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Semi-invariants of binary forms and
identities for Bernoulli, Euler and Hermite polynomials

by

Leonid Bedratyuk (Khmelnytsky)

1. Introduction. The relationship between the theory of group rep-
resentations and special functions is well known (see [V]). In this paper
we establish a relationship between the classical invariant theory and the
Bernoulli, Euler and Hermite polynomials.

The polynomials of Bernoulli Bn(x), Euler En(x) and Hermite Hn(x),
n = 0, 1, 2, . . . , are defined by the following generating functions:

text

et − 1
=
∞∑
i=0

Bn(x)
tn

n!
,

2ext

et + 1
=
∞∑
i=0

En(x)
tn

n!
, ext−t2/2 =

∞∑
i=0

Hn(x)
tn

n!
.

In particular B0(x) = E0(x) = H0(x) = 1. The numbers Bn := Bn(0) are
called the Bernoulli numbers and the numbers En := En(0) are called the
Euler numbers. These polynomials are special cases of the Appell polyno-
mials A = {An(x)} (see [YY]), where deg(An(x)) = n and the polynomials
satisfy the identity

(1.1) A′n(x) = nAn−1(x), n = 0, 1, 2, . . . .

It is clear that {xn} are also Appell polynomials. Denote by B, E , H the
systems of Bernoulli, Euler and Hermite polynomials, respectively. Also, put
T := {1, x, x2, . . .}.

We are interested in finding all polynomial identities for Appell polyno-
mials, i.e. identities of the form

F (A0(x), A1(x), . . . , An(x)) = 0,

where F is some polynomial of n+ 1 variables.
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First, consider motivating examples. Put

∆(x) :=

∣∣∣∣∣B0(x) B1(x)
B1(x) B2(x)

∣∣∣∣∣ = B0(x)B2(x)−B1(x)2.

Taking into account (1.1) we have

∆(x)′ = (B0(x)B2(x)−B1(x)2)′

= B0(x)′B2(x) +B0(x)B2(x)′ − 2B0(x)B1(x)
= 2B0(x)B1(x)− 2B0(x)B1(x) = 0.

Thus, ∆(x) is a constant, equal to ∆(0). Substituting the corresponding
Bernoulli polynomial, we find this constant and get the identity

B0(x)B2(x)−B1(x)2 = B0B2 −B2
1 = − 1

12
.

Similarly, E0(x)E2(x)− E1(x)2 = −1/4 and H0(x)H2(x)−H1(x)2 = −1.
Consider now the differential operator

D := a0
∂

∂a1
+ 2a1

∂

∂a2
+ · · ·+ nan−1

∂

∂an
,

which acts on polynomials of the variables a0, a1, . . . , an. The action is very
similar to (1.1). Also, it is easy to see that

D

(∣∣∣∣∣a0 a1

a1 a2

∣∣∣∣∣
)

= D(a0a2 − a2
1) = 0.

Consider the polynomial

∆3 :=

∣∣∣∣∣∣∣∣∣∣∣∣

a0 3a1 3a2 a3 0
0 a0 3a1 3a2 a3

3a0 6a1 3a2 0 0
0 3a0 6a1 3a2 0
0 0 3a0 6a1 3a2

∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that ∆3 is, up to a factor, the discriminant of the binary form of
degree 3,

a0X
3 + 3a1X

2Y + 3a2XY
2 + a3Y

3.

By applying the determinant derivative rule we find that D(∆3) equals the
sum of five determinants each of them equal to zero. Thus D(∆3) = 0.
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Similarly, for the determinant

∆3(A) :=

∣∣∣∣∣∣∣∣∣∣∣∣

A0(x) 3A1(x) 3A2(x) A3(x) 0
0 A0(x) 3A1(x) 3A2(x) A3(x)

3A0(x) 6A1(x) 3A2(x) 0 0
0 3A0(x) 6A1(x) 3A2(x) 0
0 0 3A0(x) 6A1(x) 3A2(x)

∣∣∣∣∣∣∣∣∣∣∣∣
we obtain ∆3(A)′ = 0. Therefore, for any Appell polynomials {An(x)} the
identity

∆3(A) = const

holds. By direct calculations we obtain

∆3(B) =
1
16
, ∆3(E) =

27
16
, ∆3(H) = 108.

These examples lead to the hypothesis that if a polynomial S(a0, a1, . . . , an)
satisfies the condition D(S(a0, a1, . . . , an)) = 0, then the polynomial

S(A0(x), A1(x), . . . , An(x))

is a constant, thus it determines an identity between Appell polynomials.
Let now K[a0, a1, . . . , an] and K[x] be the algebras of polynomials over

a field K of characteristic zero. Consider the substitution homomorphism
ϕA : K[a0, a1, . . . , an]→ K[x] defined by ϕA(ai) = Ai(x). Put

ker∗ ϕA := {S ∈ K[a0, a1, . . . , an] | ϕA(S) ∈ K}.

We will prove that any element S(a0, a1, . . . , an) of the subalgebra ker∗ ϕA
yields the identity

S(A) = S(A)0,

where

S(A) := S(A0(x), A1(x), . . . , An(x)),
S(A)0 := S(A0(0), A1(0), . . . , An(0)).

Therefore, the problem of describing all polynomial identities for Appell
polynomials is reduced to that of describing the algebra ker∗ ϕA. It will be
shown that ker∗ ϕA is isomorphic to the algebra of covariants of a binary
form of order n.

This idea can also be applied to find identities for different types of
Appell polynomials. For instance, we have
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B0(x) E0(x) H0(x)
B1(x) E1(x) H1(x)
B2(x) E2(x) H2(x)

∣∣∣∣∣∣∣
= B0(x)E1(x)H2(x)−B0(x)H1(x)E2(x)−B1(x)E0(x)H2(x)

+B1(x)H0(x)E2(x) +B2(x)E0(x)H1(x)−B2(x)H0(x)E1(x) =
1
12
.

The problem of describing all such polynomial identities for different Appell
polynomials is reduced to that of describing the algebra of joint covariants
for several binary forms. The algebra of covariants of a binary form and the
algebra of joint covariants for several binary forms were an object of research
in the classical invariant theory of the 19th century. In particular, efficient
methods of finding elements of those algebras were developed.

We will deal mainly with the algebra of semi-invariants rather than the
algebra of covariants. These algebras are isomorphic, but the former is a
simpler object for computation. The aim of this paper is to bring together
two areas of mathematics—the classical invariant theory and the theory of
special functions. In this paper we give a brief introduction to the theory
of covariants and semi-invariants of a binary form in the language of lo-
cally nilpotent derivations. Based on the classical invariant theory approach
we prove that any identity for Appell polynomials is determined by some
semi-invariant. Also, several types of identities for Appell polynomials are
constructed.

2. Covariants and semi-invariants of binary forms. Let us recall
that a derivation of a ring R is an additive map D satisfying the Leibniz
rule:

D(r1 r2) = D(r1)r2 + r1D(r2) for all r1, r2 ∈ R.
A derivation D of a ring R is called locally nilpotent if for every r ∈ R there
is an n ∈ N such that Dn(r) = 0. The subring

kerD := {f ∈ R | D(f) = 0}
is called the kernel of the derivation D.

Let us consider the algebra of polynomials K[a0, a1, . . . , an] over the field
K of characteristic 0. Define the derivations D, D∗ and E of this algebra by

D(ai) = iai−1, D∗(ai) = (n− i)ai+1, E(ai) = (n− 2i)ai.

Note that D, D∗, E define a representation of the Lie algebra sl2(K).
Consider the derivations D − Y ∂

∂X and D∗ − X ∂
∂Y of the polynomial

algebra K[a0, . . . , an, X, Y ]. It is clear that the intersection

ker
(
D − Y ∂

∂X

)
∩ ker

(
D∗ −X ∂

∂Y

)
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is a subalgebra of K[a0, . . . , an, X, Y ]. Let us recall some concepts of the
classical invariant theory.

Definition 2.1. The homogeneous polynomial

α(X,Y ) := a0X
n + na1X

n−1Y + · · ·+
(
n

i

)
aiX

n−iY i + · · ·+ anY
n(2.1)

is called the generic binary form of order n.

Definition 2.2. The algebra Cn := ker
(
D− Y ∂

∂X

)
∩ ker

(
D∗ −X ∂

∂Y

)
is

called the algebra of covariants of the generic binary form (2.1).
The algebra Sn := ker(D) is called the algebra of semi-invariants of the

generic binary form.
The algebra In := ker(D)∩ ker(D∗) is called the algebra of invariants of

the generic binary form.

The elements of the algebras Cn, Sn, In are called covariants, semi-
invariants and invariants of the binary form (2.1), respectively. The following
obvious inclusions hold: In ⊂ Cn and In ⊂ Sn. It is well known that these
algebras are finitely generated.

Example 2.1. It is easy to check that the generic form α(X,Y ) is itself
a covariant and its leading coefficient a0 (in the ordering X > Y ) is a
semi-invariant. Also, the element a0a2 − a2

1 is an invariant for n = 2.
Let

κ : Cn → Sn

be the K-linear map that takes each homogeneous covariant to its leading
coefficient. In other words, for f(a0, . . . , an, X, Y ) ∈ Cn,

κ(f(a0, a1, . . . , an, X, Y )) = f(a0, a1, . . . , an, 1, 0).

The following theorem holds:

Theorem 2.3 ([R], [O]). The map κ is a homomorphism of algebras.

The inverse map κ−1 : Sn → Cn can be defined as follows:

κ−1(s) =
ord(s)∑
i=0

(D∗)i(s)
i!

Xord(s)−iY i,

where
ord(s) = max{k | (D∗)k(s) 6= 0}.

The natural number ord(s) is called the order of the semi-invariant s. The
degree of a covariant with respect to the variables X,Y is called the order
of the covariant, and its degree in the coefficients of the generic binary form
is called the degree of the covariant.
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Similarly, we can define the algebras of joint covariants, semi-invariants
and invariants of several generic binary forms. Let us consider the following
three generic binary forms of order n:

β(X,Y ) := b0X
n + nb1X

n−1Y + · · ·+
(
m

i

)
biX

n−iY i + · · ·+ bnY
n,

γ(X,Y ) := c0X
n + nc1X

n−1Y + · · ·+
(
m

i

)
ciX

n−iY i + · · ·+ cnY
n,

δ(X,Y ) := d0X
n + nd1X

n−1Y + · · ·+
(
n

i

)
diX

n−iY i + · · ·+ dnY
n.

Extend the derivations D, D∗ to the polynomial algebra

K[a0, . . . , an, b0, . . . , bn, c0, . . . , cn, d0, . . . , dn]

by D(bi) = ibi−1, D∗(bi) = (n − i)bi+1, D(ci) = ici−1, D∗(ci) = (n − i)ci+1

and D(di) = idi−1, D∗(di) = (n− i)di+1.

Then the subalgebra

ker
(
D − Y ∂

∂X

)
∩ ker

(
D∗ −X ∂

∂Y

)
of K[a0, . . . , dn, X, Y ] is called the algebra of joint covariants of the forms
α(X,Y ), β(X,Y ), γ(X,Y ), δ(X,Y ). The algebras of joint semi-invariants
and joint invariants can be defined similarly.

The main computational tool of the classical invariant theory is the
transvectant.

Definition 2.4. The covariant

(f, g)r =
r∑

i=0

(−1)i

(
r

i

)
∂rf

∂Xr−i∂Y i

∂rg

∂Xi∂Y r−i
, r ≤ min(n,m).

is called the rth transvectant of the covariants f and g.

For instance, the transvectants (f, g)1 and (f, f)2 are equal to the Ja-
cobian J(f, g) and the Hessian Hes(f) respectively. If Q is a generic bi-
nary form, then starting from Q one can obtain new covariants by taking
transvectants of covariants already constructed. In this way, one can gen-
erate all covariants. It is well known (see [O]) that each covariant can be
represented by transvectants.

To generate semi-invariants, in [B] we introduced the semi-transvectant
as an analogue of the transvectant.

Definition 2.5. The semi-invariant

[p, q]r := κ((κ−1(p),κ−1(q))r), r ≤ min(ord(p), ord(q)),

is called the rth semi-transvectant of the semi-invariants p, q ∈ K[a0, . . . , an].
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We have

[p, q]r =
r∑

i=0

(−1)i

(
r

i

)
(D∗)i(p)
[ord(p)]i

(D∗)r−i(q)
[ord(q)]r−i

,(2.2)

where [m]i = m(m− 1) . . . (m− (i− 1)) is the falling factorial.
Directly from the definition we get the following properties:

[p, q]0 = pq,

[f, g]k = (−1)k[g, f ]k, so [f, f ]k = 0 if k is odd.

Example 2.2.

[p, q]1 := [p, q] = p
D∗(q)
ord(q)

− q D
∗(p)

ord(p)
, the semi-Jacobian of p and q,

[p, p]2 = 2p
(D∗)2(p)
[ord(p)]2

− 2
D∗(p)

[ord(p)]
D∗(p)

[ord(p)]
, the semi-Hessian of p.

Up to the constant factor 1
72 , the semi-Hessian of the semi-covariant a0

equals
1
2

[a0, a0]2 = a0a2 − a2
1 =

∣∣∣∣∣a0 a1

a1 a2

∣∣∣∣∣ ,
Definition 2.6. A homogeneous polynomial F is called isobaric if it is

an eigenvector of the operator E, i.e. E(F ) = ω(F )F for some ω(F ) ∈ Z.
The eigenvalue ω(F ) is called the weight of F.

Theorem 2.7 ([B]).

(i) ω(ak0
0 a

k1
1 · · · akn

n ) = n(k0 + k1 + · · ·+ kn)− 2(k1 + · · ·+ kn),
(ii) if s is a homogeneous isobaric semi-invariant then ord(s) = ω(s),
(iii) if p, q are homogeneous isobaric semi-invariants then ω([p, q]i) =

ω(p) + ω(q)− 2i.

Throughout this paper a semi-invariant means an isobaric homogeneous
semi-invariant.

Definition 2.8. A semi-invariant S of the generic binary form of order
n is called proper if ∂S/∂an 6= 0.

Problem. Find all irreducible proper semi-invariants of the generic bi-
nary form of order n.

3. The main theorems. The following theorem is crucial for the con-
structions of identities for Appell polynomials.

Theorem 3.1. Let ϕA : K[a0, a1, . . . , an]→ K[x] be the substitution ho-
momorphism

ϕA(ai) = Ai(x).
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Then
ker∗ ϕA = Sn.

Proof. First we shall show that the homomorphism ϕA intertwines D
with the derivative operator d/dx, i.e.

ϕA(D(h(a0, a1, . . . , an))) =
d

dx
(ϕA(h(a0, a1, . . . , an)))

for all h(a0, a1, . . . , an) ∈ K[a0, a1, . . . , an]. The proof is by induction on the
degree of the polynomial h(a0, a1, . . . , an).

First, the statement holds for all polynomials of degree 1:

ϕA(D(ai)) = ϕA(iai−1) = iAi−1(x) =
d

dx
Ai(x) =

d

dx
ϕA(ai).

Assume that it holds for all f ∈ K[a0, a1, . . . , an] with deg(f) ≤ k:

ϕA(D(f)) =
d

dx
ϕA(f).

Then for all i we have

ϕA(D(aif))

= ϕA(D(ai)f) + ϕA(aiD(f)) = ϕA(D(ai))ϕA(f) + ϕA(ai)ϕA(D(f))

=
d

dx
ϕA(ai)ϕA(f) + ϕA(ai)

d

dx
ϕA(f)=

d

dx
(ϕA(ai)ϕA(f))=

d

dx
(ϕA(aif)).

The linearity of the derivations D, d/dx and the linearity of the homo-
morphism ϕA imply that the statement holds for all polynomials of degree
k + 1.

Thus, by induction ϕA intertwines D with the derivative d/dx.
We now show that Sn ⊂ ker∗ ϕA. For h(a0, a1, . . . , an) ∈ Sn we have

d

dx
(h(A0(x), . . . , An(x)))

= DϕA(h(A0(x), . . . , An(x))) = D(h(a0, . . . , an)) = 0.

Therefore, h(A0(x), . . . , An(x)) is a constant as claimed.
Conversely, assume g(A0(x), . . . , An(x)) ∈ K. Then

D(g(a0, . . . , an)) =
d

dx
g(A0(x), . . . , An(x)) = 0.

Thus g(a0, . . . , an) ∈ Sn and Sn = ker∗ ϕA.

So, any semi-invariant S(a0, . . . , an) yields the identity

S(A) = S(A)0

for the sequence of Appell polynomials {An(x)}.
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Example 3.1, Let Γ (a0, a1, a2) = 1
2 [a0, a0]2 be the semi-Hessian. Then

Γ (B) = B0(x)B2(x)−B1(x)2 =
1
6

+ x2 − x−
(
x− 1

2

)2

= − 1
12
,

Γ (E) = E0(x)E2(x)− E1(x)2 = x2 − x−
(
x− 1

2

)2

= −1
4
,

Γ (H) = H0(x)H2(x)−H1(x)2 = −1 + x2 − x2 = −1,
Γ (T ) = 0.

Theorem 3.2. The semi-invariant S(a0, a1, . . . , an) determines the iden-
tity S(1, . . . , 1) = 0.

Proof. It is easy to see that for a homogeneous isobaric polynomial
S(a0, a1, . . . , an) we have

S(T ) = S(1, x, x2, . . . , xn) = xmS(1, 1, . . . , 1)

for some integer m. Therefore, S(T )0 = 0. On the other hand, the identity
S(T ) = S(T )0 implies

xmS(1, . . . , 1) = 0

for all x. Thus S(1, . . . , 1) = 0.

For the algebra of joint semi-invariants one can easily formulate and
prove similar theorems.

4. Identities for a single Appell sequence. To describe identities for
Appell polynomials of the same type let us describe the low degree proper
semi-invariants of the binary form α(X,Y ). The formula (2.2) generates
semi-invariants of degree 2, namely [a0, a0]i, i = 0, . . . , n. Therefore, the
semi-transvectant

[a0, a0]n =
n∑

i=0

(−1)i

(
n

i

)
aian−i

is a proper semi-invariant of degree 2. Denote it by Dvn(a0) and its image
ϕA(Dvn(a0)) by Dvn(A):

Dvn(A) :=
n∑

i=0

(−1)i

(
n

i

)
Ai(x)An−i(x).

It is easy to check that the variable ai can be expressed by a0 as follows:
ai = (D∗)i(a0)/[n]i. So, for simplicity of notation, we write Dvn(a0) instead
of Dvn(a0, a1, . . . , an).

Example 4.1. For the Bernoulli polynomials we have

Dvn(B) =
n∑

i=0

(−1)i

(
n

i

)
Bi(x)Bn−i(x).
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Now

Dvn(B)0 =
n∑

i=0

(−1)i

(
n

i

)
Bi(0)Bn−i(0) =

n∑
i=0

(−1)i

(
n

i

)
BiBn−i.

On the other hand, by direct calculation one can show [S] that
n∑

i=0

(−1)i

(
n

i

)
BiBn−i = (1− n)Bn.

Therefore we obtain an identity for the Bernoulli polynomials,
n∑

i=0

(−1)i

(
n

i

)
Bi(x)Bn−i(x) = (1− n)Bn.

Theorem 3.2 implies the well-known binomial identity
∑n

i=0(−1)i
(
n
i

)
= 0. In [B] we found another proper semi-invariant of degree 2:

Wn(a0) :=
n∑

i=1

(−1)i

(
n

i

)
an−ia

i
1a

n−i−1
0 + (n− 1)(−1)n+1an

1 .

To construct a proper semi-invariant of degree 3 use the semi-Hessian

1
2

[a0, a0]2 =

∣∣∣∣∣a0 a1

a1 a2

∣∣∣∣∣
of the semi-invariant a0. Denote Trn(a0) := [a0,

1
2 [a0, a0]2]n.

Theorem 4.1. For n ≥ 4,

Trn(a0) :=
n∑

i=0

i∑
j=0

(−1)i

[2n− 4]i

(
n

i

)(
i

j

)
an−i

∣∣∣∣∣ [n]jaj [n− 1]i−jai−j+1

[n− 1]jaj+1 [n− 2]i−jai−j+2

∣∣∣∣∣ ,
where [n]i = n(n− 1) . . . (n− (i− 1)).

Proof. Since the semi-Hessian has weight 2n− 4, the semi-transvectant
[a0,

1
2 [a0, a0]2]n has order n + 2n − 4 − 2n = n − 4. Thus it is well-defined

for n ≥ 4. We have
(D∗)i(ak) = [n− k]i ai+k.

By the determinant derivative rule we have

(D∗)i

(∣∣∣∣a0 a1

a1 a2

∣∣∣∣) =
i∑

j=0

(
i

j

) ∣∣∣∣∣(D∗)j(a0) (D∗)i−j(a1)
(D∗)j(a1) (D∗)i−j(a2)

∣∣∣∣∣
=

i∑
j=0

(
i

j

) ∣∣∣∣∣ [n]jaj [n− 1]i−jai−j+1

[n− 1]jaj+1 [n− 2]i−jai−j+2

∣∣∣∣∣ .
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By (3) we get

[a0, [a0, a0]2]n

=
n∑

i=0

(−1)i

[n]n−i[2n− 4]i

(
n

i

)
(D∗)n−i(a0)(D∗)i

(∣∣∣∣a0 a1

a1 a2

∣∣∣∣)

=
n∑

i=0

(−1)i

[2n− 4]i

(
n

i

) i∑
j=0

(
i

j

)
an−i

∣∣∣∣∣ [n]jaj [n− 1]i−jai−j+1

[n− 1]jaj+1 [n− 2]i−jai−j+2

∣∣∣∣∣ .
As above, direct calculation of the nth semi-transvectant (n ≥ 4) of a

two semi-Hessians yields a semi-invariant of degree 4:

Chn(a0) :=
[

1
2

[a0, a0]2,
1
2

[a0, a0]2
]n

=
n∑

i=0

i∑
j=0

n−i∑
k=0

(−1)i
(
n
i

)(
i
j

)(
n−i
k

)
[2n− 4]i[2n− 4]n−i

Ai,j,k,

where

Ai,j,k :=∣∣∣∣∣ [n]kak [n− 1]n−i−kan−i−k+1

[n− 1]kak+1 [n− 2]n−i−kan−i−k+2

∣∣∣∣∣
∣∣∣∣∣ [n]jaj [n− 1]i−jai−j+1

[n− 1]jaj+1 [n− 2]i−jai−j+2

∣∣∣∣∣ .
Now, consider the discriminant and the catalecticant of a binary form.

The discriminant is a well known invariant which can be defined as the
(2n− 1)× (2n− 1) determinant of the Sylvester matrix of the binary form
α(X,Y ):

Discrn(a0) :=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 na1 · · · an 0 · · · · · · 0
0 a0 · · · nan−1 an 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 a0 na1

(
n
2

)
a2 · · · an

na0 (n− 1)na1 . . . nan−1 0 0 · · · 0
0 na0 · · · . . . nan−1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · na0 (n− 1)na1 (n− 2)
(
n
2

)
a2 . . . nan−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The corresponding identities have the form Discrn(A) = Discrn(A)0.



372 L. Bedratyuk

The catalecticant of a binary form of even degree, n = 2k, can be written
as the (k + 1)× (k + 1) determinant

Catn(a0) :=

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · ak

a1 a2 a3 · · · ak+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ak−1 ak ak−1 · · · a2k−1

ak ak+1 ak+2 · · · a2k

∣∣∣∣∣∣∣∣∣∣∣∣
.

The corresponding identities have the form Catn(A) = Catn(A)0.

Example 4.2. Let A = B, n = 3. Simplifying the identity

Discr3(B) = Discr3(B)0,

we obtain

−27B3(x)2B0(x)2 + 162B3(x)B0(x)B1(x)B2(x) + 81B2(x)2B1(x)2

− 108B2(x)3B0(x)− 108B1(x)3B3(x) =
1
16
.

Conjecture. Discrn(H)0 =
∏n

k=1 k
k,Catn(H)0 = (−1)nn!!.

Thus, we get the following five types of identities for Appell polynomials.

Theorem 4.2. Let A = {An(x)} be Appell polynomials. Then the fol-
lowing identities hold:

Dvn(A) = Dvn(A)0,(4.1)
Trn(A) = Trn(A)0,(4.2)
Chn(A) = Chn(A)0,(4.3)

Discrn(A) = Discrn(A)0,(4.4)
Catn(A) = Catn(A)0,(4.5)
Wn(A) = Wn(A)0.(4.6)

By applying Theorem 3.2 to the above identities we derive the corre-
sponding binomial identities, for instance:

n∑
i=0

i∑
j=0

(−1)i

[2n− 4]i

(
n

i

)(
i

j

) ∣∣∣∣∣ [n]j [n− 1]i−j

[n− 1]j [n− 2]i−j

∣∣∣∣∣ = 0,(4.7)

(4.8)
n∑

i=0

i∑
j=0

n−i∑
k=0

(−1)i
(
n
i

)(
i
j

)(
n−i
k

)
[2n− 4]i[2n− 4]n−i

∣∣∣∣∣ [n]k [n− 1]n−i−k

[n− 1]k [n− 2]n−i−k

∣∣∣∣∣
×

∣∣∣∣∣ [n]j [n− 1]i−j

[n− 1]j [n− 2]i−j

∣∣∣∣∣ = 0.



Semi-invariants of binary forms and identities 373

5. Joint identities. Let us find joint proper semi-invariants of the bi-
nary forms α(X,Y ) and β(X,Y ).

First of all we consider the nth semi-transvectant of the semi-invariants
a0 and b0:

Dvn(a0, b0) := [a0, b0]n =
n∑

i=0

(−1)i

(
n

i

)
aibn−i.

Example 5.1. For the Bernoulli and Euler polynomials we have

Dvn(B, E) =
n∑

i=0

(−1)i

(
n

i

)
Bi(x)En−i(x).

By direct calculations we get

Dv1(B, E)0 = 0, Dv2(B, E)0 = −1
3
, Dv3(B, E)0 = 0, Dv4(B, E)0 =

7
15
.

Similarly, the identity

Dvn(B, T ) = Dvn(B, T )0,

implies that Dvn(B, T ) =
∑n

i=0(−1)i
(
n
i

)
Bi(x)xn−i. It follows that

Dvn(B, T )|x=0
= Dvn(B, T )0 = Bn(0) = Bn.

After simplification we get an identity for the Bernoulli polynomials,

Bn(x) =
n−1∑
i=0

(−1)i+1

(
n

i

)
Bi(x)xn−i +Bn.

In the same way we get identities for the Euler and Hermite polynomials:

En(x) =
n−1∑
i=0

(−1)i+1

(
n

i

)
Ei(x)xn−i + En,

Hn(x) =
n−1∑
i=0

(−1)i+1

(
n

i

)
Hi(x)xn−i +Hn(0).

The semi-transvectants [a0, [a0, b0]i]n for 2i ≤ n are proper joint semi-
invariants of degree 3. By direct calculations for i = 1 we get

Trn(a0, b0) := [a0, [a0, b0]1]n =
[
a0,

∣∣∣∣a0 b0

a1 b1

∣∣∣∣]n

=
n∑

i=0

i∑
j=0

(−1)i

[2n− 2]i

(
n

i

)(
i

j

)
an−i

∣∣∣∣∣ [n]jaj [n]i−jbi−j

[n− 1]jaj+1 [n− 1]i−jbi−j+1

∣∣∣∣∣ ,
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and

Trn(a0, b0) := [a0, [a0, b0]2]n = [a0, a0b2 − 2a1b1 + a2b0]n

=
n∑

i=0

i∑
j=0

(−1)i

[2n− 2]i

(
n

i

)(
i

j

)
an−iAi,j ,

where

Ai,j := [n]i[n− 2]i−jaibi−j+2 − 2[n− 1]i[n− 1]i−jai+1bi−j+1

+ [n− 2]i[n]i−jai+2bi−j .

The resultant of two binary forms is a well known joint covariant. The
corresponding semi-invariant sResn(a0, b0) has the form

sResn(a0, b0) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 na1 · · · an 0 · · · · · · 0
0 a0 · · · nan−1 an 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 a0 na1

(
n
2

)
a2 · · · an

b0 nb1 · · · bn 0 · · · · · · 0
0 b0 · · · nbn−1 bn 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 b0 b1
(
n
2

)
b2 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Example 5.2. The semi-resultant of two binary forms of order 2 leads
to the following identity for the Bernoulli and Euler polynomials:

sRes2(B, E) = sRes2(B, E)0.

We expand the determinants to get

B2(x)2E0(x)2 − 2B2(x)E0(x)E2(x)B0(x) + E2(x)2B0(x)2

−4B1(x)B2(x)E1(x)E0(x)−4B1(x)E1(x)E2(x)B0(x)+4E2(x)B1(x)2E0(x)

+ 4B0(x)B2(x)E1
2(x) =

1
36
.

Let us find joint proper semi-invariants of the binary forms α(X,Y ),
β(X,Y ) and γ(X,Y ). Since the semi-Jacobian [b0, c0] has weight 2n−2, the
semi-transvectant [a0, [b0, c0]]n is well-defined. We have

(D∗)i(bk) = [n− k]ibi+k, (D∗)i(ck) = [n− k]ici+k.

Therefore

(D∗)i

(∣∣∣∣b0 c0

b1 c1

∣∣∣∣) =
i∑

j=0

(
i

j

)
[n]j [n− 1]i−j

∣∣∣∣ bj cj

bi−j+1 ci−j+1

∣∣∣∣.
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Thus

[a0, [b0, c0]]n =
n∑

i=0

(−1)i

[n]n−i[2n− 2]i

(
n

i

)
(D∗)n−i(a0)(D∗)i

(∣∣∣∣b0 c0

b1 c1

∣∣∣∣)

=
n∑

i=0

(−1)i

[n]n−i[2n− 2]i

(
n

i

)
[n]n−ian−i

i∑
j=0

(
i

j

)
[n]j [n− 1]i−j

∣∣∣∣ bj cj

bi−j+1 ci−j+1

∣∣∣∣.
This implies

Trn(a0, b0, c0) := [a0, [b0, c0]]n

=
n∑

i=0

i∑
j=0

(−1)i[n]j [n− 1]i−j

[2n− 2]i

(
n

i

)(
i

j

)
an−i

∣∣∣∣ bj cj

bi−j+1 ci−j+1

∣∣∣∣.
Finally, let us find joint proper semi-invariants of the four binary forms
α(X,Y ), β(X,Y ), γ(X,Y ) and δ(X,Y ). It is easy to see that the determi-
nant

∆ :=

∣∣∣∣∣∣∣
b0 c0 d0

b1 c1 d1

b2 c2 d2

∣∣∣∣∣∣∣
is a semi-invariant with weight 3n− 6. Then the semi-transvectant [d0, ∆]n

is well defined for n ≥ 3. As above, we obtain

Chn(a0, b0, c0, d0) := [d0, ∆]n =
n∑

i=0

(−1)i

[3n− 6]i

(
n

i

)
an−i

×
∑

i1+i2+i3=i

i!
i1!i2!i3!

∣∣∣∣∣∣∣
[n]i1bi1 [n]i2ci2 [n]i3di3

[n− 1]i1bi1+1 [n− 1]i2ci2+1 [n− 1]i3di3+1

[n− 2]i1bi1+2 [n− 2]i2ci2+2 [n− 2]i3di3+2

∣∣∣∣∣∣∣ .
Therefore we get the following identities for Appell polynomials of dif-

ferent series A1, A2, A3, A4:

Theorem 5.1.

Dvn(A1,A2) = Dvn(A1,A2)0,(5.1)
Trn(A1,A2) = Trn(A1,A2)0,(5.2)

Trn(A1,A2) = Trn(A1,A2)0,(5.3)
Chn(A1,A2) = Chn(A1,A2)0,(5.4)

sResn(A1,A2) = sResn(A1,A2)0,(5.5)
Trn(A1,A2,A3) = Trn(A1,A2,A3)0,(5.6)

Chn(A1,A2,A3,A4) = Chn(A1,A2,A3,A4)0.(5.7)
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By using Theorem 3.3 we get the binomial identities
n∑

i=0

i∑
j=0

(−1)i

[2n− 2]i

(
n

i

)(
i

j

) ∣∣∣∣∣ [n]j [n]i−j

[n− 1]j [n− 1]i−j

∣∣∣∣∣ = 0,(5.8)

(5.9)
n∑

i=0

i∑
j=0

(−1)i

[2n− 2]i

(
n

i

)(
i

j

)
([n]i[n− 2]i−j − 2[n− 1]i[n− 1]i−j

+ [n− 2]i[n]i−j) = 0,

(5.10)

n∑
i=0

(−1)i

[3n− 6]i

(
n

i

) ∑
i1+i2+i3=i

i!
i1!i2!i3!

∣∣∣∣∣∣∣
[n]i1 [n]i2 [n]i3

[n− 1]i1 [n− 1]i2 [n− 1]i3
[n− 2]i1 [n− 2]i2 [n− 2]i3

∣∣∣∣∣∣∣ = 0.
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