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On the distribution of kth powers of integral quaternions
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1. Introduction and statement of the main results. Concerning
the distribution of kth powers of Gaussian integers (with k ∈ N, k ≥ 2),
H. Müller and W. G. Nowak [7] showed that, as X →∞,

#{zk | z ∈ Z[i] ∧ |Re(zk)|, |Im(zk)| ≤ X} = νkX
2/k +O(X46/(73k)+ε),

where νk (k = 2, 3, . . .) are certain numerical constants. In [3] and [5] we
studied three natural generalizations of this distribution question for k = 2
to integral quaternions, i.e. members of the Hurwitz subring J = Z4∪

(
1
2 +Z

)4
of the division ring H of Hamilton’s quaternions. Further, in [4] and [6] we
investigated four natural questions concerning the distribution of squares of
integral Cayley numbers.

The aim of the present paper is to treat the general case k ≥ 2 for the
special domain {q ∈ H | |Re(q)|, |Im(q)| ≤ X} = [−X,X]× {(x, y, z) ∈ R3 |
x2+y2+z2 ≤ X2}, which corresponds to the easiest of the three distribution
questions considered in [3] and [5].

In this connection one main problem is the irregular behaviour of the
multiplicity of kth powers of integral quaternions. As an instance of the
strange multiplicity of fourth powers we note that

#{q ∈ J | q4 = (5, 3, 4, 0)4} = 60, #{q ∈ J | q4 = (1, 1, 0, 0)4} = 12,

#{q ∈ J | q4 = (0, 0, 0, 1)4} = 8, #{q ∈ J | q4 = (1, 1, 1, 0)4} = 2.

Fortunately, these examples are an exception rather than the rule. Actually,
for k ≥ 2 let Sk be the smallest subset of J such that if q1 ∈ J \ Sk, q2 ∈ J,
and qk1 = qk2 then q1 = q2 when k is odd and q1 = ±q2 when k is even. This
exceptional set Sk turns out to be relatively small when k is odd (in fact,
Sk = ∅ when k ≡ ±1 (mod 6)), whilst Sk is the union of a relatively small
set and J ∩ {0} × R3 \ {(0, 0, 0, 0)} when k is even.

In order to get these exceptional sets Sk under control it is appropriate
to distinguish between a distribution problem and a lattice point problem.
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In the following we are going to develop asymptotic formulae for

Ak(X) := #{qk | q ∈ J ∧ |Re(qk)|, |Im(qk)| ≤ X}(1.1)

and

Bk(X) := #{q ∈ J | |Re(qk)|, |Im(qk)| ≤ X}.(1.2)

In case k = 2 the distribution result has already been settled in [3] and it
reads

(1.3) A2(X) = 2πX2 − 2π
3
X3/2 +O(X7/6(logX)19/4) (X →∞),

while it is easy to adapt the proof of this result in order to get

(1.4) B2(X) = 4πX2 +O(X7/6(logX)19/4) (X →∞).

Hence we may assume k ≥ 3 throughout the paper. Now, the main results
of the present paper are the following two theorems:

Theorem 1. For every natural k ≥ 3 and positive real X let Bk(X) be
defined by (1.2). Then, as X →∞,

Bk(X) = ckX
4/k +O(X5/(2k)),

where ck (k = 3, 4, 5, . . .) are numerical constants with π2 < ck < 22/kπ2.
More precisely ,

ck :=
4π
3
· area{u+ iv3 ∈ C | u, v ∈ R ∧ (u+ iv)k ∈ [−1, 1] + i[−1, 1]}.

(The O-constant depends on k.)

Theorem 2. For every natural k ≥ 3 and positive real X let Ak(X) be
defined by (1.1) and Bk(X) be defined by (1.2) and ν(k) := (1 + (−1)k)/2.
Then, as X →∞,

Ak(X) =
1

1 + ν(k)
Bk(X)− ν(k)

2π
3
X3/k +O(X2/k+ε).

(The O-constant depends on k and ε.) Moreover , if k is odd and not divisible
by 3 then Ak(X) = Bk(X) for every X.

2. Raising a quaternion to the kth power. After having identified
the quaternion algebra H with R4 we may identify the real space R× {0}3
with R and the imaginary space ImH := {0} × R3 with R3. Then every
quaternion q has an unique representation q = a + ~v with a ∈ R and ~v ∈
ImH. The number a =: Re(q) is the real part and the vector ~v =: Im(q) is
the imaginary part of the quaternion q. Further, addition and multiplication
of two quaternions are defined formally with respect to ~vλ = λ~v and ~v · ~w =
−〈~v, ~w〉 + ~v × ~w, where 〈~v, ~w〉 is the standard scalar product and ~v × ~w is
the standard vector product in R3. Obviously, for every q ∈ H \R there are
exactly two possibilities to write q as a + b~e, where a, b ∈ R and ~e ∈ R3 is
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a unit vector, i.e. the Euclidean norm |~e | is equal to 1. Now consider two
quaternions with collinear imaginary parts, a + b~e and c+ d~e, where ~e is a
unit vector in R3. Since ~e · ~e = −1, we obviously have, doubtless a déjà vu,

(a+ b~e) · (c+ d~e) = (ac− bd) + (ad+ bc)~e,

whence R+R~e is a subalgebra of H and a+ b~e 7→ a+ bi settles a canonical
isomorphism from the subalgebra R+ R~e to the field C = R+ Ri for every
fixed unit vector ~e ∈ R3. Therefore we immediately obtain the following
lemma.

Lemma 1. If any quaternion (including reals) is written as a + b~e with
a, b ∈ R and ~e ∈ R3, where |~e | = 1, then for every k ∈ N,

(a+ b~e)k = <((a+ bi)k) + =((a+ bi)k)~e,

where <(z) is the real part and =(z) is the imaginary part of z ∈ C.

Corollary 1. Suppose that π is a permutation on {1, 2, 3}, i.e. {π(1),
π(2), π(3)} = {1, 2, 3}. Further , for q = (α0, α1, α2, α3) ∈ H, define π[q] :=
(α0, απ(1), απ(2), απ(3)). Then (π[q])k = π[qk] for all q ∈ H and k ∈ N.

Lemma 1 is the clue to get the asymptotic formulae for Ak(X) and Bk(X)
because on the one hand it enables us to compare kth powers, and on the
other hand an immediate consequence of Lemma 1 reads

|Re(qk)|, |Im(qk)| ≤ X iff (Re(q) + |Im(q)|i)k ∈ [−X,X] + i[−X,X] ⊂ C.
Thus, if for X ≥ 1 and k ∈ N a domain Dk(X) ⊂ R2 is defined via

(2.1) Dk(X) := {(x, y) ∈ R2 | |<((x+ yi)k)|, |=((x+ yi)k)| ≤ X}
and the domain Bk(X) ⊂ H is given by

(2.2) Bk(X) := {q ∈ H | |Re(qk)|, |Im(qk)| ≤ X},
so that Bk(X) = #(Bk(X) ∩ J), then for every q ∈ H,

(2.3) q ∈ Bk(X) iff (Re(q), |Im(q)|) ∈ Dk(X).

Further we claim that for every q ∈ H and X ≥ 1,

(2.4) |Re(qk)|, |Im(qk)| ≤ X ⇒ |Re(q)|, |Im(q)| ≤ |q| ≤ 21/(2k)X1/k.

This is certainly true because |Re(qk)|2 + |Im(qk)|2 = |qk|2 = (|q|k)2 = |q|2k.
We conclude this section with basic facts on kth powers of pure imaginary

quaternions.

Lemma 2. Suppose that q ∈ ImH. Then qk ∈ R when k is even, and
qk ∈ ImH when k is odd. More precisely ,

(i) qk = (−1)k/2|q|k when k is even,
(ii) qk = (−1)(k−1)/2|q|k−1q when k is odd.
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Proof. For q ∈ ImH we have q2 = −|q|2. Now we only have to look at
qk = (q2)k/2 when k is even and at qk = qk−1q when k is odd.

As an immediate consequence of Lemma 2 we obtain

Corollary 2. For every q ∈ ImH and X ≥ 1,

|Re(qk)|, |Im(qk)| ≤ X iff |q| ≤ X1/k.

3. On the multiplicity of kth powers of integral quaternions

Lemma 3. Let q1, q2 ∈ J be such that qk1 = qk2 6∈ R.

(i) If k is odd and |Im(q1)|, |Im(q2)| 6∈
√

3
2 · Z then q1 = q2.

(ii) If k ≡ ±1 (mod 6) then q1 = q2.
(iii) If k is even and |Im(q1)|, |Im(q2)| 6∈

√
3

2 · Z ∪ 1
2Z then q1 = q2 or

q1 = −q2.

Proof. Let q1 and q2 be two integral quaternions with qk1 = qk2 and
Im(qk1 ) = Im(qk2 ) 6= 0. Then Lemma 1 tells us that the vectors Im(q1)
and Im(q2) must be collinear, so that we can write q1 = a1 + b1~e and
q2 = a2 + b2~e with one unit vector ~e ∈ R3. Due to q1, q2 ∈ J we have
2a1, 2a2 ∈ Z and 2b1~e, 2b2~e ∈ Z3, whence we can write 2q1 = α1 + β1

√
d1~e,

2q2 = α2 + β2
√
d2~e with αi, βi ∈ Z and d1, d2 ∈ N, each di either squarefree

or equal to 1. Although the multiplication in H is not commutative, qk1 = qk2
is clearly equivalent to (2q1)k = (2q2)k. Consequently, by Lemma 1 we have
=((α1 + β1i

√
d1)k) = =((α2 + β2i

√
d2)k). Hence, by the binomial theorem,

n1
√
d1 = n2

√
d2 for some n1, n2 ∈ Z, whence d1 = d2 =: d. It now follows

from Lemma 1 that (α1 + β1i
√
d)k = (α2 + β2i

√
d)k and thus the number

ζ = (α1 + β1i
√
d)/(α2 + β2i

√
d) is both a kth root of unity and a member

of the quadratic field Q[
√
−d], where either d = 1 or d is squarefree. Now

we distinguish the cases of k even and odd.
First assume that k is odd. Then either ζ = 1, i.e. q1 = q2, or d = 3. This

finishes the proof of (i) because d = 3 implies |Im(q1)|, |Im(q2)| ∈
√

3
2 · Z.

When k is odd and not divisible by 3, then ζ cannot be a third or sixth root
of unity 6= 1, whence in case d = 3 we must have ζ = 1 as well. This proves
clause (ii).

Now assume that k is even. Due to |Im(q1)|, |Im(q2)| 6∈
√

3
2 · Z ∪ 1

2Z we
must have d 6= 1, 3 and therefore the kth root of unity ζ lies in a quadratic
field different from Q[i] and Q[

√
−3]. So we must have ζ = 1 or ζ = −1, and

this concludes the proof of Lemma 2.

Remark. When k ≡ 3 (mod 6) and d = 3 then the multiplicity need not
equal 3. For example, (−2, 7,−1, 5) is the unique solution of the equation
q3 = (442,−441, 63,−315) in J. On the other hand, the equation q3 =
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(442000,−441000, 63000,−315000) has the three solutions

q1 = (−20, 70,−10, 50), q2 = (−65,−49, 7,−35), q3 = (85,−21, 3,−15).

As an obvious consequence of the proof of Lemma 3 we obtain

Corollary 3. If a ∈ H \ R then among all solutions x ∈ H of the
equation xk = a, whose total number is k and which can easily be computed
by Lemma 1, there are at most six integral quaternions.

Lemma 4. Let q1, q2 ∈ ImH (not necessarily integral) with qk1 = qk2 and
k odd. Then q1 = q2.

Proof. Recall that |qn| = |q|n is always true, and apply Lemma 2(ii).

Lemma 5. If k ≡ ±1 (mod 6) then the map q 7→ qk is injective on J.

Proof. In view of Lemma 3(ii) it suffices to show that for every q ∈ J
we have qk ∈ R if and only if q ∈ R. Hence, in view of Lemma 1 it is
enough to show that for m,n ∈ Z and n ≥ 0 we have (m +

√
ni)k ∈ R if

and only if n = 0, which is clearly true because (m +
√
ni)k ∈ R implies

(m − √ni)k = (m+
√
ni)k = (m +

√
ni)k, and a kth root of unity in any

quadratic field (or Q) cannot be different from 1 when k ≡ ±1 (mod 6).

Remark. As a consequence of Lemma 5 we have Ak(X) = Bk(X) for
every X > 0 when k ≡ ±1 (mod 6), so that the last statement of Theorem 2
is true.

4. The contribution of the imaginary space. In the following we
make use of the arithmetic functions d and r2 and r3 given by

d(n) := #{m ∈ N | m |n} (n ∈ N),

r2(n) := #{(x, y) ∈ Z2 | x2 + y2 = n} (n ∈ Z),

r3(n) := #{(x, y, z) ∈ Z3 | x2 + y2 + z2 = n} (n ∈ Z).

(Notice that r2(0) = r3(0) = 1 and r2(n) = r3(n) = 0 for n < 0.) It is well
known (cf. [9, p. 38 and p. 102]) that

(4.1) d(n), r2(n)� nε (n→∞),

whence

(4.2) r3(n) =
∑

m∈Z
r2(n−m2)� n1/2+ε (n→∞).

Further (cf. [1, Cor. 4]),

(4.3) #{n ∈ N0 | n ≤ t ∧ r3(n) > 0} =
5
6
t+O(log t) (t→∞).
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Finally, it is well known (cf. [9]) that for

R3(t) :=
∑

0≤n≤t
r3(n),

so that R3(x) = #{(x, y, z) ∈ Z3 | x2 +y2 +z2 ≤ t} = #{~x ∈ Z3 | |~x| ≤
√
t},

(4.4) R3(t) =
4π
3
t3/2 +O(t2/3(log t)6) (t→∞).

The given O-term is not best possible but good enough for our purpose. We
also deal with

R̃3(t) := #
{

(x, y, z) ∈
(

1
2 + Z

)3 ∣∣x2 + y2 + z2 ≤ t
}
,

for which, as argued in [3], we also have

(4.5) R̃3(t) =
4π
3
t3/2 +O(t2/3(log t)6) (t→∞).

Proposition 1. Let Bk(X) be as in (2.2) and A◦k(X) := #{qk | q ∈
Bk(X) ∩ J ∩ ImH} and B◦k(X) := #(Bk(X) ∩ J ∩ ImH). Then for every
k ≥ 3 and X ≥ 1,

(i) B◦k(X) =
4π
3
X3/k +O(X4/(3k) log6 X) (X →∞).

Further ,

(ii) if k is odd then A◦k(X) = B◦k(X),
(iii) if k is even then A◦k(X) = 5

6X
2/k +O(logX) (X →∞).

Proof. First note that J ∩ ImH = Z4 ∩ ImH. Hence, (i) follows from
Corollary 2 and (4.4). Further, (ii) is an immediate consequence of Lemma 4.
Finally, if k is even then for q∈J ∩ ImH, qk=(−|q|2)k/2 with −|q|2 =q2∈Z
(notice that Z4 is a subring of J). Hence we obviously have A◦k(X) =
#{mk/2 ∈ [0,X] | m ∈ N0 ∧ r3(m) > 0}, so that (iii) follows from (4.3).

5. Proof of Theorem 2. Let Bk(X) be as in (2.2) and

B∗k(X) := #(Bk(X) ∩ J \ ImH),

A∗k(X) := #{qk | q ∈ Bk(X) ∩ J \ ImH}.
Then, with A◦k(X) and B◦k(X) as in Proposition 1, for every k ≥ 3 and
X ≥ 1 we have

Ak(X) = A∗k(X) + A◦k(X), Bk(X) = B∗k(X) + B◦k(X).

Now, in view of Proposition 1, Theorem 2 is an immediate consequence of
the following proposition.
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Proposition 2. For natural k ≥ 3 let ν(k) := (1 + (−1)k)/2. Then, as
X →∞,

A∗k(X) =
1

1 + ν(k)
B∗k(X) +O(X2/k+ε).

Proof. Obviously, as X →∞,

A∗k(X)− 1
1 + ν(k)

B∗k(X)� 1 + Ek(X) + #Fk(X),

where Ek(X) and Fk(X) are given by

Ek(X) := #{q ∈ J \ ImH | |Re(qk)| ≤ X ∧ Im(qk) = 0}
and

Fk(X) := {q ∈ J \ ImH | |Re(qk)|, |Im(qk)| ≤ X ∧ Im(qk) 6= 0∧
∃q1 ∈ J \ (ImH ∪ {q,−q}) : qk1 = qk}.

(Notice that Fk(X) = ∅ for all X when k ≡ ±1,±2,±5 (mod 12).)
First we estimate Ek(X), so that we count all integral quaternions q 6∈

ImH with qk ∈ [−X,X]. By (2.4) there are � X1/k possible values for
Re(q). Further, by Lemma 1, for a quaternion q with Im(qk) = 0 we have
(Re(q) + |Im(q)|i)k ∈ R, whence we certainly have

(Re(q) + |Im(q)|i) ∈
k⋃

m=1

R · e2πim/k.

Consequently, since Re(q) 6= 0, for every choice of Re(q) there are at most
k choices for |Im(q)| = 1

2

√
m,m ∈ N0, each one to be multiplied by a factor

� r3(m). By (2.4) and (4.2), all these factors are uniformly � X1/k+ε.
Consequently, Ek(X)� X2/k+ε.

Next we investigate the set Fk(X). If q ∈ Fk(X) then there is a q1 ∈
Fk(X) such that q1 6= ±q and qk1 = qk 6∈ R. Consequently, the two vectors
Im(q) and Im(q1) are both non-zero and, by Lemma 1, they are collinear,
whence q and q1 are both members of the two-dimensional subalgebra S(q)
:= R+R·Im(q) of the quaternion algebra H. Since S(q) is isomorphic to C we
have qq1 = q1q, whence % := q1/q is a rational quaternion, i.e. % ∈ Q4, with
% 6= ±1 and %k = 1. Further, by Lemma 3, we either have |Im(q)| ∈

√
3

2 ·Z or
|Im(q)| ∈ 1

2Z. Hence 2q, 2q1 ∈ Z+
√
dZ ·~e ⊂ S(q), where ~e := Im(q)/|Im(q)|

is a unit vector, and either d = 3 or d = 1. Obviously, Z+
√
dZ · ~e is a ring

which is isomorphic to the order Z[
√
−d], whose quotient field equals the

imaginary quadratic field Q[
√
−d]. Consequently, the rational quaternion

% lies in the field Q +
√
dQ · ~e because in its turn this field is isomorphic

to Q[
√
−d]. Since % corresponds to a kth root of unity 6= ±1 in the field

Q[
√
−d], we must have % = ± 1

2 ±
√

3
2 ·~e when d = 3 and % = ±~e when d = 1.

On the other hand, Im(%) = λ Im(q) for some λ ∈ R. Clearly, λ ∈ Q since
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% ∈ Q4 and q ∈ J. Now let q = (α0, α1, α2, α3) so that αi ∈ 1
2Z. Notice

that α0 6= 0 and, in view of (2.4), 2|αi| ≤ 3X1/k (i = 0, 1, 2, 3). Then,
% = λ(q − α0) ± (d − 1)/4. Further, by applying the well-known equation
q2 = 2 Re(q)q − |q|2 we derive

%q = λ(q2 − α0q)±
d− 1

4
q =

(
λα0 ±

d− 1
4

)
q − λ|q|2.

Due to %q = q1 ∈ J we have

Im(%q) =
((

λα0±
d− 1

4

)
α1,

(
λα0±

d− 1
4

)
α2,

(
λα0±

d− 1
4

)
α3

)
∈ 1

2
Z3,

whence 4λα0αi ∈ Z for i = 1, 2, 3. Now, due to |Im(%)| = |λ| |Im(q)| and
|Im(q)| =

√
d

2 s (s ∈ N) and |Im(%)| =
√

3/2 when d = 3 and |Im(%)| = 1
when d = 1, we have either λ = ±1/s or λ = ±2/s where s ∈ N and either
s | 4α0αi (i = 1, 2, 3) or s | 8α0αi (i = 1, 2, 3). Moreover, 0 6= (2α1)2+(2α2)2+
(2α3)2 = 4|Im(q)|2 = ds2. Finally, referring to Corollary 1 it is obvious that
for every permutation π on {1, 2, 3} we have π[q] ∈ Fk(X) if and only if
q ∈ Fk(X). Summing up, for every q ∈ Fk(X) there is a permutation π on
{1, 2, 3} and a natural number s such that π[q] = (a/2, b/2, u/2, v/2) with
a, b, u, v ∈ Z and 0 < |a|, |b| ≤ 3X1/k and s | 2ab and u2 + v2 = ds2 − b2 for
d = 1 or d = 3.

Therefore, by symmetry and by Corollary 3 and by taking all permuta-
tions π into account, the total number of all integral quaternions which are
distinguished as members of the set Fk(X) is certainly not greater than

144
∑

d∈{1,3}

∑

0<a≤3X1/k

∑

0<b≤3X1/k

∑

s|2ab
r2(ds2 − b2),

so that by (4.1) we obtain #Fk(X)� X2/k+ε and the proof is finished.

6. Preparation of the main proof. Throughout the paper, for the
sake of simplicity we make the following arrangement which perhaps seems
artificial but actually is standard in axiomatic set theory (cf. [8]).

Arrangement. Any real function is identified with its graph, so that
f ⊂ R2 is a real function if and only if for every x ∈ R the set {x} ×R ∩ f
equals either the empty set or a singleton {(x, y)} with y ∈ R. The set
dom(f) := {x | ∃y : (x, y) ∈ f} is the domain of f . We write f : A→ R iff
f is a real function and A = dom(f). If x ∈ dom(f) then f(x) equals the
unique y ∈ R such that (x, y) ∈ f . But if x ∈ R\dom(f) we set f(x) = 0 (1).

(1) Admittedly, this appointment seems strange because it has the apparently con-
tradictory consequence that f(x) is always defined for every x ∈ R although possibly
dom(f) 6= R! We lay emphasis on the fact that this appointment is an immediate con-
sequence of set-theoretical standard definitions. Indeed, in classical set theory without
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Particularly , ∅ is a real function with dom(∅) = ∅ whence ∅(x) = 0 for all
x ∈ R.

In order to prove Theorem 1 we will make use of (2.3), so that first
we have to look carefully at the domain Dk(X) given by (2.1). Obviously,
Dk(X) can be obtained by applying a homothetic dilatation to the basic
domain Dk(1). More precisely, Dk(X) = X1/k · Dk(1). Consequently, in the
following we are going to collect important facts on the basic domain

(6.1) Dk := Dk(1) = {(x, y) ∈ R2 | |<((x+ yi)k)|, |=((x+ yi)k)| ≤ 1}.
After having identified R2 with C, the boundary ∂Dk of Dk can be parame-
trized via %(θ)eiθ (0 ≤ θ < 2π), where

(6.2) %(θ) := (max{|cos(kθ)|, |sin(kθ)|})−1/k (θ ∈ R).

Obviously, %(θ) is periodic with minimal period π/(2k). Further, 1 ≤ %(θ)
≤ 21/(2k) with %(θ) = 1 iff θ ∈ π

2kZ, and %(θ) = 21/(2k) iff θ ∈ π
4k + π

2kZ.
The function θ 7→ %(θ) is everywhere continuous, infinitely differentiable on
R \

(
π
4k + π

2kZ
)
, and both the right and left derivatives exist everywhere. If

we set

(6.3) θn :=
π

4k
+ n · π

2k
(n = 0, 1, 2, . . . , 4k − 1),

then the points Pn := (21/(2k) cos(θn), 21/(2k) sin(θn)) are cuspidal points of
the curve ∂Dk. Except for these 4k cuspidal points the curve is smooth.
Clearly, the domain Dk is axially and centrally symmetric with respect to
both axes and the origin of the coordinate system.

Now, as a representative segment of ∂Dk we consider the arc %(θ)eiθ

where −π/(4k) ≤ θ ≤ π/(4k).
A direction vector of the tangent of the curve through the point %(θ)eiθ

is given by

(6.4) ~t(θ) :=
(

sin((k − 1)θ)
cos((k − 1)θ)

)
(−π/(4k) ≤ θ ≤ π/(4k)).

Here we may include the two cuspidal points at |θ| = π/(4k) since it is natu-
ral to speak of two tangents through every cuspidal point of the whole curve
∂Dk. (By the definition of Dk, these two tangents are always orthogonal
because the mapping z 7→ zk is conformal.)

urelements it is common to define the number zero as the empty set and to define
a(b) := {c | (∃d : c ∈ d ∧ (b, d) ∈ a) ∧ (∀d1, d2 : (b, d1), (b, d2) ∈ a ⇒ d1 = d2)} for
arbitrary sets a, b. Hence, if f and x are sets such that there is not a unique set y with
(x, y) ∈ f then f(x) = ∅ automatically. As an example of the utility of that appointment
consider the function f : ]0,∞[ → R, x 7→ 1/x. On the one hand we can say that f is
continuous, on the other hand we can make use of the equation f(0) = 0.
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The absolute value of the curvature κ(θ) at the point %(θ)eiθ, which
again has a natural meaning at the two cuspidal points at |θ| = π/(4k), is
given by

(6.5) |κ(θ)| = (k − 1)(cos(kθ))1+1/k (−π/(4k) ≤ θ ≤ π/(4k)).

Since |κ(−π/(4k))| = |κ(π/(4k))| = (k − 1)2−1/2−1/(2k) the value |κ(θ)| is
well defined on the whole curve %(θ)eiθ (0 ≤ θ < 2π) and we have

(6.6) (k − 1)/2 ≤ |κ(θ)| ≤ k − 1 (0 ≤ θ ≤ 2π).

In order to get tangent vectors at every point of ∂Dk we consider the
rotation φ given by

R2 3
(
x
y

)
7→ φ

((
x
y

))
:=
(

cos
(
π
2k

)
− sin

(
π
2k

)

sin
(
π
2k

)
cos
(
π
2k

)
)
·
(
x
y

)

or, equivalently, by C 3 z 7→ φ(z) := eπi/(2k) · z, so that φn(Dk) = Dk for
every n ∈ N. Then, with

(6.7) Cnk := {%(θ)eiθ | θn−1 ≤ θ ≤ θn} (n ∈ N),

so that
⋃4k−1
n=0 Cnk = ∂Dk, we have φn(C0

k) = Cnk for every n ∈ N.
Now, referring to (6.4), it is plain that a tangent vector at any point of

each arc Cnk is given by ~t(θ) = φn
(
~t
(
θ − n π

2k

))
. Since we always have

(
cosα − sinα
sinα cosα

)n
·
(

sinβ
cosβ

)
=
(

sin(β − nα)
cos(β − nα)

)
,

a complete set of tangent vectors of ∂Dk is given by

(6.8) ~t(θ) =
(

sin
(
(k − 1)θ − nπ2

)

cos
(
(k − 1)θ − nπ2

)
)

(θn−1 ≤ θ ≤ θn),

where n = 0, 1, . . . , 4k − 1. Of course this notation is a bit sloppy because
we have a unique ~t(θ) only if θ 6∈ π

4k + π
2kZ, but two tangent vectors at each

cuspidal point Pn (n = 0, 1, . . . , 4k − 1).
Referring to (6.8) it is easy to determine all points Q ∈ ∂Dk where

the tangent through Q is parallel to the y-axis. A point Q = %(θ)eiθ with
θn−1 ≤ θ ≤ θn for 0 ≤ n ≤ 4k − 1 has a vertical tangent if and only if
sin
(
(k − 1)θ − nπ2

)
= 0.

Because of symmetry it suffices to consider only the points Q in the first
quadrant [0,∞[2, so that we consider only the arcs Cnk for 0 ≤ n ≤ k. Obvi-
ously, there is no vertical tangent point Q ∈ Dk lying in the sector π/4 ≤ θ
≤ π/2 with the only exception of the cuspidal point (21/(2k)−1/2, 21/(2k)−1/2)
at θ = π/4 if k is odd. (For even k there is no cuspidal point at θ = π/4.)
Hence we may restrict the indices n to 0 ≤ n ≤ k/2. Now, the arc Cnk contains
a vertical tangent point at θ ∈ [θn−1, θn] if and only if (k−1)θ−nπ/2 ∈ πZ.
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We observe that

[(k − 1)θn−1 − nπ/2, (k − 1)θn − nπ/2] ∩ πZ = {0}
for 0 ≤ n ≤ (k − 1)/2, whilst for n = k/2 in case that k is even,

[(k − 1)θn−1 − nπ/2, (k − 1)θn − nπ/2] ∩ πZ = ∅.
Consequently, precisely for n = 0, 1, . . . , [(k − 1)/2] there is exactly one
vertical tangent pointQn on the arc Cnk , and the coordinates ofQn = (un, vn)
are

(6.9) un = %

(
n

k − 1
π

2

)
cos
(

n

k − 1
π

2

)
, vn = %

(
n

k − 1
π

2

)
sin
(

n

k − 1
π

2

)
.

Further, a vertical tangent point Qn is a cuspidal point if and only if k is odd
and n = (k − 1)/2. If we consider the x-coordinates ξn := 21/(2k) cos(θn) of
the cuspidal points Pn, then trivially ξ0 > ξ1 > . . . > ξk−1. For obvious
geometrical reasons we have un−1 > un for 1 ≤ n ≤ (k − 1)/2 and ξn−1 >
ξn ≥ un for n = 1, 2, . . . , [(k − 1)/2] with ξn = un only for n = (k − 1)/2 in
case k is odd.

Now, considering all arcs Cnk (n = 0, 1, . . . , k) we define functions ϕn and
ψn by

(6.10) ϕn :=





Cnk ∩ R× [vn,∞[

when n ∈ {0, 1, . . . , [(k − 1)/2]} \ {(k − 1)/2},
∅ when (k − 1)/2 ≤ n ≤ k,

ψn :=
{ Cnk ∩ R× ]−∞, vn] when n ∈ {1, . . . , [(k − 1)/2]},
Cnk when (k − 1)/2 < n < k,

(6.11)
ψk := Ckk ∩ [0,∞[2, ψ0 := ∅.

If ϕn 6= ∅ then dom(ϕn) = [un, ξn] and the function ϕn is continuous and
strictly increasing with a continuous and strictly decreasing derivative on
]un, ξn[. For n ∈ {1, . . . , [(k − 1)/2]} we have dom(ψn) = [un, ξn−1] and
the function ψn is continuous and strictly decreasing with a continuous and
strictly increasing derivative on ]un, ξn−1[. In all these cases the derivatives
ϕ′n and ψ′n are unbounded near un, ψn(x) < ϕn(x) for un < x ≤ ξn and
ψn(un) = ϕn(un). For (k − 1)/2 < n < k we have dom(ψn) = [ξn, ξn−1] and
the function ψn is continuous, the union of a decreasing and an increasing
function, and its derivative is continuous, strictly increasing and bounded
on ]ξn, ξn−1[. Finally, dom(ψk) = [0, ξk−1] and the function ψk is continuous
and strictly decreasing with a continuous, strictly increasing and bounded
derivative on ]0, ξk−1[. As an obvious consequence we have
(6.12) ψn+1(x) > ϕn(x) for un ≤ x < ξn and

n ∈ {0, 1, . . . , [(k − 1)/2]} \ {(k − 1)/2},
since for all these n, ϕn(ξn) = ψn+1(ξn).



88 G. Kuba

By definition, Cnk = ϕn ∪ ψn for 0 < n < k, C0
k ∩ [0,∞[2 = ϕ0 and

Ckk ∩ [0,∞[2 = ψk.
Consequently,

∂Dk ∩ [0,∞[2 =
k⋃

n=0

ψn ∪ ϕn.

For every n = 0, 1, . . . , k − 1 we have dom(ϕn) ⊂ dom(ψn+1), whence,
referring to (6.12) and our arrangement on real functions,

(6.13) ψn+1(x) ≥ ϕn(x) for all n = 0, 1, . . . , k − 1 and all x ∈ R.
Hence we can write

(6.14) Dk ∩ [0,∞[2 =
⋃

0≤x≤ξ0

k−1⋃

n=0

{x} × [ϕn(x), ψn+1(x)].

We conclude this section with a proposition on the order of magnitude
of the derivatives and the difference quotients of the functions ϕn and ψn
whenever they are unbounded.

Proposition 3. For every n = 0, 1, . . . , [(k − 1)/2] where ϕn 6= ∅ and
ψn 6= ∅, respectively , for sufficiently small positive λ we have

(i) ϕ′n(un + λ), ψ′n(un + λ)� 1√
λ

(λ→ 0+).

Moreover , we always have

(ii)
ϕn(un + λ)− ϕn(un)

λ
,
ψn(un + λ)− ψn(un)

λ
� 1√

λ
(λ→ 0+).

Proof. We consider the circle through the vertical tangent point Qn =
(un, vn) given by {(x, y) ∈ R2 | (x − (un + r))2 + (y − vn)2 = r2}, whence
the circle tangent through Qn is vertical as well. Referring to (6.5) we fix
the radius r of our circle independent of n and large enough so that the
circle encloses not only the osculating circle of the curve Cnk through Qn but
also the curve Cnk itself. In particular, the two arcs ϕn and ψn lie within our
circle. Consequently, for small λ > 0,

0 < ϕ′n(un + λ) <
ϕn(un + λ)− vn

λ
<
∆(λ)
λ

,

0 > ψ′n(un + λ) >
ψn(un + λ)− vn

λ
> −∆(λ)

λ
,

where ∆(λ) is the vertical distance between the point (un + λ, vn) and our
circle. We have ∆(λ) =

√
r2 − (r − λ)2 =

√
2rλ− λ2 <

√
2r
√
λ and this

concludes the proof.
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7. Proof of Theorem 1

Notation. Let f be a real function whose domain dom(f) is a bounded
subset of R. Then for a, b ∈ R we set

∑∗

a<m≤b
f(m) :=

∑

2a<m≤2b

f

(
m

2

)
,

so that the dummy index in a “star sum” always runs through 1
2Z. Further,

this sum is always well defined (and finite), even when ]a, b] 6⊂ dom(f).
(Recall our arrangement that f(x) = 0 for any x 6∈ dom(f).)

For “star sums” the Euler summation formula (cf. [2, Theorem 1.3])
appears in the following shape.

Lemma 6. Let τ denote the row-of-teeth function given by τ(x) = 2x−
[2x]−1/2 (x ∈ R). Further let f be a real function with dom(f) = [α, β] ⊂ R
such that f is continuous on [α, β] and continuously differentiable on ]α, β[.
Then

∑∗

α<m≤β
f(m) = 2

β�
α

f(x) dx+ τ(α)f(α)− τ(β)f(β) +
β�
α

f ′(x)τ(x) dx.

By applying four times the second mean-value theorem and by making
use of the estimate | � b

a
τ(x) dx| ≤ 1/4 we obtain the following lemma.

Lemma 7. Let f and g be real functions with dom(f) = dom(g) =
[α, β] ⊂ R such that f and g are continuous, g is monotonic, and f is
the union of two monotonic functions. Then

∣∣∣
β�
α

f(x)g(x)τ(x) dx
∣∣∣ ≤ 2( max

α≤x≤β
|f(x)|)( max

α≤x≤β
|g(x)|).

Now we are ready to prove Theorem 1. In view of (5.1) and Proposition 1
it remains to look carefully at B∗k(X). By symmetry and referring to (2.3)
we have

(7.1) B∗k(X)

= 2 ·#
{

(a,~b) ∈ N× Z3 ∪
(

1
2 + N0

)
×
(

1
2 + Z

)3 ∣∣ (a, |~b|) ∈ Dk(X)
}
.

Now for a ∈ 1
2Z and Y ≥ 0 let

La(Y ) := #{~b ∈ (a+ Z)3 | |~b| ≤ Y },
L◦a(Y ) := #{~b ∈ (a+ Z)3 | |~b| < Y }.

Then, by (4.2), (4.4) and (4.5), for every a ∈ 1
2Z,

(7.2) La(Y ), L◦a(Y ) =
4π
3
Y 3 +O(1 + Y 7/5)
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independently of a and uniformly in Y . (The exponent 7/5 has been chosen
as a house number greater than 4/3 in order to get rid of the logarithmic
factor.)

Recall that Dk(X) = X1/k · Dk. Consequently, referring to (6.14), we
have, for X ≥ 1,

Dk(X) ∩ [0,∞[2 =
⋃

0≤x≤ξ0

k−1⋃

n=0

{xX1/k} × [X1/kϕn(x),X1/kψn+1(x)]

and thus
1
2

B∗k(X) =
∑∗

0<a≤ξk−1X1/k

La(X1/kψk(aX−1/k))

+
k−1∑

n=[(k+1)/2]

∑∗

ξnX1/k<a≤ξn−1X1/k

La(X1/kψn(aX−1/k))

+
[(k−1)/2]∑

n=1

∑∗

unX1/k<a≤ξn−1X1/k

La(X1/kψn(aX−1/k))

−
[(k−1)/2]∑

n=0

∑∗

unX1/k<a≤ξnX1/k

L◦a(X1/kϕn(aX−1/k)).

(Notice that ϕ[(k−1)/2] = ∅ when k is odd.)
By applying (7.2) and Lemma 6, after an obvious substitution we derive

(7.3) B∗k(X) = ckX
4/k +

8π
3
X3/kTk(X) + 8πX2/kJk(X) +O(X12/(5k)),

where (with respect to our arrangement on real functions)

ck :=
16π
3

k∑

n=1

ξ0�
0

(ψn(t)3 − ϕn−1(t)3) dt,(7.4)

Jk(X) :=
k∑

n=1

ξ0X
1/k�

0

(ψn(uX−1/k)2ψ′n(uX−1/k)

− ϕn−1(uX−1/k)2ϕ′n−1(uX−1/k))τ(u) du,

Tk(X) :=
k∑

n=1

(fn(X)− gn−1(X))

with
fn(X) := τ(X1/k · inf dom(ψn)) · ψn(inf dom(ψn))3

− τ(X1/k · sup dom(ψn)) · ψn(sup dom(ψn))3
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for n = 1, . . . , k and

gm(X) := τ(X1/k · inf dom(ϕm)) · ϕm(inf dom(ϕm))3

− τ(X1/k · sup dom(ϕm)) · ϕm(sup dom(ϕm))3

for m ∈ {0, 1, . . . , [(k − 1)/2]} \ {(k − 1)/2} and gm(X) = 0 otherwise.
Obviously and fortunately all terms occurring in Tk(X) are annihilated

except the first summand of fk(X), so that we obtain

(7.5) Tk(X) = τ(0)ψk(0)3 = −1/2.

It remains to estimate Jk(X) and we claim

(7.6) Jk(X)� X1/(2k) (X →∞).

In order to verify (7.6) let h∈{ψn | n=1, . . . , k}∪{ϕn | n=0, 1, . . . , k}\{∅}
with dom(h) = [σ, ω]. If h′ is bounded we have

ωX1/k�
σX1/k

h(uX−1/k)2h′(uX−1/k)τ(u) du� 1

by Lemma 7. If h′ is unbounded near σ we choose X large enough so that
σX1/k + 1 ≤ ωX1/k, whence we can write

ωX1/k�
σX1/k

h(uX−1/k)2h′(uX−1/k)τ(u) du =
σX1/k+1�
σX1/k

h2h′τ +
ωX1/k�
σX1/k+1

h2h′τ.

From Proposition 3(ii) with λ = X−1/k we derive

∣∣∣
σX1/k+1�
σX1/k

(h2h′)(uX−1/k)τ(u) du
∣∣∣

≤ ( max
σ≤x≤ω

h(x)2) ·
σX1/k+1�
σX1/k

|h′(uX−1/k)| du

= ( max
σ≤x≤ω

h(x)2) ·X1/k · |h(σ +X−1/k)− h(σ)| � X1/(2k).

From Lemma 7 and Proposition 3(i) with λ = X−1/k we derive

∣∣∣
ωX1/k�
σX1/k+1

(h2h′)(uX−1/k)τ(u) du
∣∣∣

≤ 2 · ( max
σ≤x≤ω

h(x)2) · |h′(σ +X−1/k)| � X1/(2k).

Now we insert (7.4), (7.5) and (7.6) into (7.3), so that by (5.1) and Propo-
sition 1 we obtain the asymptotic formula of Theorem 1; hence it remains
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to verify the statements on the constants ck in Theorem 1. The stated area
formula for ck is equivalent to

(7.7) ck :=
16π
3
· area{(u, v3) ∈ R2 | (u, v) ∈ Dk ∩ [0,∞[2},

which is an obvious consequence of (7.4). Now, the domain Dk contains the
unit circle x2 + y2 = 1 and lies within the circle x2 + y2 = 21/k. Therefore,
by (7.7) we surely have

ck >
16π

3

1�
0

(
√

1− x2)3 dx = π2,

ck <
16π

3

21/(2k)�
0

(
√

21/k − x2)3 dx = 22/kπ2,

and this concludes the proof of Theorem 1.

8. On the distribution of kth powers of Cayley integers. Consider-
ing hypercomplex numbers as members of certain quadratic algebras (cf. [4]),
it is plain that Lemma 1 remains unchanged when the quaternions are re-
placed by hypercomplex numbers, i.e. when the unit vector ~e ∈ R3 is re-
placed by a unit vector ~e ∈ Rs−1, where s is the order of the algebra.
Consequently, it is not difficult to adapt the proof of Theorem 1 to derive
an asymptotic formula for the number of hypercomplex integers of order
s whose kth powers lie in the cylinder [−X,X] × {~x ∈ Rs−1 | |~x| ≤ X}.
Since the concept of real and imaginary part is common only for complex
numbers, quaternions and octaves, instead of formulating an s-dimensional
analogue (2) of Theorem 2 we give the corresponding distribution formula
for the special case of the Cayley algebra O = R8 and its integral domain
Γ = Z8.

Theorem 3. For natural k ≥ 2 and positive real X let

Ck(X) := #{ak | a ∈ Γ ∧ |Re(ak)|, |Im(ak)| ≤ X}.
Then, as X →∞,

Ck(X) =
2

3 + (−1)k
dkX

8/k − 4(1 + (−1)k)π3

105
X7/k +O(X13/(2k)),

where

dk :=
8π3

105
· area{u+ iv7 ∈ C | u, v ∈ R ∧ (u+ iv)k ∈ [−1, 1] + i[−1, 1]},

(2) Notice that it is not necessary that the hypercomplex algebra is a division algebra.
If a1 and a2 are hypercomplex integers such that ak1 = ak2 6∈ R then a1 and a2 lie in a
two-dimensional subalgebra which is isomorphic to the complex number field. Hence a1/a2
is well-defined and (a1/a2)k = 1.
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whence we always have

1
24
π4 < dk <

24/k

24
π4.

Remark. As shown in [4, Theorem 2], in the case k = 2 the error term
is even O(X3). Further, d2 = 2

9π
3.

9. On the distribution of all powers of integral quaternions. In
this final section we give an asymptotic formula for the number of all quater-
nions p such that |Re(p)|, |Im(p)| ≤ X, and p can be written as p = qk, where
q is any integral quaternion and k ≥ 2 is any natural number.

Theorem 4. For positive real X let

P(X) := #{p ∈ H | |Re(p)|, |Im(p)| ≤ X ∧ ∃k ∈ N, k ≥ 2,∃q ∈ J : p = qk}.
Then, as X →∞,

P(X) = 2πX2 − 2π
3
X3/2 + c3X

4/3 +O(X7/6(logX)19/4),

where c3 = 11.53735238 . . . is the same constant as in Theorem 1.

Proof. First, we note that for X ≥ 3 and q ∈ H,

(9.1) |q| ≥ 2 ∧ |Re(qk)|, |Im(qk)| ≤ X ⇒ k ≤ 2 logX,

which follows immediately from |q|2k = |qk|2 = |Re(qk)|2+|Im(qk)|2. Further
it is easy to check

(9.2) #{q ∈ J | |q| < 2} = 145.

Now let

P2,3(X) := {p ∈ H | |Re(p)|, |Im(p)| ≤ X ∧ ∃q1, q2 ∈ J : p = q2
1 = q3

2}.
Then by (9.1) and (9.2) we have

P(X) = A2(X) + A3(X)−#P2,3(X) +O
(

1 +
∑

5≤k≤2 logX

Ak(X)
)
,

because every fourth power in J is already counted as a square. Thus, in
view of (1.3) and Theorems 1 and 2, the proof of Theorem 4 is finished by
showing that

(9.3) #P2,3(X)� X5/6+ε (X →∞).

The story would be quite simple if, as one might expect, #P2,3(X) = A6(X).
But unfortunately this is not true. In the world of whole numbers or Gaus-
sian integers a number is both a square and a third power if and only if it is
a sixth power. In the world of integral quaternions the situation is different.
For example, the integral quaternion (−1917, 2646, 378, 756) is the square of
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(27, 49, 7, 14) and also the cube of (3,−14,−2,−4), but it cannot be written
as the sixth power of an integral quaternion.

Indeed, the six solutions of the equation x6 = (−1917, 2646, 378, 756) are

±
(
−3,

7
3
,

1
3
,

2
3

)
, ±

(
3
√

2
2
∓ 3

2
,

7
√

2
4
± 7

6
,

√
2

4
± 1

6
,

√
2

2
± 1

3

)
.

Thus we will not get (9.3) without investigating the set P2,3(X) carefully.
It suffices to consider only those p ∈ P2,3(X) where Im(p) 6= 0 because

the total number of all p ∈ P2,3(X) with Im(p) = 0 is not greater than
2X1/3 + 1. In fact, if q ∈ J is such that Im(q3) = 0 (and hence q3 ∈ Z) then
either q ∈ Z or |Im(q)| = |Re(q)|

√
3 by Lemma 1. Therefore, either q ∈ Z or

q3 = −8 Re(q)3, whence we always have q3 = n3 for some n ∈ Z.
Now suppose that p is a quaternion with Im(p) 6= 0 and p = q2

1 = q3
2

for some q1, q2 ∈ J. Then, by Lemma 1, the vectors Im(q1) and Im(q2)
must be collinear, whence q1q2 = q2q1. (Note that this is not true when
Im(p) = 0. For example, if we choose q1 = (0, 1, 0, 0) and q2 =

(
1
2 ,

1
2 ,

1
2 ,

1
2

)

then q2
1 = q3

2 = −1, but q1q2 6= q2q1.) Consequently, (q1/q2)2 = q2 and
(q1/q2)3 = q1 and (q1/q2)6 = p. Since q1/q2 is clearly a rational quaternion,
in order to verify (9.3) it is enough to count all % ∈ Q4 such that

(9.4) %2 ∈ J \ R and |Re(%6)|, |Im(%6)| ≤ X.
Now, for α = (a0, a1, a2, a3) ∈ H let N(α) := a2

0 + a2
1 + a2

2 + a2
3 denote

the norm of the quaternion α, so that we always have N(α) = |α|2 and
N(αn) = N(α)n for every n ∈ N. Further, N(q) ∈ Z for every q ∈ J, so that,
considering Z as a subring of J, we have N(q) ∈ J for every q ∈ J.

If % is a rational quaternion which satisfies (9.4) then on the one hand we
have N(%)6 = N(%6) = Re(%6)2 + |Im(%6)|2 ≤ 2X2, whence 4N(%) ≤ 5X1/3.
On the other hand, due to N(%)2 = N(%2) and %2 ∈ J, we have N(%)2 ∈ Z,
so that N(%) ∈ Z since N(%) ∈ Q. Moreover, from %2 ∈ J \ R and the well
known equation %2 = 2 Re(%)%−N(%) we derive Re(%) 6= 0 and 2 Re(%)% ∈ J.
Hence, 2 Re(%)2 ∈ 1

2Z, so that 2 Re(%) ∈ Z \ {0}.
Hence it suffices to count all % ∈ Q4 which satisfy 4N(%) ≤ 5X1/3 and

(9.5) 2 Re(%), N(%) ∈ Z \ {0}, 4 Re(%)% ∈ Z4.

In order to do that we write % = (a/2, r1/s, r2/s, r3/s) with a, s, r1, r2, r3 ∈ Z
and a 6= 0 and s > 0. In view of (9.5), we may restrict the denominator s
so that s | 2a and s2 | 4(r2

1 + r2
2 + r2

3). To see this, let ri/s = mi/ni with mi

and ni relatively prime. Then 4 Re(%)% ∈ Z4 implies ni | 2ami, whence s | 2a
if s equals the least common multiple of n1, n2, n3.

Consequently, in view of a2 ≤ 4N(%) and by applying (4.1) and (4.2),
the total number of all % ∈ Q4 which satisfy 4N(%) ≤ 5X1/3 and (9.5) is not
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greater than

2
∑

0<a≤3X1/6

∑

s|2a

∑

m≤5X1/3−a2

r3(ms2)

� 3X1/6 · (6X1/6)ε · 5X1/3 · (5X1/3 · (6X1/6)2)1/2+ε � X5/6+ε.

This finishes the proof of (9.3). Note that the total number of all integral
% 6∈ ImH which satisfy 4N(%) ≤ 5X1/3 (and (9.5) anyway) is obviously
� X2/3. Finally, by (7.7) and referring to Section 6, the constant c3 is equal
to

16π
3

0�
π/2

sin3 t

max{|cos(3θ)|, |sin(3θ)|}

×
(
d

dt
((max{|cos(3θ)|, |sin(3θ)|})−1/3 cos t)

)
dt,

so that, with electronic support, it is plain to calculate the numerical value
of c3.

Concerning the distribution of all powers of Cayley integers the situation
is rather simple because the error term of the contribution coming from
the squares dominates the contributions coming from all other powers. By
applying Theorem 3 and [4, Theorem 2] we obtain the following result we
conclude this paper with.

Theorem 5. For positive real X let

P̃(X) := #{p ∈ O | |Re(p)|, |Im(p)| ≤ X ∧ ∃k ∈ N, k ≥ 2,∃q ∈ Γ : p = qk}.
Then, as X →∞,

P̃(X) =
π3

9
X4 − 8π3

105
X7/2 +O(X3).
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