Application of the explicit $a b c$-conjecture to two Diophantine equations

by
N. Saradha (Mumbai)
Dedicated to Professor T. N. Shorey on his 65th birthday

1. Introduction. For any integer $n \geq 1$, we denote by $\omega(n)$ the number of distinct prime factors of n, with $\omega(1)=0$; by $P(n)$ the greatest prime factor of n, with $P(1)=1$; and by $N(n)$ the radical of n, i.e. the product of distinct prime divisors of n, with $N(1)=1$. We consider the equation

$$
\begin{equation*}
n(n+d) \ldots(n+(k-1) d)=b y^{l} \tag{1.1}
\end{equation*}
$$

in positive integers $n, d, y, b, l \geq 2, l$ prime, $k \geq 2$ and $\operatorname{gcd}(n, d)=1$ and $P(b) \leq k$. Several authors have worked on this equation. Finiteness results and complete solutions have been found under various restrictions on the parameters involved. We refer to [8], [7], [11], [14] and [15] for an account of these results and further references. One of the main conjectures on this equation is due to Erdős:

Conjecture 1. Equation (1.1) with $d>1$ implies that k is bounded by an absolute constant.

This conjecture is still open. A stronger conjecture states that solutions exist only when $(k, l) \in\{(3,3),(4,2),(3,2)\}$. In these cases, in fact, there are infinitely many solutions.

Results under the $a b c$-conjecture. It was shown by Shorey [15] that Conjecture 1 is true for $l>3$ under the $a b c$-conjecture. The cases $l=2,3$ also follow from the $a b c$-conjecture for binary forms by an argument due to Granville (see [10]). Further, in 2004, Győry, Hajdu and Saradha [8] have shown that the $a b c$-conjecture implies that 1.1 with $d>1, k \geq 3$, $l>4$ has only finitely many solutions in n, d, k, b, y and l. However, the

2010 Mathematics Subject Classification: Primary 11D61.
Key words and phrases: abc-conjecture, perfect powers in arithmetic progression, exponential Diophantine equations.
bounds are not explicitly given due to the implicit constant involved in the $a b c$-conjecture. In 2004, Baker [1] proposed an explicit version of the $a b c$-conjecture as follows:

Suppose a, b, c are mutually coprime integers such that

$$
a+b=c
$$

Then

$$
\begin{equation*}
\max (|a|,|b|,|c|) \leq \frac{6}{5} N(a b c) \frac{(\log N(a b c))^{\omega(a b c)}}{\omega(a b c)!} \tag{1.2}
\end{equation*}
$$

Note that

$$
\frac{6}{5} \frac{x^{n}}{n!} \leq \frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!}<e^{x} \quad \text { for } x \geq \frac{n+1}{5}
$$

We put $x=\log N(a b c)$ and $n=\omega(a b c)$. Then

$$
n \leq 1.5 \log N(a b c) \leq 1.5 x
$$

Hence we have the following explicit version of the $a b c$-conjecture:

$$
\begin{equation*}
\max (|a|,|b|,|c|) \leq(N(a b c))^{2} \tag{1.3}
\end{equation*}
$$

This version can also be found in Granville and Tucker 6].
We shall apply this explicit version to show
Theorem 1.1. Under the explicit version (1.3) of the abc-conjecture, equation (1.1) with $k \geq 8$ implies that

$$
l \leq 29
$$

Towards Conjecture 1, we have
Theorem 1.2. Under the explicit version (1.3) of the abc-conjecture, equation (1.1) implies that

$$
k \leq \begin{cases}8 & \text { if } l=29 \\ 32 & \text { if } l=19,23 \\ 10^{2} & \text { if } l=17 \\ 10^{7} & \text { if } l=13 \\ e^{e^{280}} & \text { if } l=7,11\end{cases}
$$

When $b=1$, i.e. the case of perfect powers, Győry, Hajdu and Pinter [7] have shown that (1.1) implies that $k \geq 35$ for $l \geq 3$. This is also true for $l=2$ by the result of Hirata-Kohno, Laishram, Shorey and Tijdeman [9]. Thus Theorem 1.2 implies

Corollary 1.3. Under the explicit version (1.3) of the abc-conjecture, equation (1.1) with $b=1$ implies that

$$
l \leq 17
$$

and

$$
k \leq \begin{cases}10^{2} & \text { if } l=17 \\ 10^{7} & \text { if } l=13 \\ e^{e^{280}} & \text { if } l=7,11\end{cases}
$$

The second equation that we will consider is the equation of Goormaghtigh

$$
\begin{equation*}
\frac{x^{m}-1}{x-1}=\frac{y^{n}-1}{y-1} \tag{1.4}
\end{equation*}
$$

in integers $x>1, y>1, m>2, n>2$. We may assume without loss of generality that $x>y$. Then $m<n$. Thus we always consider (1.4) with

$$
x>y>1 \quad \text { and } \quad n>m>2
$$

It is known that this equation has two solutions, viz.,

$$
31=\frac{5^{3}-1}{5-1}=\frac{2^{5}-1}{2-1} \quad \text { and } \quad 8191=\frac{90^{3}-1}{90-1}=\frac{2^{13}-1}{2-1}
$$

It has been conjectured that these are the only solutions of (1.4). A weaker conjecture is

Conjecture 2. Equation (1.4 has only finitely many solutions in x, y, m and n.

This conjecture is still open. It is known that (1.4) has only finitely many solutions if at least two of the variables are fixed. We refer to [16] for more details. It was shown in [15, p. 473] that the abc-conjecture implies Conjecture 2. Here we investigate equation (1.4) under the explicit abcconjecture 1.3).

TheOrem 1.4. Under the explicit version (1.3) of the abc-conjecture, equation (1.4) implies one of the following:

$$
m \leq 6 ; \quad m=7,8 \leq n \leq 19 ; \quad m=8,9 \leq n \leq 11
$$

It has been shown unconditionally that Conjecture 2 holds if x, y are fixed or composed of primes from a given set (see [16]). We show that under the explicit version 1.2 of the $a b c$-conjecture, Conjecture 2 holds with a more relaxed condition. We have

ThEOREM 1.5. Let the explicit version (1.2) of the abc-conjecture hold. Then Conjecture 2 holds for $m \geq 6$ and $\omega(x y(x-1)(y-1)(x-y))$ fixed.

REmark. In the explicit version (1.3) of the $a b c$-conjecture, we lose the arbitrariness of ϵ in the original $a b c$-conjecture. Thus, due to the exponent 2 in (1.3), the values $l=3,5$ in Theorem 1.2 and $3 \leq m \leq 5$ in Theorem 1.5 are not covered.

Unconditional results. In 2002, Shorey and Tijdeman [19] showed that equation (1.1) implies that

$$
k \leq C(l, \omega(d))
$$

where $C(l, \omega(d))$ is an effectively computable number depending only on l and $\omega(d)$. Thus if l and $\omega(d)$ are fixed then Conjecture 1 follows. In 11], Laishram and Shorey explicitly calculated

$$
C(2, \omega(d))=2 \omega(d) 2^{\omega(d)} .
$$

For $l \geq 3$, we have the following result.
Theorem 1.6. Equation (1.1) implies that

$$
k \leq \begin{cases}\max \left(10^{28}, 20 \cdot l^{\omega(d)}\right) & \text { if } l \geq 11, \\ \max \left(10^{50}, 20 \cdot 7^{\omega(d)}\right) & \text { if } l=7, \\ \max \left(10^{3000}, 23 \cdot 5^{\omega(d)}\right) & \text { if } l=5, \\ \max \left(10^{10^{500}}, 16 \cdot(3.005)^{\omega(d)}\right) & \text { if } l=3 .\end{cases}
$$

Suppose $l=7$. Then $20 \cdot l^{\omega(d)} \leq 10^{50}$ for $\omega(d) \leq 59$. Thus we conclude from Theorem 1.6 that

$$
k \leq 10^{50} \quad \text { if } l=7 \text { and } \omega(d) \leq 59 .
$$

This is better than the bound given in Theorem 1.2. Similar results can be obtained for other values of l in Theorem 1.6. The proof of Theorem 1.6 depends mainly on the method of Erdős and repeated application of the box principle, as in Shorey and Tijdeman [19]. Further it relies on the result of Evertse [5] on the number of solutions of an equation of the form $A X^{l}-$ $B Y^{l}=C$ or $C Z$ with some condition on Z. The case $l=3$ also uses the result of Saradha and Shorey [13] that equation (1.1) implies

$$
d>.13 k^{1 / 3} .
$$

As we are interested in making the method explicit, we are not economical with the various constants involved. Thus it is possible to improve the bounds given in Theorem 1.6. The large constants that occur reflect the limitations of the method. In Theorem 1.2, the bounds for k when $l \geq 13$ follow easily from the proof of Theorem 1.1. To get a bound for k when $l \in\{7,11\}$ we use Theorem 1.6. Further we also use a result of Saradha and Shorey [14] that $d \geq 10^{8}$ for $l \geq 7$.
2. Notation and preliminaries. We assume that equation (1.1) holds. For $0 \leq i<k$, we can write

$$
n+i d=a_{i} x_{i}^{l} \quad \text { where } a_{i} \text { is } l \text { th power free and } P\left(a_{i}\right) \leq k
$$

and

$$
n+i d=A_{i} X_{i}^{l} \quad \text { with } P\left(A_{i}\right) \leq k \text { and } \quad \operatorname{gcd}\left(\prod_{p \leq k} p, X_{i}\right)=1
$$

By a result of Shorey and Tijdeman [18, the product $n(n+d) \ldots(n+(k-1) d)$ is divisible by a prime $>k$ except when $(n, d, k)=(2,7,3)$. We shall assume throughout that $(n, d, k) \neq(2,7,3)$. Then

$$
\begin{equation*}
n+(k-1) d>k^{l} \quad \text { and } \quad n+i d>k^{l-1} \quad \text { for } 1 \leq i<k-1 \tag{2.1}
\end{equation*}
$$

Let

$$
S=\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \quad \text { and } \quad S^{\prime}=\left\{A_{i} \mid 0<i<k, A_{i} \leq k^{l-1}\right\}
$$

Then for any $A_{i} \in S^{\prime}$, we have

$$
k^{l-1}<n+i d=A_{i} X_{i}^{l} \leq k^{l-1} X_{i}^{l}
$$

implying that $X_{i}>1$. Then by the definition of X_{i}, we get $X_{i}>k$. Thus

$$
\begin{equation*}
X_{i}>k \quad \text { for } A_{i} \in S^{\prime} \tag{2.2}
\end{equation*}
$$

Further, note that X_{i} 's are coprime to each other since $\operatorname{gcd}(n, d)=1$. Hence there exists an X_{i} with $A_{i} \in S^{\prime}$ such that X_{i} is divisible by a prime $\geq p_{\pi(k)+\left|S^{\prime}\right|}$. By well known estimates for the nth prime p_{n} and the prime counting function $\pi(n)$ (see Lemma 3.1 below) it follows that

$$
\begin{equation*}
n+(k-1) d>\left(k\left(1-\frac{2}{\log k}\right)+\left|S^{\prime}\right|(\log k-2)\right)^{l} \quad \text { for } k \geq 17 \tag{2.3}
\end{equation*}
$$

Fix $1 \leq l^{\prime}<l$. For any tuple $\left(i_{1}, \ldots, i_{l^{\prime}}\right)$ with $0<i_{1} \leq \cdots \leq i_{l^{\prime}}<k$, we call $X_{i_{1}} \ldots X_{i_{l^{\prime}}}$ an X-product and $A_{i_{1}} \ldots A_{i_{l^{\prime}}}$ an A-product. If necessary, we will mention the number l^{\prime} of terms in these products.
3. Some estimates and combinatorial lemmas. We begin with a lemma collecting some estimates from prime number theory. For inequalities (ii)-(v) below we refer to (3.5), (3.13), (3.10) and (3.26) in Rosser and Schoenfeld [12]. For (i) see Dusart [2].

Lemma 3.1.

$$
\begin{equation*}
\pi(n)<\frac{n}{\log n}\left(1+\frac{1.2762}{\log n}\right) \quad \text { for } n>1 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\pi(n)>\frac{n}{\log n} \quad \text { for } n \geq 17 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
p_{n}<n(\log n+\log \log n) \quad \text { for } n \geq 6 \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
p_{n}>n(\log n+\log \log n-3 / 2) \quad \text { for } n \geq 2 \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{p \leq z}\left(1-\frac{1}{p}\right) \leq \frac{e^{-\gamma}}{\log z}\left(1+\frac{1}{2(\log z)^{2}}\right) \tag{v}
\end{equation*}
$$

where γ is the Euler constant.

Lemma 3.2. For $d>3$, we have

$$
\omega(d) \leq \frac{3 \log d}{\log \log d}
$$

Proof. Suppose d is an integer with $l(d)>\log d$, where $l(d)$ is the least prime divisor of d. Then $(l(d))^{\omega(d)} \leq d$, implying

$$
\begin{equation*}
\omega(d) \leq \frac{\log d}{\log l(d)}<\frac{\log d}{\log \log d} \tag{3.1}
\end{equation*}
$$

Hence the conclusion is true in this case. For any d, let us write $d=d_{1} d_{2}$ such that if $p \mid d_{1}$, then $p \leq \log d$, and if $p \mid d_{2}$, then $p>\log d$. So $l\left(d_{2}\right)>$ $\log d \geq \log d_{2}$. Hence by (3.1),

$$
\begin{equation*}
\omega\left(d_{2}\right)<\frac{\log d_{2}}{\log \log d_{2}} \tag{3.2}
\end{equation*}
$$

Also

$$
\begin{equation*}
\omega\left(d_{1}\right) \leq \pi(\log d)<\frac{\log d}{\log \log d}+\frac{1.2762 \log d}{(\log \log d)^{2}}<1.836 \frac{\log d}{\log \log d} \tag{3.3}
\end{equation*}
$$

for $d \geq 100$. Now for $20 \leq d<100, \omega\left(d_{1}\right) \leq 3$, hence the inequality in (3.3) is satisfied. For $3<d<20$, one can check that $\omega\left(d_{1}\right)$ is either 0 or 1 , and again (3.3) is satisfied. Combining (3.1)-(3.3) we get the assertion of the lemma.

In Lemmas 3.3 3.8, below, we assume that equation (1.1) holds.
Lemma 3.3. Let $1 \leq l^{\prime}<l$. Suppose $\left(i_{1}, \ldots, i_{l^{\prime}}\right)$ and $\left(j_{1}, \ldots, j_{l^{\prime}}\right)$ are two distinct tuples with $0<i_{1} \leq \cdots \leq i_{l^{\prime}}<k$ and $0<j_{1} \leq \cdots \leq j_{l^{\prime}}<k$. Assume that

$$
n+(k-1) d>k^{\frac{l^{\prime}+l-l^{\prime}}{l-l^{\prime}}}\left(\max \left(\frac{1}{i_{1}}, \frac{1}{j_{1}}\right)\right)^{\frac{l^{\prime}(l-1)}{l-l^{\prime}}}
$$

Then the corresponding A-products are distinct whenever the respective X products are congruent modulo d.

Proof. Suppose for two distinct tuples $\left(i_{1}, \ldots, i_{l^{\prime}}\right)$ and $\left(j_{1}, \ldots, j_{l^{\prime}}\right)$ we have

$$
A_{i_{1}} \ldots A_{i_{l^{\prime}}}=A_{j_{1}} \ldots A_{j_{l^{\prime}}}
$$

Consider

$$
\Delta=\left(n+i_{1} d\right) \ldots\left(n+i_{l^{\prime}} d\right)-\left(n+j_{1} d\right) \ldots\left(n+j_{l^{\prime}} d\right) .
$$

First we show $\Delta \neq 0$. Suppose not. Then

$$
n+i_{1} d \leq \operatorname{gcd}\left(n+i_{1} d, n+j_{1} d\right) \ldots \operatorname{gcd}\left(n+i_{1} d, n+j_{l^{\prime}} d\right)<k^{l^{\prime}} .
$$

Thus $n+(k-1) d<k\left(n+i_{1} d\right)<k^{l^{\prime}+1} \leq k^{l}$. This contradicts (2.1). Thus $\Delta \neq 0$. We may assume that $\Delta>0$. Now

$$
\begin{align*}
\Delta & =\left(n+i_{1} d\right) \ldots\left(n+i_{l^{\prime}} d\right)-\left(n+j_{1} d\right) \ldots\left(n+j_{l^{\prime}} d\right) \tag{3.4}\\
& \leq(n+(k-1) d)^{l^{\prime}}-n^{l^{\prime}} \\
& =l^{\prime}(k-1) d n^{l^{\prime}-1}+\binom{l^{\prime}}{2}((k-1) d)^{2} n^{l^{\prime}-2}+\binom{l^{\prime}}{3}((k-1) d)^{3} n^{l^{\prime}-3}+\cdots \\
& \leq l^{\prime}(k-1) d\left\{n^{l^{\prime}-1}+\left(l^{\prime}-1\right)(k-1) d n^{l^{\prime}-2}\right. \\
& \left.\quad+\frac{\left(l^{\prime}-1\right)\left(l^{\prime}-2\right)}{2.1}((k-1) d)^{2} n^{l^{\prime}-3}+\cdots\right\} \\
& \leq l^{\prime} k d(n+(k-1) d)^{l^{\prime}-1} .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\Delta & =A_{i_{1}} \ldots A_{i_{l^{\prime}}}\left(X_{i_{1}} \ldots X_{i_{l^{\prime}}}\right)^{l}-A_{j_{1}} \ldots A_{j_{l^{\prime}}}\left(X_{j_{1}} \ldots X_{j_{l^{\prime}}}\right)^{l} \\
& =A_{j_{1}} \ldots A_{j_{l^{\prime}}}\left(X^{l}-Y^{l}\right)
\end{aligned}
$$

where $X=X_{i_{1}} \ldots X_{i_{l^{\prime}}}, Y=X_{j_{1}} \ldots X_{j_{l^{\prime}}}$. Now

$$
\Delta=A_{j_{1}} \ldots A_{j_{l^{\prime}}}(X-Y) \frac{X^{l}-Y^{l}}{X-Y} \neq 0
$$

Hence by assumption, $X-Y \geq d$. Since $j_{1}>0$, we get

$$
\begin{align*}
\Delta & \geq l d A_{j_{1}} \ldots A_{j_{l^{\prime}}} Y^{l-1} \geq l d\left(A_{j_{1}} X_{\left.j_{1}\right)}^{l} \ldots A_{j_{l^{\prime}}} X_{j_{l^{\prime}}}^{l}\right)^{(l-1) / l} \tag{3.5}\\
& \geq l d\left(\frac{j_{1}}{k-1}(n+(k-1) d)\right)^{l^{\prime}(l-1) / l} .
\end{align*}
$$

Thus from (3.4) and (3.5 we get

$$
\left(\frac{j_{1}}{k}(n+(k-1) d)\right)^{l^{\prime}(l-1) / l} \leq \frac{l^{\prime} k}{l}(n+(k-1) d)^{l^{\prime}-1}
$$

i.e.

$$
(n+(k-1) d)^{1-l^{\prime} / l} \leq \frac{l^{\prime}}{l} \frac{k^{\left(l l^{\prime}+l-l^{\prime}\right) / l}}{j_{1}^{\left(l l^{\prime}-l^{\prime}\right) / l}}
$$

which gives

$$
n+(k-1) d \leq \frac{k^{\left(l l^{\prime}+l-l^{\prime}\right) /\left(l-l^{\prime}\right)}}{j_{1}^{\left(l l^{\prime}-l^{\prime}\right) /\left(l-l^{\prime}\right)}}
$$

This contradicts our assumption.
Note that in the above proof we only need that the difference between the respective X-products exceed d. The next two lemmas are based on the arguments of Lemma 8 of [19].

Lemma 3.4. Let T denote a set of h numbers from among the A_{i} 's. For any integer $r>0$ with $2 r<l$, assume that

$$
n+(k-1) d>k^{\frac{2 r l+l-2 r}{l-2 r}}
$$

Suppose T_{r} is the maximal subset of T such that all the $A(r)$-products $A_{i_{1}} \ldots A_{i_{r}}$ with A 's in T are distinct. Then

$$
\gamma_{1} b^{\omega(d)}+\gamma_{2} \geq h-\left|T_{r}\right|
$$

where

$$
\left(\gamma_{1}, \gamma_{2}\right)= \begin{cases}(2,6) & \text { if } l=3 \\ (1,2) & \text { if } l=5 \\ (1,1) & \text { if } l \geq 7\end{cases}
$$

Proof. If $\left|T_{r}\right|=h$ or $h-1$ then the assertion is trivially true. So we shall assume that $\left|T_{r}\right| \leq h-2$. Let $A_{\mu} \in T \backslash T_{r}$. Then there exist $A_{\mu_{2}}, \ldots, A_{\mu_{r}}$ and $A_{\mu_{1}^{\prime}}, \ldots, A_{\mu_{r}^{\prime}}$ in T_{r} such that

$$
A_{\mu} A_{\mu_{2}} \ldots A_{\mu_{r}}=A_{\mu_{1}^{\prime}} \ldots A_{\mu_{r}^{\prime}}
$$

Let $I=\left\{\mu \mid A_{\mu} \in T \backslash T_{r}\right\}$. Consider the map $f: I \rightarrow \mathbb{Z} /(d)$ defined as

$$
f(\mu)=\bar{X}_{\mu} \bar{Y}_{\mu}^{-1}(\bmod d)
$$

where \bar{X}_{μ} and \bar{Y}_{μ} are the $X(r)$-products given by

$$
\bar{X}_{\mu}=X_{\mu} X_{\mu_{2}} \ldots X_{\mu_{r}} \quad \text { and } \quad \bar{Y}_{\mu}=X_{\mu_{1}^{\prime}} \ldots X_{\mu_{r}^{\prime}}
$$

Suppose for some $\mu \neq \nu, \mu, \nu \in I$, we have $f(\mu)=f(\nu)$. Then

$$
\bar{X}_{\mu} \bar{Y}_{\mu}^{-1} \equiv \bar{X}_{\nu} \bar{Y}_{\nu}^{-1}(\bmod d) \quad \text { or } \quad \bar{X}_{\mu} \bar{Y}_{\nu} \equiv \bar{X}_{\nu} \bar{Y}_{\mu}(\bmod d)
$$

Also note that

$$
A_{\mu} A_{\mu_{2}} \ldots A_{\mu_{r}} A_{\nu_{1}^{\prime}} \ldots A_{\nu_{r}^{\prime}}=A_{\mu_{1}^{\prime}} \ldots A_{\mu_{r}^{\prime}} A_{\nu} A_{\nu_{2}} \ldots A_{\nu_{r}}
$$

Then by Lemma 3.3 with $l^{\prime}=2 r$, we get a contradiction. Hence f is 1-1. Further

$$
\left(\bar{X}_{\mu} \bar{Y}_{\mu}^{-1}\right)^{l} \equiv 1(\bmod d)
$$

Thus $\bar{X}_{\mu} \bar{Y}_{\mu}^{-1}$ is a solution of $Z^{l} \equiv 1(\bmod d)$. The number of solutions of this congruence is $\leq \gamma_{1} l^{\omega(d)}+\gamma_{2}$, as shown by Evertse [5]. Thus

$$
\gamma_{1} l^{\omega(d)}+\gamma_{2} \geq|I|=h-\left|T_{r}\right|
$$

Remark. By taking $r=1$ in Lemma 3.4, we see that the number of distinct elements in T, viz., $\left|T_{1}\right|$ satisfies

$$
\begin{equation*}
\left|T_{1}\right| \geq h-\gamma_{1} l^{\omega(d)}-\gamma_{2} \tag{3.6}
\end{equation*}
$$

provided $n+(k-1) d>k^{3+4 /(l-2)}$, which is true for $l \geq 5$. For $l=3$, we have the following lemma.

Lemma 3.5. Let $l=3$ and $k \geq 10^{1000}$. Let

$$
T^{\prime}=\left\{A_{i} \mid A_{i} \in T, i \geq k / 16\right\}
$$

Then

$$
\left|T_{1}\right| \geq h-k / 16-2 l^{\omega(d)}-6
$$

provided there exists a subset $T^{\prime \prime} \subseteq T^{\prime}$ having at least $k / 16$ elements for which $X_{i} \neq 1$.

Proof. By Lemma 3.4 and the proof of Lemma 3.3 we need to satisfy

$$
n+(k-1) d>\left(\frac{2}{3}\right)^{3} \frac{k^{7}}{j^{4}}
$$

We take A_{j} 's in T^{\prime}. Thus the above inequality implies that we need

$$
\begin{equation*}
n+(k-1) d \geq 19420 k^{3} \tag{3.7}
\end{equation*}
$$

Suppose (3.7) is not valid. Then

$$
\begin{equation*}
d \leq 19420 k^{2} \tag{3.8}
\end{equation*}
$$

Further, since $T^{\prime \prime}$ has at least $k / 16$ elements with $X_{i} \neq 1$, we find that

$$
A_{i} \leq 19420
$$

for at least $k / 16$ of the A_{i} 's in T^{\prime}. Hence there are at least $.000003 k$ pairs $\left(A_{i}, A_{j}\right)$ which are equal. Now we follow the argument in [19, pp. 335-336]. Let $\zeta=e^{2 \pi i / 3}$. Then, in $\mathbb{Q}(\zeta)$, we can write

$$
[d / 3]=D_{1} D_{2} D_{3}
$$

with

$$
\begin{equation*}
D_{1}\left|\left[X_{i}-X_{j}\right], \quad D_{2}\right|\left[X_{i}-\zeta X_{j}\right], \quad D_{3} \mid\left[X_{i}-\zeta^{2} X_{j}\right] \tag{3.9}
\end{equation*}
$$

for any pair $\left(A_{i}, A_{j}\right)$. There are at most $3^{\omega(d)}$ ways of writing $[d / 3]$ as above. By Lemma 3.2, 3.8) and $k \geq 10^{1000}$, we see that $3^{\omega(d)} \leq k^{9}$. The total number of such pairs which is at least $.000003 k$ exceeds k^{9}. Hence there are two pairs $\left(A_{i}, A_{j_{1}}\right),\left(A_{i}, A_{j_{2}}\right)$ such that (3.9) holds with $j=j_{1}$ and j_{2}. This leads to

$$
\left|X_{j_{1}}-X_{j_{2}}\right|>d / 3
$$

On the other hand, since $A_{j_{1}}=A_{j_{2}}$, we get

$$
\left(j_{1}-j_{2}\right) d \geq A_{j_{1}}\left(X_{j_{1}}-X_{j_{2}}\right) X_{j_{1}}^{2}
$$

implying $k \geq\left(n+j_{1} d\right)^{2 / 3} \geq k^{4 / 3}$, a contradiction.
Let $S_{1}=\left\{A_{1}, \ldots, A_{k-1}\right\}$. For every $p \leq k$, we remove an element, say $A_{i_{p}}$, in which p appears to the maximum power. Let S_{2} be the set of remaining A_{i} 's. Thus there are at least $k-1-\pi(k) A_{i}$'s in S_{2}. Further

$$
\begin{equation*}
\prod_{A_{i} \in S_{2}} A_{i} \mid(k-1)! \tag{3.10}
\end{equation*}
$$

Let

$$
S_{3}=\left\{A_{i} \in S_{2} \mid A_{i} \leq \alpha k\right\} \quad \text { with some } \alpha>1
$$

Assume that S_{3} has at most βk elements with $\beta<1$. Thus there are at least $k-1-\pi(k)-\beta k \quad A_{i}$'s in S_{2} which exceed αk. From (3.10) we get

$$
\begin{align*}
& (\alpha k+1) \ldots(\alpha k+k-1-\pi(k)-[\beta k]) \tag{3.11}\\
& \quad \leq\left|S_{3}\right|!(\alpha k+1) \ldots(\alpha k+k-1-\pi(k)-[\beta k]) \leq(k-1)!
\end{align*}
$$

which implies

$$
\left|S_{3}\right|!(\alpha k)^{k-1-\pi(k)-\left|S_{3}\right|}\left(1+\frac{1}{\alpha k}\right) \ldots\left(1+\frac{k-1-\pi(k)-\beta k}{\alpha k}\right) \leq(k-1)!.
$$

Using Stirling's formula $n!>n^{n} e^{-n}$ and $n!<n^{n+1 / 2} e^{-n}(2 \pi)^{1 / 2}$ and the fact that $(y / x)^{y}$ is a decreasing function of y whenever $y / x<1 / e$, we find that

$$
\begin{aligned}
\left(\frac{\beta k}{e \alpha k}\right)^{\beta k}(\alpha k)^{k-1-\pi(k)}\left(1+\frac{1}{\alpha k}\right) & \cdots \\
\leq & \left(1+\frac{k-1-\pi(k)-\beta k}{\alpha k}\right) \\
& \leq(k-1)!\leq k^{k-1 / 2} e^{-k+1}(2 \pi)^{1 / 2}
\end{aligned}
$$

This gives

$$
\begin{align*}
& \beta^{\beta} e^{1-\beta-1 / k} \alpha^{1-\beta-1 / k-\pi(k) / k}\left(\left(1+\frac{1}{\alpha k}\right) \ldots(\right.\left.\left.+\frac{k-1-\pi(k)-\beta k}{\alpha k}\right)\right)^{1 / k} \tag{3.12}\\
& \leq k^{1 / 2 k+\pi(k) / k}(2 \pi)^{1 / 2 k}
\end{align*}
$$

This also implies that

$$
\begin{equation*}
\beta^{\beta} e^{1-\beta-1 / k} \alpha^{1-\beta-1 / k-\pi(k) / k} \leq k^{1 / 2 k+\pi(k) / k}(2 \pi)^{1 / 2 k} \tag{3.13}
\end{equation*}
$$

Lemma 3.6. Let $k \geq 33$. Then there exists a subset $S_{4} \subseteq S_{1}$ having at least $\frac{1}{4} k$ elements with $A_{i} \leq 8.5 k$.

Proof. In the previous discussion, we take $\alpha=8.5$ and $\beta=1 / 4$. We use the upper bound for $\pi(n)$ from Lemma 3.1(i) in 3.13) to conclude that $k \leq 80$. Now we check that (3.11) is not satisfied for $33 \leq k \leq 80$ with exact value of $\pi(k)$. This gives the assertion of the lemma.

Lemma 3.7. Let $14 \leq k \leq 32$. Then there exist at least three A_{i} 's with $A_{i} \leq 8.5 k, i>0$.

Proof. Suppose there are only at most two A_{i} 's with $A_{i} \leq 8.5 k$. Then we apply (3.11) with $\alpha=8.5, \beta=2 / k$ to get a contradiction.

Lemma 3.8. Let $8 \leq k \leq 13$. Then there exist at least three A_{i} 's with

$$
A_{i} \leq C= \begin{cases}120 & \text { if } 9 \leq k \leq 13 \\ 420 & \text { if } k=8\end{cases}
$$

Proof. For a given k, we count the A_{i} 's with $i>0$ which are divisible only by $2,3,5$ and 7 at most to the powers a, b, c and d, respectively, where

$$
(a, b, c, d)= \begin{cases}(3,1,1,0) & \text { for } 9 \leq k \leq 13 \\ (2,1,1,1) & \text { for } k=8\end{cases}
$$

For these choices of (a, b, c, d), we get at least three A_{i} 's which are bounded by $2^{a} 3^{b} 5^{c} 7^{d}$. This proves the result.

4. Proofs of the theorems

Proof of Theorem 1.6. Let $l>3$ and $k \geq 10^{20}$. We may assume that

$$
\begin{equation*}
l^{\omega(d)} \leq k / 16 \tag{4.1}
\end{equation*}
$$

Let $k \geq 33$. By Lemma 3.6, there exists a subset $S_{4} \subseteq S_{1}$ having at least $\frac{1}{4} k$ elements with $A_{i} \leq 8.5 k$. Let $T \subseteq S_{4}$ be a set having h elements. We shall specify T later. Let T_{1} be the set of distinct elements of T, and T_{2} the maximal subset of T_{1} such that all the products $A_{i} A_{j}$ with $A_{i}, A_{j} \in T_{1}$ are distinct. Then by (3.6) and (4.1) we have

$$
\begin{equation*}
\left|T_{1}\right| \geq h-k / 16-2 \tag{4.2}
\end{equation*}
$$

Further by Lemma 3.4,

$$
\begin{equation*}
l^{\omega(d)} \geq\left|T_{1}\right|-\left|T_{2}\right|-2 \tag{4.3}
\end{equation*}
$$

provided

$$
\begin{equation*}
n+(k-1) d>k^{(5 l-4) /(l-4)} . \tag{4.4}
\end{equation*}
$$

It is known by a result of Erdős [4] (see also Shorey and Tijdeman [17] for a neat proof) that

$$
\left|T_{2}\right| \leq \pi(8.5 k)+(8.5 k)^{7 / 8}+(8.5 k)^{3 / 4}+(8.5 k)^{1 / 2}
$$

Thus

$$
\begin{equation*}
l^{\omega(d)} \geq\left|T_{1}\right|-\pi(8.5 k)-(8.5 k)^{7 / 8}-(8.5 k)^{3 / 4}-(8.5 k)^{1.2}-2 \tag{4.5}
\end{equation*}
$$

provided (4.4) holds.
Let $l \geq 11$. Then we see that (4.4) holds by (2.1). We take $T=S_{4}$ as given in Lemma 3.6. Then $\left|T_{1}\right| \geq 3 k / 16-2$ by 4.2 and using 4.5 we get

$$
\begin{equation*}
l^{\omega(d)} \geq .05 k \tag{4.6}
\end{equation*}
$$

for $k \geq 10^{28}$. Thus $k \leq 20 \cdot l^{\omega(d)}$, which gives the assertion.
Next we consider $l=7$. Let

$$
S_{5}=\left\{A_{i} \in S_{4} \mid i \geq k / 16\right\}
$$

and take $T=S_{5}$. By 4.2 , Lemma 3.4 and the proof of Lemma 3.3, we have

$$
\begin{equation*}
l^{\omega(d)} \geq\left|S_{5}\right|-\left|T_{2}\right|-2 \geq\left|T_{1}\right|-\left|T_{2}\right|-k / 16-2 \geq k / 8-\left|T_{2}\right|-4 \tag{4.7}
\end{equation*}
$$

provided

$$
n+(k-1) d>k^{31 / 3}(16 / k)^{8}=16^{8} k^{7 / 3}
$$

which is satisfied by (2.1). Thus from (4.7) we get

$$
l^{\omega(d)} \geq \frac{1}{8} k-\pi(8.5 k)-(8.5 k)^{7 / 8}-(8.5 k)^{3 / 4}-(8.5 k)^{1 / 2}-4 \geq .05 k
$$

for $k \geq 10^{50}$. Thus $k \leq 20 \cdot l^{\omega(d)}$, which gives the assertion.
Now we consider $l=5$. Define

$$
S_{6}=\left\{A_{i} \in S_{4} \left\lvert\, i \geq \frac{9}{64} k\right.\right\}
$$

and take $T=S_{6}$. As in the case $l=7$, we have

$$
l^{\omega(d)} \geq\left|S_{6}\right|-\left|T_{2}\right|-2
$$

provided

$$
\begin{equation*}
n+(k-1) d>k^{21}\left(\frac{64}{9 k}\right)^{16}=k^{5}\left(\frac{64}{9}\right)^{16} \tag{4.8}
\end{equation*}
$$

Let $k>10^{3000}$. From (2.3), since $\left|S^{\prime}\right|>\left|S_{6}\right|$, we get

$$
n+(k-1) d>\left(\frac{3}{64}(.99) k \log k\right)^{5}
$$

Thus (4.8) is satisfied if

$$
(\log k)^{5}>\left(\frac{64}{9}\right)^{16}\left(\frac{64}{3}\right)^{5}(1.0003)^{5}
$$

Then we find as in the case of $l=7$ that $k \leq 23 \cdot l^{\omega(d)}$, which gives the assertion. This completes the proof of Theorem 1.6 for $l \geq 5$.

Lastly, we take up the case $l=3$. Let $k \geq 10^{1000}$. We take $T=S_{5}$. Since X_{i} 's exceed 1 for all A_{i} 's in S_{5}, we apply Lemma 3.5 and assume 4.1) to get

$$
\left|T_{1}\right| \geq k / 16-6
$$

We split the proof into two lemmas. The first is based on the method of Erdős 3].

Lemma 4.1. Let $0<\theta<1$. Let b_{1}, \ldots, b_{s} be integers in $\left(k /(\log k)^{\theta}, 8.5 k\right]$ such that every proper divisor of b_{i} is $\leq k /(\log k)^{\theta}$. Then there exists an equation

$$
N X^{l}-M Y^{l}=L d
$$

with $N, M, L \leq 8.5(\log k)^{\theta}$ having at least $h /\left(2(8.5)^{2}(\log k)^{3 \theta}\right)$ solutions (X, Y) where $h=k / 16-k /(\log k)^{\theta}-s-6$.

Proof. Note that all integers in the interval $\left(k /(\log k)^{\theta}, 8.5 k\right]$ of the form p^{α} with p prime and α minimal belong to the set of b_{i} 's. Suppose an integer
n in $\left(k /(\log k)^{\theta}, 8.5 k\right]$ is not divisible by any of the b_{i}. Then n is a product of at least two distinct primes exceeding $k /(\log k)^{\theta}$, implying that

$$
8.5 k \geq n>k^{2} /(\log k)^{2 \theta}
$$

which gives $k \leq 4$. Hence every integer in $\left(k /(\log k)^{\theta}, 8.5 k\right]$, is divisible by some b_{i}. Let S_{7} be the set of A_{i} 's in this interval. We observe that among these A_{i} 's there can be at most s such that if some b_{i} divides an A_{i}, it does not divide any other A_{j}. After removing these A_{i} 's, we are left with a set $S_{8} \subseteq S_{7}$ of A_{i} 's such that

$$
\begin{equation*}
\left|S_{8}\right| \geq\left|T_{1}\right|-\frac{k}{(\log k)^{\theta}}-s \geq \frac{k}{16}-\frac{k}{(\log k)^{\theta}}-s-6 \tag{4.9}
\end{equation*}
$$

and there are at least $\left|S_{8}\right| / 2$ pairs $\left(A_{i}, A_{j}\right)$ such that $D_{i, j}=\operatorname{gcd}\left(A_{i}, A_{j}\right)>$ $k /(\log k)^{\theta}$. For each pair $\left(A_{i}, A_{j}\right)$ we have the equality

$$
A_{i}^{\prime} X_{i}^{l}-A_{j}^{\prime} X_{j}^{l}=D_{i, j}^{\prime} d
$$

where

$$
A_{i}^{\prime}=\frac{A_{i}}{D_{i, j}}, \quad A_{j}^{\prime}=\frac{A_{j}}{D_{i, j}}, \quad D_{i, j}^{\prime}=\frac{i-j}{D_{i, j}}
$$

Hence $A_{i}^{\prime}, A_{j}^{\prime}, D_{i, j}^{\prime}$ are all bounded by $8.5(\log k)^{\theta}$. Thus the distinct pairs $\left(X_{i}, X_{j}\right)$, which are $\left|S_{8}\right| / 2$ in number, satisfy the Thue equations $A_{i}^{\prime} X^{l}-$ $A_{j}^{\prime} Y^{l}=D_{i, j}^{\prime} d$. The number of such equations is at most $(8.5)^{2}(\log k)^{3 \theta}$. Hence there must be an equation

$$
N X^{l}-M Y^{l}=D d
$$

with N, M, D not exceeding $8.5(\log k)^{\theta}$ having at least

$$
\frac{\left|S_{8}\right|}{2(8.5)^{2}(\log k)^{3 \theta}}
$$

solutions. Now the assertion follows from 4.9).
In the next lemma we bound s.
LEMMA 4.2. Let $k \geq 10^{10^{500}}$ and $1 / 4 \leq \theta<1$. Let b_{1}, \ldots, b_{s} be integers as in Lemma 4.1. Then

$$
s \leq 60 \frac{k}{\log \log k}
$$

Proof. Suppose some $b_{i}>k /(\log k)^{\theta / 2}$. Then all its proper divisors are $>(\log k)^{\theta / 2}$. By Brun's sieve, the number of such b_{i} 's is

$$
\leq 8.5 k \prod_{p \leq(\log k)^{\theta / 2}}(1-1 / p)+2^{\pi\left((\log k)^{\theta / 2}\right)}
$$

Now we apply estimates (i) and (v) from Lemma 3.1 to get the assertion.

Concluding the proof of Theorem 1.6 for $l=3$. Let $k \geq 10^{10^{500}}$ and $\theta=1 / 4$. Combining Lemmas 4.1 and 4.2 shows that there exists an equation

$$
N X^{l}-M Y^{l}=D d
$$

with N, M, D not exceeding $8.5(\log k)^{\theta}$ having at least

$$
\frac{\frac{k}{16}-\frac{k}{(\log k)^{\theta}}-\frac{60 k}{\log \log k}-6}{2(8.5)^{2}(\log k)^{3 \theta}}
$$

solutions. But by Corollary 1(ii) of Evertse [5] such an equation has at most $4 \cdot 3^{\omega(d)}+3$ solutions provided $D \leq d^{1 / 5}$. From Saradha and Shorey [13], we find that

$$
d>.13 k^{1 / 3} .
$$

Since $D \leq 8.5(\log k)^{1 / 4}$, we see that $D \leq d^{1 / 5}$. Thus we have

$$
4 \cdot 3^{\omega(d)}+3 \geq k\left\{\frac{\frac{1}{16}-\frac{1}{(\log k)^{1 / 4}}-\frac{60}{\log \log k}-\frac{6}{k}}{2(8.5)^{2}(\log k)^{3 / 4}}\right\} .
$$

We check that the term in the curly bracket above is $>k^{-1 / 1001}$ for $k \geq$ $10^{10^{500}}$. Thus we find that

$$
3^{\omega(d)} \geq k^{1-1 / 1000}
$$

From this and our assumption (4.1) we get the assertion of the theorem.
Proof of Theorem 1.1. Let $0<f<g<h<k$ be any three indices. Then we have the identity

$$
\begin{equation*}
(g-f) A_{h} X_{h}^{l}+(h-g) A_{f} X_{f}^{l}=(h-f) A_{g} X_{g}^{l} . \tag{4.10}
\end{equation*}
$$

Let G be the gcd of $(g-f) A_{h} X_{h}^{l},(h-g) A_{f} X_{f}^{l}$ and $(h-f) A_{g} X_{g}^{l}$. We know that X_{f}, X_{g}, X_{h} are coprime to each other. Hence

$$
G\left|(g-f) A_{h}, \quad G\right|(h-g) A_{f}, \quad G \mid(h-f) A_{g} .
$$

Let $G=g_{1} g_{2}$ with $g_{1} \mid(g-f)$ and $g_{2} \mid A_{h}$. We write $g_{2}=g_{2}^{(1)} g_{2}^{(2)}$ with $g_{2}^{(1)} \mid(h-g)$ and $g_{2}^{(2)} \mid A_{f}$. Thus $g_{2}^{(2)}$ divides both A_{f} and A_{h}, and hence $g_{2}^{(2)} \mid(h-f)$. Thus

$$
\begin{equation*}
G=g_{1} g_{2}^{(1)} g_{2}^{(2)} \leq(g-f)(h-g)(h-f) \tag{4.11}
\end{equation*}
$$

We divide 4.10) by G and put

$$
a=\frac{(g-f) A_{h} X_{h}^{l}}{G}, \quad b=\frac{(h-g) A_{f} X_{f}^{l}}{G}, \quad c=\frac{(h-f) A_{g} X_{g}^{l}}{G} .
$$

Note that by 4.10),

$$
\begin{equation*}
\overline{X_{h}^{l}} \leq(h-f) A_{g} X_{g}^{l}, \quad X_{f}^{l} \leq(h-f) A_{g} X_{g}^{l} \tag{4.12}
\end{equation*}
$$

Thus

$$
N(a b c) \leq N((g-f)(h-g))(h-f)^{1+2 / l} A_{f} A_{h} A_{g}^{1+2 / l} X_{g}^{3} .
$$

Hence, by (1.3), we get

$$
(h-f) \frac{A_{g} X_{g}^{l}}{G} \leq(N((g-f)(h-g)))^{2}(h-f)^{2+4 / l} A_{f}^{2} A_{h}^{2} A_{g}^{2+4 / l} X_{g}^{6} .
$$

Thus, using (4.11), we get

$$
\begin{equation*}
X_{g}^{l-6} \leq(g-f)(h-g)(h-f)^{2+4 / l}(N((g-f)(h-g)))^{2} A_{f}^{2} A_{h}^{2} A_{g}^{1+4 / l} . \tag{4.13}
\end{equation*}
$$

Case 1: $k \geq 33$. We divide the interval $[0, k)$ into $[k / 8]$ equal subintervals. If each subinterval contains only at most two indices i, j with $A_{i}, A_{j} \in S_{4}$, then S_{4} has at most $k / 4$ elements. This contradicts Lemma 3.6 . Hence there exists a subinterval containing at least three indices $0<f<$ $g<h<k$ such that A_{f}, A_{g}, A_{h} are in S_{4} and $h-f \leq 9$. Also note that $X_{f}, X_{g}, X_{h}>1$ since $S_{4} \subseteq S^{\prime}$. Hence by (2.2), $X_{f}, X_{g}, X_{h}>k$. Further since $h-f \leq 9$, we have

$$
(g-f)(h-g) \leq 20 \quad \text { and } \quad N((g-f)(h-g)) \leq 15 .
$$

Thus from (4.13) we get

$$
\begin{equation*}
k^{l-6} \leq X_{g}^{l-6} \leq 2 \cdot 10^{11} k^{5+4 / l}, \tag{4.14}
\end{equation*}
$$

implying that

$$
(l-11-4 / l) \log k \leq \log \left(2 \cdot 10^{11}\right) \leq 26.03 .
$$

Thus we get

$$
\begin{equation*}
l \leq 17 . \tag{4.15}
\end{equation*}
$$

Further for $l=13$ and 17 , we also have $k \leq 10^{7}$ and 10^{2}, respectively.
CASE 2: $14 \leq k \leq 32$. In this case by Lemma 3.7, we have three indices $0<f<g<h<k$ such that $A_{f}, A_{g}, A_{h} \leq 8.5 k$. We apply 4.13) to get

$$
k^{l-6} \leq(8.5)^{5+4 / l} k^{13+8 / l}
$$

which implies that

$$
(l-19-5 / l) \log k \leq(5+4 / l) \log 8.5
$$

This is not valid for any $l \geq 29$. Thus in this case we get

$$
\begin{equation*}
l \leq 23 \tag{4.16}
\end{equation*}
$$

Case $3: 8 \leq k \leq 13$. We apply Lemma 3.8 to 4.13). We get

$$
k^{l-6} \leq C^{5+4 / l} k^{8+4 / l},
$$

which implies that $l \leq 23$ if $k \geq 9$ and $l \leq 29$ if $k=8$. Thus Theorem 1.1 follows from (4.15) and 4.16).

Proof of Theorem 1.2. From the proof of Theorem 1.1, it is clear that

$$
k \leq 8 \quad \text { if } l=29, \quad k \leq 32 \quad \text { if } l=19,23 .
$$

These bounds together with the bounds for $l=13,17$ in Case 1 prove Theorem 1.2 for $l \geq 13$. We shall now derive a bound for k when $l=7,11$. In this case we may assume that $k>34$. So we are in Case 1 of the proof of Theorem 1.1. From (4.14) we get

$$
X_{g}^{l-6} \leq 2 \cdot 10^{11} k^{5+4 / l} .
$$

Thus

$$
A_{g} X_{g}^{l} \leq 8.5 k\left(2 \cdot 10^{11} k^{5+4 / l}\right)^{\frac{l}{l-6}} \leq 8.5 \cdot 2^{\frac{l}{l-6}} 10^{\frac{11 l}{l-6}} k^{\frac{6 l-2}{l-6}} .
$$

This implies that

$$
\begin{equation*}
d \leq n+d \leq A_{g} X_{g}^{l} \leq 8.5 \cdot 2^{\frac{l}{l-6}} 10^{\frac{11 l}{l-6}} k^{\frac{6 l-2}{l-6}} . \tag{4.17}
\end{equation*}
$$

We combine Lemma 3.2 and Theorem 1.6 to give a bound for k in terms of l. We state it as a lemma.

Lemma 4.3. Let $l \geq 7$. Suppose $d \leq k^{\delta}$ with $\delta>1$. Then

$$
k \leq l^{4^{4 \delta}} .
$$

Proof. Let $k \geq 10^{50}$. By Theorem 1.6, we have $k \leq 20 l^{\omega(d)}$. Consequently, $\omega(d) \geq 13$ and

$$
\begin{aligned}
\log d & \leq \delta \log k \leq \delta(\log 20+\omega(d) \log l) \\
& \leq \frac{\delta \log d}{\log \log d}(\log l)\left(3+\frac{(\log 20)(\log \log d)}{\log d}\right) .
\end{aligned}
$$

by Lemma3.3. By the result of [14], we may assume that $d \geq 10^{8}$ for $l \geq 7$. Hence from the above inequality we get

$$
\log \log d \leq 3.48 \delta \log l, \quad \text { implying } \quad \log d \leq l^{3.48 \delta} .
$$

Thus

$$
\begin{aligned}
\log k & \leq \log 20+\omega(d) \log l=(\omega(d) \log l)\left(1+\frac{\log 20}{\omega(d) \log l}\right) \\
& \leq 1.2 \omega(d) \log l \leq 1.2 \log d \cdot \log l \leq 1.2 l^{3.488} \log l .
\end{aligned}
$$

Hence

$$
k \leq l^{1.2 l^{3.48 \delta}} \leq l^{l^{4 \delta}} .
$$

Note that this estimate also holds when $k<10^{11}$. Thus $k \leq l^{l^{4 \delta}}$ always.
Continuation of the proof of Theorem 1.2. Let $l=7,11$. Let $k \geq 10^{120}$. From (4.17), we get

$$
d \leq \begin{cases}k^{41} & \text { if } l=7 \\ k^{14} & \text { if } l=11\end{cases}
$$

We apply Lemma 4.3 with $\delta=41,14$ for $l=7,11$, respectively, to get

$$
k \leq \begin{cases}7^{7^{164}} & \text { if } l=7 \\ 11^{11^{56}} & \text { if } l=11\end{cases}
$$

This proves the assertion of the theorem.
Proof of Theorem 1.4. From (1.4) we see that $x^{m-1}<2 y^{n-1}$, implying

$$
\begin{equation*}
x<2^{\frac{1}{m-1}} y^{\frac{n-1}{m-1}} . \tag{4.18}
\end{equation*}
$$

Further

$$
\begin{equation*}
y^{n}(x-1)=x^{m}(y-1)+(x-y) \tag{4.19}
\end{equation*}
$$

Let $G=\operatorname{gcd}\left(y^{n}(x-1), x^{m}(y-1), x-y\right)$. Then $G \leq x-y<x$. Take

$$
a=x^{m}(y-1) / G, \quad b=(x-y) / G, \quad c=y^{n}(x-1) / G
$$

Applying (1.3), we get

$$
y^{n}(x-1) / G \leq(x y(x-1)(y-1)(x-y) / G)^{2}
$$

which by 4.18) gives

$$
y^{n-4} \leq 2^{5 /(m-1)} y^{5(n-1) /(m-1)}
$$

Thus

$$
y^{m n-4 m-6 n+9} \leq 2^{5}
$$

Hence we derive that $m \leq 9$. Further we have the following possibilities:
(i) $m=9: n=10$ and $y=2,3$,
(ii) $m=8: n=14, y=2 ; n=13, y \leq 32 ; n=12, y \leq 32$,
(iii) $m=8: n \leq 11$,
(iv) $m=7: n \leq 19$,
(v) $m \leq 6$.

The first two possibilities are excluded by a direct verification of 1.4. The possibilities (iii)-(v) give the assertion of the theorem.

Proof of Theorem 1.5. We may assume that y is large and $m>6$. Further let $\omega(x y(x-1)(y-1)(x-y))$ be bounded by, say, h. Applying 1.2 we get

$$
\left.\frac{y^{n}(x-1)}{G} \leq \frac{6}{5}(x y(x-1)(y-1)(x-y)) / G\right)\left(\log \left(x^{3} y^{2}\right)\right)^{h} / h!
$$

which implies that

$$
y^{n} \ll y^{\frac{2 m+2 n-4}{m-1}}\left(\frac{3 n+2 m}{m-1} \log y\right)^{h}
$$

or

$$
y^{\frac{n(m-5)}{m-1}} \ll{ }_{h} n^{h}(\log y)^{h}
$$

giving

$$
y^{\frac{n(m-6)}{m-1}}<_{h}(\log y)^{h} .
$$

Thus y and n are bounded for $m>6$, showing also that x and m are bounded. This proves Theorem 1.5 .

Acknowledgements. This work was completed during the author's visit to Max Planck Institute for Mathematics, Bonn in September-November, 2010. She wishes to thank the institute for the invitation and kind hospitality.

References

[1] A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65 (2004), 253260.
[2] P. Dusart, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 53-59.
[3] P. Erdős, Note on the product of consecutive integers (I), (II), J. London Math. Soc. 14 (1939), 194-198 and 245-249.
[4] -, On the product of consecutive integers (III), Indag. Math. 17 (1955), 85-90.
[5] J. H. Evertse, On the equation $a x^{n}-b y^{n}=c$, Compos. Math. 47 (1982), 289-315.
[6] A. Granville and Th. J. Tucker, It's as easy as abc, Notices Amer. Math. Soc. 49 (2002), 1224-1231.
[7] K. Győry, L. Hajdu and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math. 145 (2009), 845-864.
[8] K. Győry, L. Hajdu and N. Saradha, On the Diophantine equation $n(n+d) \ldots$ $(n+(k-1) d)=d y^{l}$, Canad. Math. Bull. 47 (2004), 373-388.
[9] N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman, An extension of a theorem of Euler, Acta Arith. 129 (2007), 71-102.
[10] S. Laishram, Topics in Diophantine equations, M.Sc. thesis, Tata Inst. Fund. Res., 2004.
[11] S. Laishram and T. N. Shorey, The equation $n(n+d) \ldots(n+(k-1) d)=b y^{2}$ with $w(d) \leq 6$ or $d \leq 10^{10}$, Acta Arith. 129 (2007), 249-305.
[12] B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[13] N. Saradha and T. N. Shorey, Almost perfect powers in arithmetic progression, Acta Arith. 99 (2001), 363-388.
[14] —, —, Contributions towards a conjecture of Erdős on perfect powers in arithmetic progression, Compos. Math. 141 (2005), 541-560.
[15] T. N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations, in: Number Theory, R. P. Bambah et al. (eds.), Hindustan Book Agency, 1999, 463-495.
[16] -, An equation of Goormaghtigh and Diophantine approximations, in: Current Trends in Number Theory, S. D. Adhikari et al. (eds.), Hindustan Book Agency, 2002, 185-197.
[17] T. N. Shorey and R. Tijdeman, Some methods of Erdős applied to finite arithmetic progressions, in: The Mathematics of Paul Erdős (R. L. Graham and J. Nešetřil, eds.), Springer, 1997, 251-267.
[18] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression, in: A Tribute to Paul Erdős (A. Baker et al., eds.), Cambridge Univ. Press, 1990, 385-389.
[19] —, 一, Perfect powers in products of terms in an arithmetical progression, Compos. Math. 75 (1990), 307-344.

N. Saradha
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400005, India
E-mail: saradha@math.tifr.res.in

Received on 21.10.2010
and in revised form on 15.4.2011

