} over \mathbb{Q}, and we display an immediate consequence of Lemma 1.

Corollary 1. Let η be a unit in \mathcal{O} such that $-1<\eta<1$ and set $N=|\eta|^{-1}$. Then

$$
D \Delta \gamma \eta=P(\alpha)
$$

where $P(X)$ is an integral polynomial of degree at most d satisfying

$$
H(P) \asymp N^{1 / d}, \quad|P(\alpha)| \asymp N^{-1}
$$

and thus $|P(\alpha)| \asymp H(P)^{-d}$.

Denote by $\tau_{j}, j=0, \ldots, d$ the embeddings of \mathbb{K} into \mathbb{C}_{p}. Recall that the absolute value $|\cdot|_{p}$ on \mathbb{Q} has an extension to \mathbb{C}_{p}, that we also denote by $|\cdot|_{p}$. In Lemmata 2 to 4 below we work in \mathbb{C}_{p}. Let $P(X)$ be an irreducible integer polynomial of degree $n \geq 1$. Let ξ be a complex root of $P(X)$ and ξ_{1}, \ldots, ξ_{n} be the roots of $P(X)$ in \mathbb{C}_{p}. We point out that the sets

$$
\left\{|\xi|_{v}: v \text { is above } p \text { on } \mathbb{Q}(\xi)\right\} \quad \text { and } \quad\left\{\left|\xi_{i}\right|_{p}: 1 \leq i \leq n\right\}
$$

coincide, since all the absolute values above p over $\mathbb{Q}(\xi)$ are obtained by starting from $|\cdot|_{p}$ over \mathbb{C}_{p}, after embedding $\mathbb{Q}(\xi)$ in \mathbb{C}_{p}.

Keeping the notation of Lemma 1, we have the following auxiliary result.
Lemma 2. Assume that $\gamma=\alpha_{d}$. Then

$$
\left|a_{k}\right|_{p} \ll \max _{0 \leq j \leq d}\left|\tau_{j}(\eta)-1\right|_{p}, \quad 0 \leq k<d,
$$

and

$$
\left|a_{d}-1\right|_{p} \ll \max _{0 \leq j \leq d}\left|\tau_{j}(\eta)-1\right|_{p}
$$

Proof. Since $\operatorname{Tr}\left(\alpha_{d} \beta_{k}\right)=0$ for $k=0, \ldots, d-1$, we get

$$
a_{k}=\operatorname{Tr}\left(\gamma \eta \beta_{k}\right)=\operatorname{Tr}\left(\alpha_{d}(\eta-1) \beta_{k}\right)=\sum_{j=0}^{d}\left(\tau_{j}(\eta)-1\right) \tau_{j}\left(\alpha_{d} \beta_{k}\right)
$$

and deduce that

$$
\left|a_{k}\right|_{p} \ll \max _{0 \leq j \leq d}\left|\tau_{j}(\eta)-1\right|_{p}, \quad 0 \leq k<d
$$

It follows from $\operatorname{Tr}\left(\alpha_{d} \beta_{d}\right)=1$ that

$$
a_{d}=1+\operatorname{Tr}\left(\alpha_{d} \beta_{d}(\eta-1)\right)=1+\sum_{j=0}^{d}\left(\tau_{j}(\eta)-1\right) \tau_{j}\left(\alpha_{d} \beta_{d}\right)
$$

and we derive the last conclusion of the lemma.
Lemma 3. Let $0<\delta<1$. There exist arbitrarily large positive real numbers H and units η satisfying $\eta=H^{-d}$,

$$
\begin{equation*}
\left|\frac{\sigma_{j}(\eta)}{\sigma_{1}(\eta)}-1\right| \leq \delta, \quad 2 \leq j \leq d \tag{3.3}
\end{equation*}
$$

and

$$
\left|\tau_{j}(\eta)-1\right|_{p} \ll(\log H)^{-1 / r}, \quad 0 \leq j \leq d
$$

Proof. By replacing ε_{i} by $\varepsilon_{i}^{2 p^{m_{i}}(p-1)\left(p^{2}-1\right) \cdots\left(p^{d+1}-1\right)}$ with a suitable positive integer m_{i}, we can assume that ε_{i} is positive, together with its real conjugates, and that $\left|\tau_{j}\left(\varepsilon_{i}\right)-1\right|_{p}<p^{-1 /(p-1)}$ for $i=1, \ldots, r$ and $j=0, \ldots, d$. This is possible since $\left|\tau_{j}\left(\varepsilon_{i}\right)\right|_{p}=1$ for $i=1, \ldots, r$ and $j=0, \ldots, d$. This allows us to consider the p-adic logarithms of each $\tau_{j}\left(\varepsilon_{i}\right)$. Our aim is to
construct a suitable unit η of the form

$$
\eta=\varepsilon_{1}^{\mu_{1} p^{s}} \cdots \varepsilon_{r}^{\mu_{r} p^{s}}
$$

where $\mu_{i} \in \mathbb{Z}$. The conditions for (3.3) are then

$$
p^{s}\left|\mu_{1} \log \frac{\left|\sigma_{j}\left(\varepsilon_{1}\right)\right|}{\left|\sigma_{1}\left(\varepsilon_{1}\right)\right|}+\cdots+\mu_{r} \log \frac{\left|\sigma_{j}\left(\varepsilon_{r}\right)\right|}{\left|\sigma_{r}\left(\varepsilon_{r}\right)\right|}\right| \leq C_{1}, \quad 2 \leq j \leq r
$$

where $C_{1}=C_{1}(\delta)>0$ is a constant, and

$$
\left\|\frac{p^{s}}{2 \pi}\left(\mu_{1} \arg \sigma_{j}\left(\varepsilon_{1}\right)+\cdots+\mu_{r} \arg \sigma_{j}\left(\varepsilon_{r}\right)\right)\right\| \leq C_{2}, \quad r_{1} \leq j \leq r
$$

with $C_{2}=C_{2}(\delta)>0$. Set

$$
\begin{array}{ll}
Y_{j}=p^{s}\left(\mu_{1} \log \frac{\left|\sigma_{1}\left(\varepsilon_{1}\right)\right|}{\left|\sigma_{j}\left(\varepsilon_{1}\right)\right|}+\cdots+\mu_{r} \log \frac{\left|\sigma_{1}\left(\varepsilon_{r}\right)\right|}{\left|\sigma_{j}\left(\varepsilon_{r}\right)\right|}\right), & 2 \leq j \leq r \\
Z_{k}=\frac{p^{s}}{2 \pi}\left(\mu_{1} \arg \sigma_{k}\left(\varepsilon_{1}\right)+\cdots+\mu_{r} \arg \sigma_{k}\left(\varepsilon_{r}\right)\right) \in \mathbb{R} / \mathbb{Z}, \quad r_{1} \leq k \leq r
\end{array}
$$

Taking $0 \leq \mu_{i}<M$, we have M^{r} points $\left(\mu_{i}\right)_{1 \leq i \leq r}$. The $\left(Y_{j}, Z_{k}\right)_{2 \leq j \leq r, r_{1} \leq k \leq r}$ are in the product of intervals $I_{j}, 2 \leq j \leq r$, of lengths $O\left(M p^{s}\right)$ and of r_{2} factors identical to \mathbb{R} / \mathbb{Z}. This set can be covered by $C_{3}\left(M p^{s}\right)^{r-1}$ sets of diameter at most $\max \left\{C_{1}, C_{2}\right\}$, where C_{3} is a constant depending on δ. By Dirichlet's Schubfachprinzip, choosing M such that

$$
C_{3}\left(M p^{s}\right)^{r-1}<M^{r}
$$

which can be done with $M \asymp p^{(r-1) s}$, we deduce that there is $\left(\mu_{1}, \ldots, \mu_{r}\right) \in$ $\mathbb{Z}^{r} \backslash\{0\}$ such that

$$
\begin{gathered}
\max _{1 \leq i \leq r}\left|\mu_{i}\right| \ll M \\
\left|Y_{j}\right| \leq C_{1}, \quad 2 \leq j \leq r \\
\left\|Z_{k}\right\| \leq C_{2}, \quad r_{1} \leq k \leq r
\end{gathered}
$$

Set then $\eta=\left(\varepsilon_{1}^{\mu_{1}} \cdots \varepsilon_{r}^{\mu_{r}}\right)^{p^{s}}$ in such a way that $0<\eta<1$ (if needed, just consider $1 / \eta$). This choice implies that

$$
\left|\tau_{i}(\eta)-1\right|_{p}=\left|\log _{p} \tau_{i}(\eta)\right|_{p} \leq p^{-s}, \quad 0 \leq i \leq d
$$

and

$$
|\log \eta| \ll p^{s} M \ll p^{r s}
$$

Lemma 4. Let $P(X)=a_{0}+\cdots+a_{d} X^{d} \in \mathbb{C}_{p}[X]$ be a polynomial of degree d. Let $\xi_{i}(1 \leq i \leq d)$ be the roots of $P(X)$ in \mathbb{C}_{p}. Let c be a real number satisfying $0 \leq c \leq 1$. If

$$
\left|\xi_{i}\right|_{p} \leq c, \quad 1 \leq i \leq d
$$

then

$$
\begin{equation*}
\left|a_{k}\right|_{p} \leq c\left|a_{d}\right|_{p}, \quad 0 \leq k<d \tag{3.4}
\end{equation*}
$$

Conversely, if (3.4) holds, then

$$
\left|\xi_{i}\right|_{p} \leq c^{1 / d}, \quad 1 \leq i \leq d
$$

Proof. Since $P(X)=a_{d} \prod_{1 \leq i \leq d}\left(X-\xi_{i}\right)$, if $\left|\xi_{i}\right|_{p} \leq c \leq 1$ for $i=1, \ldots, d$ then

$$
\left|a_{k}\right|_{p} \leq c\left|a_{d}\right|_{p} \quad \text { for } k=0, \ldots, d-1
$$

Conversely, if

$$
\left|a_{k}\right|_{p} \leq c\left|a_{d}\right|_{p}, \quad 0 \leq k<d
$$

and if $\xi \in \mathbb{C}_{p}$ is such that $a_{d} \xi^{d}+\cdots+a_{0}=0$, then there exists k with $0 \leq k<d$ and

$$
\left|a_{k} \xi^{k}\right|_{p} \geq\left|a_{d} \xi^{d}\right|_{p}, \quad \text { thus } \quad|\xi|_{p}^{d} \leq|\xi|_{p}^{d-k} \leq c
$$

We conclude this section with two lemmas used in the proof of Theorem 2. The first of them was proved by Peck [8].

LEMMA 5. There exists a sequence $\left(\eta_{m}\right)_{m \geq 1}$ of positive units in \mathcal{O} such that

$$
\eta_{m} \asymp e^{-d m}, \quad\left|\sigma_{j}\left(\eta_{m}\right)\right| \asymp e^{m}, \quad 1 \leq j \leq d
$$

Proof. Let us search for the unit η_{m} in the form $\eta_{m}=\varepsilon_{1}^{\mu_{1}} \cdots \varepsilon_{r}^{\mu_{r}}$ with $\mu_{i} \in \mathbb{Z}$. We construct real numbers ν_{1}, \ldots, ν_{r} such that

$$
\begin{equation*}
\nu_{1} \log \varepsilon_{1}+\cdots+\nu_{r} \log \varepsilon_{r}=-d m \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{1} \log \left|\sigma_{j}\left(\varepsilon_{1}\right)\right|+\cdots+\nu_{r} \log \left|\sigma_{j}\left(\varepsilon_{r}\right)\right|=m, \quad 1 \leq j \leq d \tag{3.6}
\end{equation*}
$$

Taking into account that, by complex conjugation, the equations (3.6) corresponding to an index j with $r_{1} \leq j<r_{1}+r_{2}$ and to the index $j+r_{2}$ are identical, and that the sum of (3.5) and (3.6) is zero, we simply have to deal with a Cramer system, since the matrix $\left(\sigma_{j}\left(\varepsilon_{i}\right)\right)_{1 \leq j \leq r, 1 \leq i \leq r}$ is regular. We solve this system and then replace every ν_{i} by a rational integer μ_{i} such that $\left|\mu_{i}-\nu_{i}\right| \leq 1 / 2$.

Lemma 6. Let λ^{\prime} be a positive real number. Let $\left(\eta_{m}\right)_{m \geq 1}$ be a sequence of positive units as in Lemma 5. There exists a finite set $\Gamma=\Gamma\left(\lambda^{\prime}\right)$ of non-zero elements of \mathbb{K} such that for every integer polynomial $P(X)$ of degree at most d that satisfies

$$
\begin{equation*}
|P(\alpha)| \leq \lambda^{\prime} H(P)^{-d} \tag{3.7}
\end{equation*}
$$

there exist a positive integer m and γ in Γ for which

$$
P(\alpha)=\gamma \eta_{m}
$$

Proof. Below, all the constants implicit in \ll depend on \mathbb{K} and on λ^{\prime}. Let m be a positive integer such that

$$
H(P) \asymp e^{m}
$$

and set

$$
\gamma=P(\alpha) \eta_{m}^{-1}
$$

Since $D \alpha^{k}$ is an algebraic integer for $k=0, \ldots, d$, the algebraic number $D \gamma$ is an algebraic integer, and, by (3.7),

$$
|\gamma| \ll 1
$$

Furthermore, for $j=1, \ldots, d$, we have

$$
\left|\sigma_{j}(\gamma)\right|=\left|P\left(\sigma_{j}(\alpha)\right)\right| \cdot\left|\sigma_{j}\left(\eta_{m}^{-1}\right)\right| \ll H(P) e^{-m} \ll 1
$$

The algebraic integers $D \gamma \in \mathcal{O}$ and all their complex conjugates being bounded, they form a finite set.
4. Proof of Theorem 1. Let δ be in $(0,1)$, to be selected later. Apply Lemma 3 with this δ to get a unit η and apply Lemma 1 with this unit and with $\gamma=\alpha^{d}$. Since $D^{2} \alpha^{d} \eta \in \mathbb{Z}+\cdots+\alpha^{d} \mathbb{Z}$, we obtain

$$
D^{2} \eta \alpha^{d}=a_{0}+a_{1} \alpha+\cdots+a_{d} \alpha^{d}=P(\alpha)
$$

where, by Corollary $1, P(X)$ is an integer polynomial of degree d and

$$
|P(\alpha)| \asymp H(P)^{-d} \asymp H^{-d}
$$

By Lemmata 2 and 3, each coefficient of $P(X)$ has its p-adic absolute value $\ll(\log 3 H(P))^{-1 / r}$, except the leading coefficient, whose p-adic absolute value equals $|D|_{p}^{2}$.

We then infer from Lemma 4 that all the roots of $P(X)$ in \mathbb{C}_{p} have their p-adic absolute value $\ll(\log 3 H(P))^{-1 /(d r)}$. This proves (2.2).

It now remains to guarantee that $P(X)$ has a root very close to α. To this end, we proceed to check that

$$
\left|P^{\prime}(\alpha)\right| \gg H(P)
$$

Since

$$
P^{\prime}(\alpha)=a_{1}+\cdots+d a_{d} \alpha^{d-1}
$$

we get

$$
P^{\prime}(\alpha)=D^{2}\left(\operatorname{Tr}\left(\eta \alpha^{d} \beta_{1}\right)+2 \alpha \operatorname{Tr}\left(\eta \alpha^{d} \beta_{2}\right)+\cdots+d \alpha^{d-1} \operatorname{Tr}\left(\eta \alpha^{d} \beta_{d}\right)\right)
$$

hence,

$$
P^{\prime}(\alpha)=D^{2} \sum_{i=0}^{d} \sum_{k=1}^{d} k \alpha^{k-1} \sigma_{i}\left(\eta \alpha^{d} \beta_{k}\right)
$$

Let us write

$$
P^{\prime}(\alpha)=D^{2} \sum_{i=0}^{d} A_{i} \sigma_{i}(\eta)
$$

with

$$
A_{i}=\sigma_{i}\left(\alpha^{d}\right) \sum_{k=1}^{d} k \alpha^{k-1} \sigma_{i}\left(\beta_{k}\right), \quad i=0, \ldots, d
$$

Observe first that

$$
\sum_{i=1}^{d} A_{i} \neq 0
$$

Indeed, if this is not the case, note that the above formulæ hold for any unit η in \mathbb{K}, thus we can in particular work with the unit $\eta=1$, that is, with $P(X)=D^{2} X^{d}$ and $P^{\prime}(\alpha)=d D^{2} \alpha^{d-1}$; we get

$$
d \alpha^{d-1}=A_{0}=\alpha^{d} \sum_{k=1}^{d} k \alpha^{k-1} \beta_{k}
$$

hence,

$$
d=\sum_{k=1}^{d} k \alpha^{k} \beta_{k}
$$

Taking the trace, and recalling that $\operatorname{Tr}\left(\alpha^{k} \beta_{k}\right)=1$, we get $d(d+1)=\sum_{k=1}^{d} k$, a contradiction.

Write

$$
P^{\prime}(\alpha)=D^{2} \sum_{i=1}^{d} A_{i} \sigma_{i}(\eta)+O\left(H^{-d}\right)=D^{2} \sigma_{1}(\eta) \sum_{i=1}^{d} A_{i}+B
$$

with

$$
|B| \leq D^{2} \sum_{2 \leq i \leq d}\left|A_{i}\right| \cdot\left|\sigma_{1}(\eta)\right| \cdot\left|\frac{\sigma_{i}(\eta)}{\sigma_{1}(\eta)}-1\right|+O\left(H^{-d}\right)
$$

Selecting now δ such that

$$
\delta \sum_{2 \leq i \leq d}\left|A_{i}\right| \leq \frac{1}{3}\left|\sum_{i=1}^{d} A_{i}\right|
$$

we infer from Lemma 3 that

$$
\left|P^{\prime}(\alpha)\right| \geq \frac{1}{2} D^{2}\left|\sigma_{1}(\eta) \sum_{i=1}^{d} A_{i}\right|
$$

when H is sufficiently large. This gives

$$
\left|P^{\prime}(\alpha)\right| \gg\left|\sigma_{1}(\eta)\right| \gg H
$$

Consequently, $P(X)$ has a root ξ such that

$$
|\alpha-\xi| \ll H(P)^{-d-1} \ll H(\xi)^{-d-1}
$$

Classical arguments (see end of the proof of Theorem 2.11 in [2]) show that ξ must be real and of degree d if H is sufficiently large. This proves (2.1). Inequality (2.3) follows from (2.1) and (2.2) together with the fact that ξ is of degree d.
5. Proof of Theorem 2. The constants implicit in \ll and \gg below depend on \mathbb{K}, p and λ. By Rolle's theorem, there exists a positive real number λ^{\prime}, depending on λ and on d, such that the minimal polynomial $P(X)$ of any real number ξ of sufficiently large height and for which (2.4) holds is of degree d and satisfies

$$
|P(\alpha)| \leq \lambda^{\prime} H(P)^{-d}
$$

Let $\left(\eta_{m}\right)_{m \geq 1}$ be as in Lemma 5. By Lemma 6, it is sufficient to prove Theorem 2 for the integer polynomials $P(X)$ as above such that

$$
P(\alpha)=\gamma \eta_{m}=a_{0}+a_{1} \alpha+\cdots+a_{d} \alpha^{d} .
$$

Let ξ_{i} be the roots of $P(X)$ in \mathbb{C}_{p} and set

$$
u:=\max _{1 \leq i \leq d}\left|\xi_{i}\right|_{p}
$$

Assume that $u \leq 1$. It follows from Lemma 4 that

$$
\left|a_{k}\right|_{p} \leq u\left|a_{d}\right|_{p}, \quad 0 \leq k<d
$$

thus, taking $\left|a_{d}\right|_{p} P(X)$, which is still an integer polynomial, in place of $P(X)$, we can assume that $\left|a_{d}\right|_{p}=1$ and

$$
\left|a_{k}\right|_{p} \leq u, \quad 0 \leq k<d
$$

For $j=1, \ldots, d$, we then have

$$
\gamma \eta_{m} \alpha^{-d}-\tau_{j}\left(\gamma \eta_{m} \alpha^{-d}\right)=\sum_{k=0}^{d-1} a_{k}\left(\alpha^{k-d}-\tau_{j}\left(\alpha^{k-d}\right)\right)
$$

hence,

$$
\left|\gamma \eta_{m} \alpha^{-d}-\tau_{j}\left(\gamma \eta_{m} \alpha^{-d}\right)\right|_{p} \ll u
$$

Since $\left|\eta_{m}\right|_{p}=1$, we get

$$
\left|\frac{\tau_{j}\left(\eta_{m}\right)}{\eta_{m}} \frac{\tau_{j}(\gamma) \alpha^{d}}{\gamma \tau_{j}\left(\alpha^{d}\right)}-1\right|_{p} \ll u
$$

Upon writing

$$
\eta_{m}=\varepsilon_{1}^{\mu_{1, m}} \cdots \varepsilon_{r}^{\mu_{r, m}}
$$

we thus have

$$
u \gg\left|\left(\frac{\tau_{j}\left(\varepsilon_{1}\right)}{\varepsilon_{1}}\right)^{-\mu_{1, m}} \cdots\left(\frac{\tau_{j}\left(\varepsilon_{r}\right)}{\varepsilon_{r}}\right)^{-\mu_{r, m}} \frac{\tau_{j}(\gamma) \alpha^{d}}{\gamma \tau_{j}\left(\alpha^{d}\right)}-1\right|_{p} .
$$

If

$$
\frac{\tau_{j}\left(\eta_{m}\right)}{\eta_{m}}=\frac{\gamma \tau_{j}\left(\alpha^{d}\right)}{\tau_{j}(\gamma) \alpha^{d}}
$$

for $j=1, \ldots, d$, then the number $\gamma \eta_{m} \alpha^{-d}$ is equal to all its conjugates, hence is rational, and we have

$$
P(\alpha)=b \alpha^{d}
$$

with $b \in \mathbb{Q}$, hence $P(X)=b X^{d}$, a contradiction. For every m, there thus exists an index j such that $1 \leq j \leq d$ and

$$
\left(\frac{\tau_{j}\left(\varepsilon_{1}\right)}{\varepsilon_{1}}\right)^{-\mu_{1, m}} \cdots\left(\frac{\tau_{j}\left(\varepsilon_{r}\right)}{\varepsilon_{r}}\right)^{-\mu_{r, m}} \frac{\tau_{j}(\gamma) \alpha^{d}}{\gamma \tau_{j}\left(\alpha^{d}\right)} \neq 1
$$

Consequently, by the theory of linear forms in non-Archimedean logarithms (see e.g. $\mathrm{Yu}[10]$), there exists a positive constant κ such that

$$
\begin{equation*}
u \gg\left(\max _{1 \leq i \leq r}\left|\mu_{i, m}\right|\right)^{-\kappa} . \tag{5.1}
\end{equation*}
$$

As in the proof of Lemma 5 , the matrix $\left(\log \left|\sigma_{j}\left(\varepsilon_{i}\right)\right|\right)_{1 \leq i \leq r, 1 \leq j \leq r}$ being regular, we have

$$
\left|\log \eta_{m}\right| \asymp \max _{1 \leq i \leq r}\left|\mu_{i, m}\right| .
$$

Combined with $\eta_{m} \asymp H(P)^{-d}$ and (5.1), this gives

$$
u \gg(\log 3 H(\xi))^{-\kappa} .
$$

References

[1] M. D. Boshernitzan, Elementary proof of Furstenberg's Diophantine result, Proc. Amer. Math. Soc. 122 (1994), 67-70.
[2] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Math. 160, Cambridge Univ. Press, Cambridge, 2004.
[3] Y. Bugeaud, M. Drmota, and B. de Mathan, On a mixed Littlewood conjecture in Diophantine approximation, Acta Arith. 128 (2007), 107-124.
[4] M. Einsiedler and D. Kleinbock, Measure rigidity and p-adic Littlewood-type problems, Compos. Math. 143 (2007), 689-702.
[5] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49.
[6] B. de Mathan, On a mixed Littlewood conjecture for quadratic numbers, J. Théor. Nombres Bordeaux 17 (2005), 207-215.
[7] B. de Mathan et O. Teulié, Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), 229-245.
[8] L. G. Peck, Simultaneous rational approximations to algebraic numbers, Bull. Amer. Math. Soc. 67 (1961), 197-201.
[9] E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67-77.
[10] K. Yu, p-adic logarithmic forms and group varieties II, Acta Arith. 89 (1999), 337378.

Mathématiques
Université Louis Pasteur
7, rue René Descartes
67084 Strasbourg Cedex, France
E-mail: bugeaud@math.u-strasbg.fr

Institut de Mathématiques
Université Bordeaux I
351, cours de la Libération
33405 Talence Cedex, France
E-mail: demathan@math.u-bordeaux1.fr

Received on 7.11.2008
and in revised form on 5.3.2009

[^0]: 2000 Mathematics Subject Classification: Primary 11J04; Secondary 11J61, 11J68.
 Key words and phrases: Diophantine approximation, approximation to algebraic numbers, non-Archimedean valuation.

