On a mixed problem in Diophantine approximation

by

YANN BUGEAUD (Strasbourg) and BERNARD DE MATHAN (Bordeaux)

1. Introduction. In analogy with the Littlewood conjecture, de Mathan and Teulié [7] proposed recently a “mixed Littlewood conjecture”. For any prime number p, the usual p-adic absolute value $| \cdot |_p$ is normalized in such a way that $|p|_p = p^{-1}$. We denote by $\| \cdot \|$ the distance to the nearest integer.

De Mathan–Teulié Conjecture. For every real number α and every prime number p, we have

$$
\inf_{q \geq 1} q \cdot \|q\alpha\| \cdot |q|_p = 0.
$$

Obviously, the above conjecture holds if α is rational or has unbounded partial quotients in its continued fraction expansion. Thus, it only remains to consider the case when α is an element of the set Bad_1 of badly approximable real numbers, that is,

$$
\text{Bad}_1 = \{ \alpha \in \mathbb{R} : \inf_{q \geq 1} q \cdot \|q\alpha\| > 0 \}.
$$

De Mathan and Teulié [7] proved that (1.1) holds for every quadratic real number α (recall that such a number is in Bad_1) but, despite several recent results [4, 3], the general conjecture is still unsolved.

If we rewrite (1.1) in the form

$$
\inf_{a,q \geq 1, \gcd(a,q)=1} q^2 \cdot \left| \alpha - \frac{a}{q} \right| \cdot |q|_p = 0,
$$

then we have $|q|_p = \min\{|\text{Norm}(q/a)|_p, 1\}$. Hence, upon replacing α by $1/\alpha$, the de Mathan–Teulié conjecture can be reformulated as follows: For every irrational real number α, for every prime number p and every positive real number ε, there exists a non-zero rational number ξ satisfying

$$
|\alpha - \xi| \cdot \min\{|\text{Norm}(\xi)|_p, 1\} < \varepsilon H(\xi)^{-2}.
$$

2000 Mathematics Subject Classification: Primary 11J04; Secondary 11J61, 11J68.

Key words and phrases: Diophantine approximation, approximation to algebraic numbers, non-Archimedean valuation.

DOI: 10.4064/aa139-1-6
Throughout this paper, the height $H(P)$ of an integer polynomial $P(X)$ is the maximal of the absolute values of its coefficients. The height $H(\xi)$ of an algebraic number ξ is the height of its minimal defining polynomial over the rational integers $a_0 + a_1 X + \cdots + a_d X^d$, and the norm of ξ, denoted by $\text{Norm}(\xi)$, is the rational number $(-1)^d a_0/a_d$.

The above reformulation suggests asking the following question.

Problem 1. Let d be a positive integer. Let α be a real number that is not algebraic of degree less than or equal to d. For every prime number p and every positive real number ε, does there exist a non-zero real algebraic number ξ of degree at most d satisfying

$$|\alpha - \xi| \cdot \min\{\text{Norm}(\xi)|_p, 1\} < \varepsilon H(\xi)^{-d-1}?$$

The answer to Problem 1 is clearly positive, unless (perhaps) when α is an element of the set Bad_d of real numbers that are badly approximable by algebraic numbers of degree at most d, where

$$\text{Bad}_d = \{\alpha \in \mathbb{R} : \text{there exists } c > 0 \text{ such that } |\alpha - \xi| > cH(\xi)^{-d-1}$$

for all algebraic numbers ξ of degree at most d.

For $d \geq 1$, the set Bad_d contains the set of algebraic numbers of degree $d + 1$, but it remains an open problem to decide whether this inclusion is strict for $d \geq 2$; see the monograph [2] for more information. The purpose of the present note is to give a positive answer to Problem 1 for every positive integer d and every real algebraic number α of degree $d + 1$. This extends the result from [7], which deals with the case $d = 1$.

2. Results. Throughout this paper, for a prime number p, a number field \mathbb{K}, and a non-Archimedean place v on \mathbb{K} lying above p, we normalize the absolute value $|\cdot|_v$ in such a way that $|\cdot|_v$ and $|\cdot|_p$ coincide on \mathbb{Q}.

Our main result includes a positive answer to Problem 1 when α is a real algebraic number of degree $d + 1$.

Theorem 1. Let d be a positive integer. Let α be a real algebraic number of degree $d + 1$ and denote by r the unit rank of $\mathbb{Q}(\alpha)$. Let p be a prime number. There exist positive constants c_1, c_2, c_3, depending on α and p, and infinitely many real algebraic numbers ξ of degree d such that

\begin{align*}
|\alpha - \xi| &< c_1 H(\xi)^{-d-1}, \\
|\xi|_v &< c_2 (\log 3H(\xi))^{-1/(rd)}
\end{align*}

for every absolute value $|\cdot|_v$ on $\mathbb{Q}(\xi)$ above the prime p, and

\begin{align*}
|\alpha - \xi| \cdot \min\{\text{Norm}(\xi)|_p, 1\} &< c_3 H(\xi)^{-d-1}(\log 3H(\xi))^{-1/r}.
\end{align*}

Theorem 1 extends Théorème 2.1 of [7], which only concerns the case $d = 1$.
Under the assumptions of Theorem 1, Wirsing [9] established that there are infinitely many real algebraic numbers ξ satisfying (2.1).

The proof of Theorem 1 is very much inspired by a paper of Peck [8] on simultaneous rational approximation to real algebraic numbers. Roughly speaking, we use a method dual to Peck’s to construct integer polynomials $P(X)$ that take small values at α, and we need an extra argument to ensure that our polynomials have a root ξ very close to α.

De Mathan [6] used the theory of linear forms in non-Archimedean logarithms to prove that Theorem 1 for $d = 1$ is best possible, in the sense that the absolute value of the exponent of $\log 3H(\xi)$ in (2.2) cannot be too large. The next theorem extends this result to all values of d.

Theorem 2. Let p be a prime number, d a positive integer and α a real algebraic number of degree $d+1$. Let λ be a positive real number. There exists a positive real number $\kappa = \kappa(\lambda)$ such that for every non-zero real algebraic number ξ of degree d satisfying

$$
|\alpha - \xi| \leq \lambda H(\xi)^{-d-1}
$$

we have

$$
|\xi|_v \geq (\log 3H(\xi))^{-\kappa}
$$

for at least one absolute value $|\cdot|_v$ on $\mathbb{Q}(\xi)$ above the prime p.

As in [6], the proof of Theorem 2 rests on the theory of linear forms in non-Archimedean logarithms.

Let d be a positive integer. We recall that it follows from the p-adic version of the Schmidt Subspace Theorem that for every algebraic number α of degree $d+1$ and for every positive real number ε, there are only finitely many non-zero integer polynomials $P(X) = a_0 + a_1X + \cdots + a_dX^d$ of degree at most d, with $a_0 \neq 0$, that satisfy

$$
|P(\alpha)| \cdot |a_0|_p < H(P)^{-d-\varepsilon}.
$$

Let ξ be a real algebraic number of degree at most d, and denote by $P(X) = a_0 + a_1X + \cdots + a_dX^d$ its minimal polynomial over \mathbb{Z}. Then

$$
\min\{|\text{Norm}(\xi)|_p, 1\} \geq |a_0|_p
$$

and there exists a constant $c(\alpha)$, depending only on α, such that

$$
|P(\alpha)| \leq c(\alpha)H(\xi) \cdot |\xi - \alpha|.
$$

Let ε be a positive real number. Applying the above statement deduced from the p-adic version of the Schmidt Subspace Theorem to these polynomials $P(X)$, we deduce that

$$
|\alpha - \xi| \cdot \min\{|\text{Norm}(\xi)|_p, 1\} \geq H(P)^{-d-1-\varepsilon}
$$
holds if $H(P)$ is sufficiently large. This implies that if ξ satisfies (2.4) and if $H(\xi)$ is sufficiently large, then

$$|\text{Norm}(\xi)|_p \geq H(\xi)^{-\varepsilon},$$

accordingly

$$\max_{v|p} |\xi|_v \geq H(\xi)^{-\varepsilon/d}.$$

The result of Theorem 2 is more precise, but we cannot obtain a good lower bound for $|\text{Norm}(\xi)|_p$.

We conclude this section by pointing out that Einsiedler and Kleinbock [4] showed that a slight modification of the de Mathan–Teulié conjecture easily follows from a theorem of Furstenberg [5, 1].

Theorem EK. Let p_1 and p_2 be distinct prime numbers. Then

$$\inf_{q \geq 1} q \cdot \|q\alpha\| \cdot |q|_{p_1} \cdot |q|_{p_2} = 0$$

for every real number α.

In view of Theorem EK, we formulate the following question, presumably easier to solve than Problem 1.

Problem 2. Let d be a positive integer. Let α be a real number that is not algebraic of degree less than or equal to d. For any distinct prime numbers p_1, p_2 and every positive real number ε, does there exist a non-zero real algebraic number ξ of degree at most d satisfying

$$|\alpha - \xi| \cdot \min\{|\text{Norm}(\xi)|_{p_1}, 1\} \cdot \min\{|\text{Norm}(\xi)|_{p_2}, 1\} < \varepsilon H(\xi)^{-d-1}.$$

Theorem EK gives a positive answer to Problem 2 when $d = 1$.

The remainder of the paper is organized as follows. We gather several auxiliary results in Section 3, and Theorems 1 and 2 are established in Sections 4 and 5, respectively.

In the next sections, we fix a real algebraic number field K of degree $d + 1$. The notation $A \ll B$ means, unless specifically indicated otherwise, that the implicit constant depends on K. Furthermore, we write $A \asymp B$ if $A \ll B$ and $B \ll A$ simultaneously.

3. Auxiliary lemmas. Let K be a real algebraic number field of degree $d + 1$. Let O denote its ring of integers, and let $\alpha_0 = 1, \alpha_1, \ldots, \alpha_d$ be a basis of K. Let D be a positive integer satisfying

$$D(\mathbb{Z} + \alpha_1\mathbb{Z} + \cdots + \alpha_d\mathbb{Z}) \subset O \subset \frac{1}{D} (\mathbb{Z} + \alpha_1\mathbb{Z} + \cdots + \alpha_d\mathbb{Z})$$

and the corresponding inequalities for the dual basis β_0, \ldots, β_d defined by

$$\text{Tr}(\alpha_i\beta_j) = \delta_{i,j},$$

where Tr is the trace and $\delta_{i,j}$ is the Kronecker symbol.
We denote by $\sigma_0 = \text{Id}, \ldots, \sigma_d$ the complex embeddings of K, numbered in such a way that $\sigma_0, \ldots, \sigma_{r_1-1}$ are real, $\sigma_{r_1}, \ldots, \sigma_d$ are imaginary and $\sigma_{r_1+r_2+j} = \overline{\sigma_{r_1+j}}$ for $0 \leq j < r_2$. Set also $r = r_1 + r_2 - 1$, and let $\varepsilon_1, \ldots, \varepsilon_r$ be multiplicatively independent units in K.

Lemma 1. Let η be a unit in \mathcal{O} such that $-1 < \eta < 1$ and define the real number N by $|\eta| = N^{-1}$. The conditions

$$|\sigma_j(\eta)| \asymp N^{1/d}, \quad 0 < j \leq d, \tag{3.1}$$

and

$$|\sigma_i(\eta)| \asymp |\sigma_j(\eta)|, \quad 0 < i < j \leq d, \tag{3.2}$$

are equivalent. Let $\gamma \neq 0$ be in K and let Δ be a positive integer such that $\Delta \gamma \in \mathcal{O}$. If η satisfies (3.1) or (3.2), write

$$\gamma \eta = a_0 + \cdots + a_d \alpha_d$$

with a_0, \ldots, a_d in Q. Then $D \Delta a_k \in \mathbb{Z}$ for $k = 0, \ldots, d$ and

$$\max_{k=0,\ldots,d} |a_k| \asymp N^{1/d},$$

where the implicit constants depend on γ.

Proof. Since η is a unit, we have $\prod_{0 \leq j \leq d} \sigma_j(\eta) = \pm 1$, and (3.1) and (3.2) are clearly equivalent. The formula

$$a_k = \text{Tr}(\gamma \eta \beta_k) = \gamma \eta \beta_k + \sum_{j=1}^{d} \sigma_j(\eta) \sigma_j(\gamma \beta_k)$$

implies that if η satisfies (3.1), then

$$|a_k| \ll N^{1/d}, \quad 0 \leq k \leq d.$$

Combined with

$$\sigma_1(\gamma) \sigma_1(\eta) = a_0 + \cdots + a_d \sigma_1(\alpha_d),$$

this shows that $N^{1/d} \asymp |\sigma_1(\eta)| \ll \max_{k=0,\ldots,d} |a_k|$.

Let α be a real algebraic number of degree $d+1$. We keep the above notation with the field $K = \mathbb{Q}(\alpha)$ and the basis $1, \alpha, \ldots, \alpha^d$ of K over \mathbb{Q}, and we display an immediate consequence of Lemma 1.

Corollary 1. Let η be a unit in \mathcal{O} such that $-1 < \eta < 1$ and set $N = |\eta|^{-1}$. Then

$$D \Delta \gamma \eta = P(\alpha),$$

where $P(X)$ is an integral polynomial of degree at most d satisfying

$$H(P) \asymp N^{1/d}, \quad |P(\alpha)| \asymp N^{-1},$$

and thus $|P(\alpha)| \asymp H(P)^{-d}$.

Denote by τ_j, $j = 0, \ldots, d$ the embeddings of K into \mathbb{C}_p. Recall that the absolute value $|\cdot|_p$ on \mathbb{Q} has an extension to \mathbb{C}_p, that we also denote by $|\cdot|_p$. In Lemmata 2 to 4 below we work in \mathbb{C}_p. Let $P(X)$ be an irreducible integer polynomial of degree $n \geq 1$. Let ξ be a complex root of $P(X)$ and ξ_1, \ldots, ξ_n be the roots of $P(X)$ in \mathbb{C}_p. We point out that the sets

$$\{ |\xi|_v : v \text{ is above } p \text{ on } \mathbb{Q}(\xi) \} \quad \text{and} \quad \{ |\xi_i|_p : 1 \leq i \leq n \}$$

coincide, since all the absolute values above p over $\mathbb{Q}(\xi)$ are obtained by starting from $|\cdot|_p$ over \mathbb{C}_p, after embedding $\mathbb{Q}(\xi)$ in \mathbb{C}_p.

Keeping the notation of Lemma 1, we have the following auxiliary result.

Lemma 2. Assume that $\gamma = \alpha d$. Then

$$|a_k|_p \ll \max_{0 \leq j \leq d} |\tau_j(\eta) - 1|_p, \quad 0 \leq k < d,$$

and

$$|a_d - 1|_p \ll \max_{0 \leq j \leq d} |\tau_j(\eta) - 1|_p.$$

Proof. Since $\text{Tr}(\alpha d \beta_k) = 0$ for $k = 0, \ldots, d - 1$, we get

$$a_k = \text{Tr}(\gamma \eta \beta_k) = \text{Tr}(\alpha_d (\eta - 1) \beta_k) = \sum_{j=0}^{d} (\tau_j(\eta) - 1) \tau_j(\alpha_d \beta_k),$$

and deduce that

$$|a_k|_p \ll \max_{0 \leq j \leq d} |\tau_j(\eta) - 1|_p, \quad 0 \leq k < d.$$

It follows from $\text{Tr}(\alpha_d \beta_d) = 1$ that

$$a_d = 1 + \text{Tr}(\alpha_d \beta_d (\eta - 1)) = 1 + \sum_{j=0}^{d} (\tau_j(\eta) - 1) \tau_j(\alpha_d \beta_d),$$

and we derive the last conclusion of the lemma. \blacksquare

Lemma 3. Let $0 < \delta < 1$. There exist arbitrarily large positive real numbers H and units η satisfying $\eta = H^{-d}$,

$$\left| \frac{\sigma_j(\eta)}{\sigma_1(\eta)} - 1 \right| \leq \delta, \quad 2 \leq j \leq d,$$

and

$$|\tau_j(\eta) - 1|_p \ll (\log H)^{-1/r}, \quad 0 \leq j \leq d.$$

Proof. By replacing ε_i by $\varepsilon_i^{2^m_i (p-1)(p^2-1) \cdots (p^{d+1}-1)}$ with a suitable positive integer m_i, we can assume that ε_i is positive, together with its real conjugates, and that $|\tau_j(\varepsilon_i) - 1|_p < p^{-1/(p-1)}$ for $i = 1, \ldots, r$ and $j = 0, \ldots, d$. This is possible since $|\tau_j(\varepsilon_i)|_p = 1$ for $i = 1, \ldots, r$ and $j = 0, \ldots, d$. This allows us to consider the p-adic logarithms of each $\tau_j(\varepsilon_i)$. Our aim is to
construct a suitable unit η of the form

$$\eta = \varepsilon_1^{\mu_1}p^s \cdots \varepsilon_r^{\mu_r}p^s,$$

where $\mu_i \in \mathbb{Z}$. The conditions for (3.3) are then

$$p^s\mu_1 \log \frac{|\sigma_j(\varepsilon_1)|}{|\sigma_1(\varepsilon_1)|} + \cdots + \mu_r \log \frac{|\sigma_j(\varepsilon_r)|}{|\sigma_r(\varepsilon_r)|} \leq C_1, \quad 2 \leq j \leq r,$$

where $C_1 = C_1(\delta) > 0$ is a constant, and

$$\left| \frac{p^s}{2\pi} (\mu_1 \arg \sigma_j(\varepsilon_1) + \cdots + \mu_r \arg \sigma_j(\varepsilon_r)) \right| \leq C_2, \quad r_1 \leq j \leq r,$$

with $C_2 = C_2(\delta) > 0$. Set

$$Y_j = \frac{p^s}{2\pi} \left(\mu_1 \log \frac{|\sigma_1(\varepsilon_1)|}{|\sigma_1(\varepsilon_1)|} + \cdots + \mu_r \log \frac{|\sigma_1(\varepsilon_r)|}{|\sigma_r(\varepsilon_r)|} \right), \quad 2 \leq j \leq r,$$

$$Z_k = \frac{p^s}{2\pi} (\mu_1 \arg \sigma_k(\varepsilon_1) + \cdots + \mu_r \arg \sigma_k(\varepsilon_r)) \in \mathbb{R}/\mathbb{Z}, \quad r_1 \leq k \leq r.$$

Taking $0 \leq \mu_i < M$, we have M^r points $(\mu_i)_{1 \leq i \leq r}$. The $(Y_j, Z_k)_{2 \leq j \leq r, \ r_1 \leq k \leq r}$ are in the product of intervals I_j, $2 \leq j \leq r$, of lengths $O(Mp^s)$ and of r_2 factors identical to \mathbb{R}/\mathbb{Z}. This set can be covered by $C_3(Mp^s)^{r-1}$ sets of diameter at most $\max\{C_1, C_2\}$, where C_3 is a constant depending on δ. By Dirichlet’s Schubfachprinzip, choosing M such that

$$C_3(Mp^s)^{r-1} < M^r,$$

which can be done with $M \asymp p^{(r-1)s}$, we deduce that there is $(\mu_1, \ldots, \mu_r) \in \mathbb{Z}^r \setminus \{0\}$ such that

$$\max_{1 \leq i \leq r} |\mu_i| \ll M,$$

$$|Y_j| \leq C_1, \quad 2 \leq j \leq r,$$

$$||Z_k|| \leq C_2, \quad r_1 \leq k \leq r.$$

Set then $\eta = (\varepsilon_1^{\mu_1} \cdots \varepsilon_r^{\mu_r})p^s$ in such a way that $0 < \eta < 1$ (if needed, just consider $1/\eta$). This choice implies that

$$|\tau_i(\eta) - 1|_p = |\log_p \tau_i(\eta)|_p \leq p^{-s}, \quad 0 \leq i \leq d,$$

and

$$|\log \eta| \ll p^s M \ll p^{rs}. \quad \blacksquare$$

Lemma 4. Let $P(X) = a_0 + \cdots + a_dX^d \in \mathbb{C}_p[X]$ be a polynomial of degree d. Let ξ_i ($1 \leq i \leq d$) be the roots of $P(X)$ in \mathbb{C}_p. Let c be a real number satisfying $0 \leq c \leq 1$. If

$$|\xi_i|_p \leq c, \quad 1 \leq i \leq d,$$

then

$$|a_k|_p \leq c|a_d|_p, \quad 0 \leq k < d.$$
Conversely, if (3.4) holds, then
\[|\xi_i|_p \leq c^{1/d}, \quad 1 \leq i \leq d. \]

Proof. Since \(P(X) = a_d \prod_{1 \leq i \leq d} (X - \xi_i) \), if \(|\xi_i|_p \leq c \leq 1 \) for \(i = 1, \ldots, d \) then
\[|a_k|_p \leq c|a_d|_p \quad \text{for} \quad k = 0, \ldots, d - 1. \]
Conversely, if
\[|a_k|_p \leq c|a_d|_p, \quad 0 \leq k < d, \]
and if \(\xi \in \mathbb{C}_p \) is such that \(a_d \xi^d + \cdots + a_0 = 0 \), then there exists \(k \) with \(0 \leq k < d \) and
\[|a_k \xi^k|_p \geq |a_d \xi^d|_p, \quad \text{thus} \quad |\xi|_p^{d-k} \leq c. \]

We conclude this section with two lemmas used in the proof of Theorem 2. The first of them was proved by Peck [8].

Lemma 5. There exists a sequence \((\eta_m)_{m \geq 1} \) of positive units in \(\mathcal{O} \) such that
\[\eta_m \asymp e^{-dm}, \quad |\sigma_j(\eta_m)| \asymp e^m, \quad 1 \leq j \leq d. \]

Proof. Let us search for the unit \(\eta_m \) in the form \(\eta_m = \varepsilon_1^{\mu_1} \cdots \varepsilon_r^{\mu_r} \) with \(\mu_i \in \mathbb{Z} \). We construct real numbers \(\nu_1, \ldots, \nu_r \) such that
\[\nu_1 \log \varepsilon_1 + \cdots + \nu_r \log \varepsilon_r = -dm \]
and
\[\nu_1 \log |\sigma_j(\varepsilon_1)| + \cdots + \nu_r \log |\sigma_j(\varepsilon_r)| = m, \quad 1 \leq j \leq d. \]

Taking into account that, by complex conjugation, the equations (3.6) corresponding to an index \(j \) with \(r_1 \leq j < r_1 + r_2 \) and to the index \(j + r_2 \) are identical, and that the sum of (3.5) and (3.6) is zero, we simply have to deal with a Cramer system, since the matrix \((\sigma_j(\varepsilon_i))^{1 \leq j \leq r, 1 \leq i \leq r} \) is regular. We solve this system and then replace every \(\nu_i \) by a rational integer \(\mu_i \) such that \(|\mu_i - \nu_i| \leq 1/2. \)

Lemma 6. Let \(\lambda' \) be a positive real number. Let \((\eta_m)_{m \geq 1} \) be a sequence of positive units as in Lemma 5. There exists a finite set \(\Gamma = \Gamma(\lambda') \) of non-zero elements of \(\mathbb{K} \) such that for every integer polynomial \(P(X) \) of degree at most \(d \) that satisfies
\[|P(\alpha)| \leq \lambda'H(P)^{-d}, \]
there exist a positive integer \(m \) and \(\gamma \) in \(\Gamma \) for which
\[P(\alpha) = \gamma \eta_m. \]

Proof. Below, all the constants implicit in \(\ll \) depend on \(\mathbb{K} \) and on \(\lambda' \). Let \(m \) be a positive integer such that
\[H(P) \asymp e^m, \]
and set
\[\gamma = P(\alpha)\eta_m^{-1}. \]
Since \(D\alpha^k \) is an algebraic integer for \(k = 0, \ldots, d \), the algebraic number \(D\gamma \) is an algebraic integer, and, by (3.7),
\[|\gamma| \ll 1. \]
Furthermore, for \(j = 1, \ldots, d \), we have
\[|\sigma_j(\gamma)| = |P(\sigma_j(\alpha))| \cdot |\sigma_j(\eta_m^{-1})| \ll H(P)e^{-m} \ll 1. \]
The algebraic integers \(D\gamma \in \mathcal{O} \) and all their complex conjugates being bounded, they form a finite set.

4. Proof of Theorem 1. Let \(\delta \) be in \((0, 1)\), to be selected later. Apply Lemma 3 with this \(\delta \) to get a unit \(\eta \) and apply Lemma 1 with this unit and with \(\gamma = \alpha^d \). Since \(D^2\alpha^d\eta \in \mathbb{Z} + \cdots + \alpha^d\mathbb{Z} \), we obtain
\[D^2\eta\alpha^d = a_0 + a_1\alpha + \cdots + a_d\alpha^d = P(\alpha), \]
where, by Corollary 1, \(P(X) \) is an integer polynomial of degree \(d \) and
\[|P(\alpha)| \asymp H(P)^{-d} \asymp H^{-d}. \]
By Lemmata 2 and 3, each coefficient of \(P(X) \) has its \(p \)-adic absolute value \(\ll (\log 3H(P))^{-1/r} \), except the leading coefficient, whose \(p \)-adic absolute value equals \(|D|^2 / p^r \).

We then infer from Lemma 4 that all the roots of \(P(X) \) in \(\mathbb{C}_p \) have their \(p \)-adic absolute value \(\ll (\log 3H(P))^{-1/(d^r)} \). This proves (2.2).

It now remains to guarantee that \(P(X) \) has a root very close to \(\alpha \). To this end, we proceed to check that
\[|P'(\alpha)| \gg H(P). \]
Since
\[P'(\alpha) = a_1 + \cdots + da_d\alpha^{d-1}, \]
we get
\[P'(\alpha) = D^2(\text{Tr}(\eta\alpha^d\beta_1) + 2\alpha\text{Tr}(\eta\alpha^d\beta_2) + \cdots + d\alpha^{d-1}\text{Tr}(\eta\alpha^d\beta_d)), \]
hence,
\[P'(\alpha) = D^2 \sum_{i=0}^d \sum_{k=1}^d k\alpha^{k-1}\sigma_i(\eta\alpha^d\beta_k). \]
Let us write
\[P'(\alpha) = D^2 \sum_{i=0}^d A_i\sigma_i(\eta) \]
with
\[A_i = \sigma_i(\alpha^d) \sum_{k=1}^{d} k\alpha^{k-1}\sigma_i(\beta_k), \quad i = 0, \ldots, d. \]

Observe first that
\[\sum_{i=1}^{d} A_i \neq 0. \]

Indeed, if this is not the case, note that the above formulæ hold for any unit \(\eta \) in \(K \), thus we can in particular work with the unit \(\eta = 1 \), that is, with \(P(X) = D^2X^d \) and \(P'(\alpha) = dD^2\alpha^{d-1} \); we get
\[d\alpha^{d-1} = A_0 = \alpha^d \sum_{k=1}^{d} k\alpha^{k-1}\beta_k, \]
hence,
\[d = \sum_{k=1}^{d} k\alpha^k\beta_k. \]

Taking the trace, and recalling that \(\text{Tr}(\alpha^k\beta_k) = 1 \), we get \(d(d+1) = \sum_{k=1}^{d} k \), a contradiction.

Write
\[P'(\alpha) = D^2 \sum_{i=1}^{d} A_i\sigma_i(\eta) + O(H^{-d}) = D^2\sigma_1(\eta) \sum_{i=1}^{d} A_i + B \]
with
\[|B| \leq D^2 \sum_{2 \leq i \leq d} |A_i| \cdot |\sigma_1(\eta)| \cdot \left| \frac{\sigma_i(\eta)}{\sigma_1(\eta)} - 1 \right| + O(H^{-d}). \]

Selecting now \(\delta \) such that
\[\delta \sum_{2 \leq i \leq d} |A_i| \leq \frac{1}{3} \sum_{i=1}^{d} |A_i|, \]
we infer from Lemma 3 that
\[|P'(\alpha)| \geq \frac{1}{2} D^2|\sigma_1(\eta)\sum_{i=1}^{d} A_i| \]
when \(H \) is sufficiently large. This gives
\[|P'(\alpha)| \gg |\sigma_1(\eta)| \gg H. \]
Consequently, \(P(X) \) has a root \(\xi \) such that
\[|\alpha - \xi| \ll H(P)^{-d-1} \ll H(\xi)^{-d-1}. \]
Classical arguments (see end of the proof of Theorem 2.11 in [2]) show that \(\xi \) must be real and of degree \(d \) if \(H \) is sufficiently large. This proves (2.1). Inequality (2.3) follows from (2.1) and (2.2) together with the fact that \(\xi \) is of degree \(d \).

5. Proof of Theorem 2. The constants implicit in \(\ll \) and \(\gg \) below depend on \(\mathbb{K}, p \) and \(\lambda \). By Rolle’s theorem, there exists a positive real number \(\lambda' \), depending on \(\lambda \) and on \(d \), such that the minimal polynomial \(P(X) \) of any real number \(\xi \) of sufficiently large height and for which (2.4) holds is of degree \(d \) and satisfies

\[
|P(\alpha)| \leq \lambda' H(P)^{-d}.
\]

Let \((\eta_m)_{m \geq 1} \) be as in Lemma 5. By Lemma 6, it is sufficient to prove Theorem 2 for the integer polynomials \(P(X) \) as above such that

\[
P(\alpha) = \gamma \eta_m = a_0 + a_1 \alpha + \cdots + a_d \alpha^d.
\]

Let \(\xi_i \) be the roots of \(P(X) \) in \(\mathbb{C}_p \) and set

\[
u := \max_{1 \leq i \leq d} |\xi_i|_p.
\]

Assume that \(u \leq 1 \). It follows from Lemma 4 that

\[
|a_k|_p \leq u|a_d|_p, \quad 0 \leq k < d,
\]

thus, taking \(|a_d|_p P(X) \), which is still an integer polynomial, in place of \(P(X) \), we can assume that \(|a_d|_p = 1 \) and

\[
|a_k|_p \leq u, \quad 0 \leq k < d.
\]

For \(j = 1, \ldots, d \), we then have

\[
\gamma \eta_m \alpha^{-d} - \tau_j(\gamma \eta_m \alpha^{-d}) = \sum_{k=0}^{d-1} a_k (\alpha^{k-d} - \tau_j(\alpha^{k-d})),
\]

hence,

\[
|\gamma \eta_m \alpha^{-d} - \tau_j(\gamma \eta_m \alpha^{-d})|_p \ll u.
\]

Since \(|\eta_m|_p = 1 \), we get

\[
\left| \frac{\tau_j(\eta_m)}{\eta_m} \frac{\tau_j(\gamma) \alpha^d}{\gamma \tau_j(\alpha^d)} - 1 \right|_p \ll u.
\]

Upon writing

\[
\eta_m = \varepsilon_1^{\mu_1,m} \cdots \varepsilon_r^{\mu_r,m},
\]

we thus have

\[
u \gg \left| \left(\frac{\tau_j(\varepsilon_1)}{\varepsilon_1} \right)^{-\mu_1,m} \cdots \left(\frac{\tau_j(\varepsilon_r)}{\varepsilon_r} \right)^{-\mu_r,m} \frac{\tau_j(\gamma) \alpha^d}{\gamma \tau_j(\alpha^d)} - 1 \right|_p.
\]
If
\[
\frac{\tau_j(\eta_m)}{\eta_m} = \frac{\gamma \tau_j(\alpha^d)}{\tau_j(\gamma)\alpha^d}
\]
for \(j = 1, \ldots, d\), then the number \(\gamma \eta_m \alpha^{-d}\) is equal to all its conjugates, hence is rational, and we have
\[
P(\alpha) = b\alpha^d
\]
with \(b \in \mathbb{Q}\), hence \(P(X) = bX^d\), a contradiction. For every \(m\), there thus exists an index \(j\) such that \(1 \leq j \leq d\) and
\[
\left(\frac{\tau_j(\epsilon_1)}{\epsilon_1}\right)^{-\mu_{1,m}} \cdots \left(\frac{\tau_j(\epsilon_r)}{\epsilon_r}\right)^{-\mu_{r,m}} \frac{\tau_j(\gamma)\alpha^d}{\gamma \tau_j(\alpha^d)} \neq 1.
\]
Consequently, by the theory of linear forms in non-Archimedean logarithms (see e.g. Yu [10]), there exists a positive constant \(\kappa\) such that
\[
u \gg \left(\max_{1 \leq i \leq r} |\mu_{i,m}| \right)^{-\kappa}.
\]
As in the proof of Lemma 5, the matrix \((\log |\sigma_j(\epsilon_i)|)_{1 \leq i \leq r, 1 \leq j \leq r}\) being regular, we have
\[
|\log \eta_m| \asymp \max_{1 \leq i \leq r} |\mu_{i,m}|.
\]
Combined with \(\eta_m \asymp H(P)^{-d}\) and (5.1), this gives
\[
u \gg (\log 3H(\xi))^{-\kappa}.
\]

References

Mathématiques
Université Louis Pasteur
7, rue René Descartes
67084 Strasbourg Cedex, France
E-mail: bugeaud@math.u-strasbg.fr

Institut de Mathématiques
Université Bordeaux I
351, cours de la Libération
33405 Talence Cedex, France
E-mail: demathan@math.u-bordeaux1.fr

Received on 7.11.2008
and in revised form on 5.3.2009