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1. Introduction. A sequence C = (Cn)n≥1 is called a divisibility se-
quence if Cm |Cn whenever m |n. For such a sequence C, a prime p is called
a primitive divisor of the term Cn if p divides Cn but does not divide Ck for
any 0 < k < n. Primitive divisors have been studied by many authors. In
1892, Zsigmondy [18] showed that for the sequence Cn = an−bn the term Cn

has a primitive divisor for all n > 6, where a and b are positive coprime inte-
gers. In 1913, Carmichael [2] showed that if n > 12 then the nth term of any
Lucas sequence has a primitive divisor in the case of positive discriminant.
Ward [16] and Durst [4] extended Carmichael’s result to Lehmer sequences.
In 2001, Bilu, Hanrot and Voutier [1] proved that if n > 30 then every
nth Lucas and Lehmer number has a primitive divisor, and listed all Lucas
and Lehmer numbers without a primitive divisor. The results of Zsigmondy,
Carmichael–Ward–Durst and Bilu–Hanrot–Voutier are all best possible (in
the sense that for n = 6, n = 12 and n = 30, respectively, sequences whose
nth element has no primitive divisor do exist).

Let E be an elliptic curve defined over Q and denote by E(Q) the additive
group of all rational points on the curve E. Let P ∈ E(Q) be a point of
infinite order, and for any non-zero integer n write

(1.1) x(nP ) =
An(P )
Bn(P )

,

in lowest terms with An(P ) ∈ Z and Bn(P ) ∈ N. The sequence (Bn(P ))n≥1

is often called an elliptic divisibility sequence in the literature. Strictly
speaking, this is not correct as it is the so-called “division polynomials”
(ψn(P ))n≥1 (where x(nP ) = φn(P )/ψ2

n(P )) which satisfy the required re-
currence relation (see [6, Section 10.1] and [10, Exercise 3.7]).
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Ward [15] first studied the arithmetic properties of elliptic divisibility
sequences. Silverman [11] first showed that for any elliptic curve E/Q in
long Weierstrass form and any point P ∈ E(Q) of infinite order, there exists
a positive integer NE,P such that the term Bn(P ) has a primitive divisor
for all integers n ≥ NE,P . The bound given by Silverman is not explicit and
not uniform. Everest, Mclaren and Ward [5] obtained a uniform and quite
small bound beyond which a primitive divisor is guaranteed for congruent
number curves y2 = x3 − T 2x with T > 0 square-free.

Theorem 1.1 (Everest, Mclaren, Ward [5]). For E : y2 = x3−T 2x with
T > 0 square-free, let P ∈ E(Q) be a point of infinite order. If Bn(P ) does
not have a primitive divisor, then

(a) n ≤ 10 if n is even,
(b) n ≤ 3 if n is odd and x(P ) is negative,
(c) n ≤ 21 if n is odd and x(P ) is a rational square.

Ingram [7] sharpened the bounds obtained in [5] as follows.

Theorem 1.2 (Ingram [7]). Let E and P be as Theorem 1.1. If Bn(P )
does not have a primitive divisor, then 5 - n, and either n is odd or n = 2.
Furthermore, if

(a) x(P ) < 0, or
(b) {x(P ), x(P ) + T, x(P )− T} contains a rational square,

then n ≤ 2.

In what follows, a will denote a non-zero integer which is fourth-power-
free and Ea : y2 = x3 + ax will be an elliptic curve. The purpose of this
paper is to generalise the above results on the existence of primitive divisors
to all such Ea.

This condition on a poses no restriction here, since the minimal model
of any Ea is of this form. Furthermore, we require a minimal model, since
otherwise, Bn(P ) can be without a primitive divisor for arbitrarily large n:
for any n, let u =

√
Bn(P ), E′a be the image of Ea under the map (x, y) 7→

(u2x, u3y) and P ′ the image of P under this map, then Bn(P ′) = 1.

Theorem 1.3. Let P ∈ Ea(Q) be a point of infinite order. Let n be a
positive integer and assume that Bn(P ) does not have a primitive divisor.
If (i) n is odd and either x(P ) is a rational square or x(P ) < 0, or (ii) n is
even, then n ≤ 2.

Remark 1.4. It is easy to show that there are infinitely many values
of a and points P ∈ Ea(Q) such that x(2P ) is an integer, so B2(P ) = 1.
For instance, let P be an integer point on Ea for a ≡ 4 mod 16, existing
by Lemma 6.1 of [14] and the duplication formula. So this theorem is best
possible.
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Remark 1.5. If we remove the conditions on x(P ) for odd n, then it
is again easy to find infinitely many values of a and points P ∈ Ea(Q)
such that B3(P ) = 1. For example, P = (30, 120) ∈ E−420(Q) and P =
(30, 450) ∈ E5850(Q).

From our use of Ingram’s ideas [7] in Subsection 5.5, it appears that
n ≤ 3 is the best possible bound for Ea without any conditions on x(P ).

Indeed, in this paper, we show that if Bn does not have a primitive
divisor for any elliptic divisibility sequence generated from any non-torsion
point on any Ea for n > 3, then 5 - n and either n = 9, 11, 19 or n > 20.

Remark 1.6. Although x(2P ) is a square for P ∈ Ea(Q) (see Lem-
ma 6.1(a) in [14]), it is not the case that if x(P ) is a perfect square then
P = 2Q where Q ∈ Ea(Q). The significance of this statement is that our
result for n odd and x(P ) a perfect square is not a trivial consequence of
the result for even n.

Lastly, we note that Everest, Mclaren and Ward [5, Theorem 2.4] proved
an analogous result to Theorem 1.3 (with an absolute, though unspecified,
bound for n) for any elliptic curve over Q with non-trivial 2-torsion, provided
Lang’s conjecture holds for the curve. Using Cremona’s elliptic curve data as
available via PARI, we found that the elliptic divisibility sequence defined by

y2 + xy = x3 − 15607620x+ 23668880400

and P = (−3780,−167400) has no primitive divisor for n = 18 (B9 = B18 =
289 = 172) and satisfies the conditions in Theorem 2.4 of [5]. There are also
five examples up to conductor 130 000 of such sequences whose 14th element
has no primitive divisor.

And although it does not satisfy the conditions in Theorem 2.4 of [5] the
elliptic divisibility sequence defined by

y2 + xy = x3 − 628340x+ 887106192

and P = (20824,−3013412) has no primitive divisor for n = 21 (B7 =
B21 = 289 = 172). We believe this is the largest index, n, such that Bn

has no primitive divisor for a sequence generated by an elliptic curve with
non-trivial 2-torsion.

Our paper is structured as follows. In the next section, we state our ver-
sion of Lang’s conjecture for Ea(Q) as well as bounds on the difference be-
tween the canonical height and the logarithmic (Weil) height for any point on
Ea(Q). In Section 3, we prove some required results about elliptic divisibility
sequences. Section 4 contains upper bounds on the height of a point P ∈
Ea(Q) generating an elliptic divisibility sequence whose nth element does
not have a primitive divisor, along with their proofs. Finally Section 5 com-
bines the results of Sections 2–4 to obtain a small upper bound on such n. We
then apply some results of Ingram [7] to complete the proof of Theorem 1.3.
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2. Heights of points on Ea(Q). We shall require two results regarding
the height of points on elliptic curves. We require a lower bound in terms of
a on the height of nontorsion points on Ea(Q). We shall also need bounds
on the difference between the canonical height and the logarithmic (Weil)
height for any point on Ea(Q).

We start by defining these heights.
For a rational point P ∈ E(Q), we define the canonical height of P by

ĥ(P ) =
1
2

lim
n→∞

h(2nP )
4n

,

where h(P ) = h(x(P )) is the logarithmic height of P and

h(s/t) = log max{|s|, |t|}
for a rational number s/t in lowest terms is the logarithmic height of s/t.

Remark 2.1. This definition of the canonical height follows that in Sil-
verman’s book [12]. This is one-half that found in [3], as well as one-half that
returned from the height function, ellheight, in PARI (which is important
to note here as we use PARI in some of our calculations).

Lemma 2.2. Suppose a is a fourth-power-free integer. Let P ∈ Ea(Q) be
a nontorsion point. Then

(2.1) ĥ(P ) ≥ 1
16

log |a|

+



(1/2) log 2 if a > 0 and a ≡ 1, 5, 7, 9, 13, 15 mod 16,
(1/4) log 2 if a > 0 and a ≡ 2, 3, 6, 8, 10, 11, 12, 14 mod 16,
−(1/8) log 2 if a > 0 and a ≡ 4 mod 16,
(9/16) log 2 if a < 0 and a ≡ 1, 5, 7, 9, 13, 15 mod 16
(5/16) log 2 if a < 0 and a ≡ 2, 3, 6, 8, 10, 11, 12, 14 mod 16,
−(1/16) log 2 if a < 0 and a ≡ 4 mod 16.

Proof. This is Theorem 1.2 of [14].

Lemma 2.3. For all points P ∈ Ea(Q),

−1
4

log |a| − 0.16 ≤ 1
2
h(P )− ĥ(P ) ≤ 1

4
log |a|+ 0.26.

Proof. This is Theorem 1.4 of [14].

3. Properties of elliptic divisibility sequences. Let P ∈ Ea(Q) be
a point of infinite order. Write

nP =
(
An

Bn
,
Cn

B
3/2
n

)
in lowest terms with An, Cn ∈ Z and Bn ∈ N.
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Lemma 3.1. Let p be any prime divisor of the term Bn. Then

ordp(Bkn) = ordp(Bn) + 2 ordp(k).

Proof. This is Lemma 3.1 of [5].

Lemma 3.2. For any m,n ∈ N,

gcd(Bm, Bn) = Bgcd(m,n).

Proof. This is Lemma 3.2 of [5].

Lemma 3.3. If the term Bn does not have a primitive divisor, then

(3.1) logBn ≤ 2
∑
p|n

log p+
∑
p|n

logBn/p.

Here the sums range over prime divisors of n.

Proof. This is the first part of Lemma 3.3 of [5].

We let ω(n) denote the number of distinct prime divisors of n. Further,
we define

(3.2) ρ(n) =
∑
p|n

p−2 and η(n) = 2
∑
p|n

log p,

where the sums range over all prime divisors of n, and put

(3.3) K =
1
2

log |a|+ 0.52.

Lemma 3.4. If the term Bn does not have a primitive divisor, then

logBn ≤ 2
∑
p|n

log p+
∑
p|n

(
2
(
n

p

)2

ĥ(P ) +K

)
(3.4)

= η(n) + 2n2ρ(n)ĥ(P ) + ω(n)K.

Here, inequality (3.4) is analogous to inequality (9) of [5].

Proof. Lemma 2.3 implies that for any prime divisor p of n,

logBn/p ≤ h
(
n

p
P

)
≤ 2ĥ

(
n

p
P

)
+K = 2

(
n

p

)2

ĥ(P ) +K.(3.5)

The last equality is a property of the canonical height (see Theorem 9.3
of [10]). Combining (3.1) and (3.5), we obtain the lemma.

Lemma 3.5. Let P ∈ Ea(Q) be any point of infinite order. Let m and n
be positive integers with mn even.

(a) If a 6≡ 4 mod 16 or ord2(x(P )) 6= 1 or ord2(m) > 1 or ord2(n) > 1,
then

(3.6) 0 < (AmBn −AnBm)2 = Bm+nB|m−n|.
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(b) If a ≡ 4 mod 16, ord2(x(P )) = 1, ord2(m) = 1 and n is odd, then

(3.7) 0 < (AmBn −AnBm)2 = 4Bm+nB|m−n|.

Remark 3.6. For mn even, there is one case excluded from this lemma:
ord2(m) = ord2(n) = 1, a ≡ 4 mod 16 and ord2(x(P )) = 1. Here we have
0 < (AmBn − AnBm)2 = 16Bm+nB|m−n|, but since we do not need that
result in this work, we do not prove that here.

Also the condition that mn is even is a natural one here. Without this
condition, we get additional prime divisors, p, of a arising on the right-hand
side when ordp(x(P )) > 0 from Case 2-b in the proof since mP modulo p is
no longer a non-singular point.

Proof of Lemma 3.5. Since P is of infinite order, x(mP ) 6= x(nP ) and
hence AmBn −AnBm 6= 0.

For any P ∈ Ea(Q) of infinite order and any positive integers m and n,
write

mP = (xm, ym) =
(
Am

Bm
,
Cm

B
3/2
m

)
, nP = (xn, yn) =

(
An

Bn
,
Cn

B
3/2
n

)
in lowest terms. By the addition formula on the curve Ea, we have

x(|m± n|P ) =
(
ym ∓ yn

xm − xn

)2

− xm − xn(3.8)

=
(CmB

3/2
n ∓ CnB

3/2
m )2

BmBn(AmBn −AnBm)2
− AmBn +AnBm

BmBn
.(3.9)

Substituting y2
m = x3

m + axm and y2
n = x3

n + axn into (3.8), we have

x((m+ n)P )x(|m− n|P )

=
((xm + xn)(xmxn + a)− 2ymyn)((xm + xn)(xmxn + a) + 2ymyn)

(xm − xn)4

=
(xm + xn)2(xmxn + a)2 − 4(x3

m + axm)(x3
n + axn)

(xm − xn)4

=
(xmxn − a)2

(xm − xn)2
=

(AmAn − aBmBn)2

(AmBn −AnBm)2
.

Therefore,

(3.10) (AmBn −AnBm)2Am+nA|m−n| = (AmAn − aBmBn)2Bm+nB|m−n|.

Put

Gm,n = gcd(Am+nA|m−n|, Bm+nB|m−n|),

Um,n = (AmAn − aBmBn)2, Vm,n = (AmBn −AnBm)2.
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Then

(3.11) (AmBn −AnBm)2 =
gcd(Um,n, Vm,n)

Gm,n
Bm+nB|m−n|.

All the above holds without any further conditions on m, n and P .
To complete the proof, we will show that gcd(Um,n, Vm,n)/Gm,n = 1,

under the hypotheses of the lemma.

Step 1: p = 2. Under the hypotheses of part (a) of the lemma, we will
prove that 2 - gcd(Um,n, Vm,n) and under the hypotheses of part (b) of the
lemma that ord2(gcd(Um,n, Vm,n)/Gm,n) = 2.

First notice that if Bm and Bn are both even, then AmAn is odd and so
is AmAn − aBmBn. Hence 2 - gcd(Um,n, Vm,n).

Also if exactly one of Bm and Bn is even (suppose without loss of gen-
erality that Bm is even), then Am is odd and so is AmBn − AnBm. Hence
2 - gcd(Um,n, Vm,n).

Therefore, we need only consider the case when both Bm and Bn are
odd. Furthermore, in this case, if exactly one of Am and An is even, then
Vm,n is odd and again 2 - gcd(Um,n, Vm,n).

If 4 divides either m or n (say m, without loss of generality), then
since x(2P ) is a rational square by Lemma 6.1(a) of [14], it follows from
Lemma 6.1(c) of [14] that B4(P ), and hence Bm(P ), is even. We saw
above that this implies that 2 - gcd(Um,n, Vm,n). So we can assume that
ord2(m), ord2(n) ≤ 1 and that at least one of m and n is even (again, sup-
pose m is even).

From Lemma 6.1(c) of [14], unless a ≡ 4 mod 16 and ord2(x(P )) = 1,
we have ord2(Bm(P )) ≥ ord2(B2(P )) > 0, which we saw above implies that
2 - gcd(Um,n, Vm,n). So we can assume that a ≡ 4 mod 16 and ord2(x(P ))
= 1.

We have now handled the hypotheses of part (a) of the lemma, so we
now assume that n is odd and consider part (b).

If AmAn is odd, then Um,n is odd too and 2 - gcd(Um,n, Vm,n). So it must
be the case that both Am and An are even.

From the arguments on pages 92–93 of [13], we can write

P = (b1M2/e2, b1MN/e3)

in lowest terms, where a = b1b2 with gcd(b1, e) = gcd(b2,M) = gcd(e,M) =
gcd(M,N) = gcd(e,N) = 1. Furthermore, since ord2(x(P )) = 1, we have
2 ‖ b1. Hence e is odd.

Since 2 ‖ b1, we can put u = 2 in Lemma 6.1(c) of [14]. Therefore, we can
write nP = (b1M2

n/e
2
n, b1MnNn/e

3
n) in lowest terms, where en is odd with

gcd(b2,Mn) = gcd(Mn, Nn) = 1. Since a = b1b2 ≡ 4 mod 16 and 2 ‖ b1, we
have 2 ‖ b2. Since b2 and Mn are coprime, Mn must be odd. Hence 2 ‖ An.
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Since m is even, by Lemma 6.1(a) of [14], Am is a square, so 4 |Am,
since Am is even. Therefore, 4 ‖ Vm,n and so ord2(gcd(Um,n, Vm,n)) = 2,
since 4 |Um,n too.

Since B4 must be even by Lemma 6.1 of [14] and |m±n| is odd, it must be
the case that both Bm+n and B|m−n| are odd (otherwise gcd(4, |m±n|) = 1
and so B1 is even). Hence Gm,n = 1 and so if m ≡ 2 mod 4, n is odd,
a ≡ 4 mod 16 and ord2(x(P )) = 1, then ord2(gcd(Um,n, Vm,n)/Gm,n) = 2.

Step 2: p odd. We will next prove that if m and n are not both odd,
then either p - gcd(Um,n, Vm,n) or, if p | gcd(Um,n, Vm,n), then

ordp(gcd(Um,n, Vm,n)/Gm,n) = 0,

for any odd prime p.
Put

Wm,n = (CmB
3/2
n − CnB

3/2
m )2 − (AmBn +AnBm)(AmBn −AnBm)2,

W ′m,n = (CmB
3/2
n + CnB

3/2
m )2 − (AmBn +AnBm)(AmBn −AnBm)2.

Note that Wm,nW
′
m,n = B2

mB
2
nUm,nVm,n.

We distinguish four cases.

Case 2-a. Assume that p - Wm,n and p - W ′m,n. Then p - gcd(Um,n, Vm,n).

Case 2-b. Assume that p |Wm,n and p |W ′m,n. We will prove, by con-
tradiction, that p - gcd(Um,n, Vm,n).

Suppose that p divides gcd(Um,n, Vm,n). Then

AmAn − aBmBn ≡ 0 mod p,(3.12)
AmBn −AnBm ≡ 0 mod p.(3.13)

If Bm ≡ 0 mod p, then from (3.13), AmBn ≡ 0 mod p. Since Am and
Bm are coprime, we have Am 6≡ 0 mod p. Therefore Bn ≡ 0 mod p. From
(3.12) we have AmAn ≡ 0 mod p, and since Am 6≡ 0 mod p, it follows that
An ≡ 0 mod p. But this contradicts our assumption that An and Bn are
coprime. Hence Bm 6≡ 0 mod p.

By the same argument, we obtain Bn 6≡ 0 mod p.
Since mP and nP are on Ea,

C2
m ≡ Am(A2

m + aB2
m) mod p,(3.14)

C2
n ≡ An(A2

n + aB2
n) mod p.(3.15)

From our assumption that p |Wm,n and p |W ′m,n, along with (3.13), we
find that

CmB
3/2
n − CnB

3/2
m ≡ CmB

3/2
n + CnB

3/2
m ≡ 0 mod p,

and hence obtain 2CnB
3/2
m ≡ 0 mod p. From Bm 6≡ 0 mod p, we have Cn ≡

0 mod p. Furthermore, since Bn 6≡ 0 mod p, we also have Cm ≡ 0 mod p.
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First assume that AmAn ≡ 0 mod p. From (3.12), we have aBmBn ≡
0 mod p. Since BmBn 6≡ 0 mod p, it follows that a ≡ 0 mod p.

Next assume that AmAn 6≡ 0 mod p. Then from (3.14) and Cm ≡ 0
mod p, we have

A2
m + aB2

m ≡ 0 mod p.(3.16)

Multiplying both sides of (3.12) by Bm and substituting AnBm ≡ AmBn

mod p (from (3.13)) and dividing both sides by Bn, we obtain A2
m− aB2

m ≡
0 mod p. Subtracting it from (3.16) gives that 2aB2

m ≡ 0 mod p and there-
fore a ≡ 0 mod p.

In both cases a ≡ 0 mod p and so from Proposition VII.5.1 of [10], Ea

has bad reduction at p (additive reduction, in fact) and the reduction of mP
modulo p is singular.

On the other hand, from Lemma 4.1(b) of [14], mP modulo p is non-
singular, since m is even. This is a contradiction. Hence p does not divide
gcd(Um,n, Vm,n).

Case 2-c. Assume that p | Wm,n and p - W ′m,n. Assume that p divides
gcd(Um,n, Vm,n) and let ordp(gcd(Um,n, Vm,n)) = α > 0.

First assume that ordp(Vm,n) ≥ ordp(Um,n). Then we can put ordp(Um,n)
= α and ordp(Vm,n) = α+ β with β ≥ 0. From (3.9) we obtain

(3.17) A|m−n|BmBnVm,n = B|m−n|W
′
m,n.

Since A|m−n| and B|m−n| are coprime and p does not divide W ′m,n, we
have ordp(A|m−n|)=0. We saw, in Case 2-b, that if p divides gcd(Um,n, Vm,n),
then both Bm and Bn are prime to p. Hence, from (3.17) we obtain
ordp(B|m−n|) = α+ β.

From (3.10), we can write

Am+nA|m−n|Vm,n = Bm+nB|m−n|Um,n.

Here ordp(Um,n)=α, ordp(Vm,n)=α+β, ordp(A|m−n|) = 0 and ordp(B|m−n|)
= α+ β. Since Am+n and Bm+n are coprime, we find that ordp(Am+n) = α
and ordp(Bm+n) = 0. Hence

ordp(Gm,n) = ordp(gcd(Am+nA|m−n|, Bm+nB|m−n|)) = α

and ordp(gcd(Um,n, Vm,n)/Gm,n) = 0.
For the case ordp(Um,n) ≥ ordp(Vm,n), in the same way, we again obtain

ordp(Gm,n) = α.
It follows that ordp(gcd(Um,n, Vm,n)/Gm,n) = 0.

Case 2-d. Assume that p - Wm,n and p |W ′m,n. Then by the same argu-
ment as in Case 2-c, if p | gcd(Um,n, Vm,n), then ordp(gcd(Um,n, Vm,n)/Gm,n)
= 0.
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Step 3: Gm,n. We show that for any prime p, if p - gcd(Um,n, Vm,n),
then p - Gm,n.

Put gcd(Bm, Bn) = gm,n. Then we can write Bm = gm,nbm and Bn =
gm,nbn, where bm and bn are coprime. Since g3

m,n |Wm,n (recall the definition
of Wm,n from Step 2 as the common numerator of the expression in (3.9)),
we can write Wm,n = g3

m,nWm,n,1, and from (3.9), we have

x((m+ n)P ) =
Wm,n,1

gm,nbmbn(Ambn −Anbm)2
.

From Lemma 3.2, we have gcd(Bm+n, Bm) = Bgcd(m+n,m) = Bgcd(m,n) =
gm,n, and similarly gcd(Bm+n, Bn) = gm,n.

Therefore, we can write Bm+n = gm,nbm+n where bm+n is prime to both
bm and bn. Therefore neither of bm and bn divides Bm+n. Hence

(3.18) Bm+n | (AmBn −AnBm)2.

Now assume that p - gcd(Um,n, Vm,n). We will show by contradiction that
p does not divide Gm,n.

Recall that Gm,n = gcd(Am+nA|m−n|, Bm+nB|m−n|). Suppose that p di-
vides Gm,n. Since gcd(Am+n, Bm+n) = gcd(A|m−n|, B|m−n|) = 1, without
loss of generality, we may assume that p divides both A|m−n| and Bm+n.

Let ordp(A|m−n|) = s > 0, ordp(Bm+n) = t > 0 and 2 ordp(AmBn −
AnBm) = u > 0. From (3.18), we have t ≤ u. On the other hand, from
(3.10) we have u + s = t since p - gcd(Um,n, Vm,n). Hence s ≤ 0. This
contradiction allows us to conclude that p does not divide Gm,n.

From these three steps, it follows that

0 < (AmBn −AnBm)2 = Bm+nB|m−n|,

as desired.

4. Upper bounds. Recall our definitions ρ(n) and η(n) from (3.2), as
well as K from (3.3), and set

(4.1) L =
1
2

log |a|+ 0.32.

We obtain the following proposition.

Proposition 4.1. Let P ∈ Ea(Q) be a point of infinite order. Let n be
a positive integer and assume that the term Bn(P ) does not have a primitive
divisor.

(a) If n is odd and x(P ) is a rational square or if n is even, write n =
2eN where e is a non-negative integer and N is an odd integer. Then
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n = 1, 2, 4 or N ≥ 3 and

0 < 2
(

1
3
− 1

3N2
− ρ(n)

)
ĥ(P )n2 ≤ η(n) + ω(n)K +K + L.

(b) Let p be an odd prime. If n is odd, divisible by p and x(P ) is a
rational square, or if n is even and divisible by p, then

0 < 2
(

(p+ 1)2

4p2
− ρ(n)

)
ĥ(P )n2 ≤ η(n) + ω(n)K + L.

Remark 4.2. Note that part (b) can be improved for n even and a < 0:

0 < 2
(

5p2 + 6p+ 5
16p2

− ρ(n)
)
ĥ(P )n2 ≤ η(n) + ω(n)K + 2L+ log |a|+ 0.385.

However, due to the restriction to a < 0, we will not use this here and so we
do not include the proof (it is available on request). We mention it so other
researchers know that improvements can be made.

By using estimates for ρ(n), ω(n) and η(n), we obtain the following
corollary.

Corollary 4.3. Let P ∈ Ea(Q) be a point of infinite order.

(a) Let n ≥ 3 be an odd integer and assume that x(P ) is a rational
square. If Bn(P ) does not have a primitive divisor, then

0.484 ĥ(P )n2 < 2 log n+
1.3841 log n

log log n
K +K + L.

(b) Let n be a positive even integer not divisible by 5. If Bn(P ) does not
have a primitive divisor, then either n ≤ 4 or n is not a power of 2
and

0.049 ĥ(P )n2 < 2 log n+
1.3841 log n

log log n
K + L.

4.1. Proof of Proposition 4.1. We are now ready to prove Proposi-
tion 4.1. Our proof is based upon ideas found in [5].

4.1.1. Proof of part (a). Assume that either n > 1 is an odd integer and
x(P ) is a rational square or n is even.

If B2m(P ) does not have a primitive divisor, thenm ≤ 2 (see Theorem 1.2
of [17]). Hence we may assume that n is not a power of two, and write
n = 2eN , where e is a non-negative integer and N is an odd integer with
N ≥ 3.

Write N = 3k+ r with r = 0,±1, and put m = 2e(2k+ r) and m′ = 2ek.
Since N > 1, we have k > 0 and so m′ > 0 and m −m′ = 2e(k + r) > 0.
Also n = m+m′.
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If r = ±1, then k is even and 2k + r is odd. If n is odd, then m is odd
and m′ is even. If n is even, then m and m′ are both even with ord2(m′) >
ord2(m) > 0.

If r = 0, then k is odd and 2k + r is even. If n is odd, then m is even
and m′ is odd. If n is even, then m and m′ are both even with ord2(m) >
ord2(m′) > 0.

In each case, by Lemma 3.5(a) (which is applicable for n odd since x(P )
is assumed to be a rational square in this case), we have

(AmBm′ −Am′Bm)2 ≤ Bm+m′Bm−m′ .

Taking the logarithm of both sides gives

(4.2) 2 log |AmBm′ −Am′Bm| ≤ logBn + logBm−m′ .

Assume that the term Bn does not have a primitive divisor. Then, by
Lemma 3.4, we have

(4.3) logBn ≤ η(n) + 2n2ρ(n)ĥ(P ) + ω(n)K.

Lemma 2.3 gives

logBm−m′ ≤ h((m−m′)P )(4.4)

≤ 2ĥ((m−m′)P ) +K = 2(m−m′)2ĥ(P ) +K.

Combining (4.3) and (4.4) with (4.2) gives

(4.5) 2 log |AmBm′ −Am′Bm|

≤ η(n) + 2n2ρ(n)ĥ(P ) + ω(n)K + 2(m−m′)2ĥ(P ) +K.

Lemma 6.1(a) of [14] implies that Am and Am′ are both squares, so we can
write Am = a2

m, Am′ = a2
m′ , Bm = b2m and Bm′ = b2m′ . Thus

2 log |AmBm′ −Am′Bm| = 2 log |a2
mb

2
m′ − a2

m′b2m| ≥ 2 log(|ambm′ |+ |am′bm|)
≥ 2 log(|am|+ |bm|) ≥ 2 log max{|am|, |bm|}
= h(mP ) ≥ 2ĥ(mP )− L,

recalling from Lemma 3.5 that AmBm′ − Am′Bm 6= 0. Note that the last
inequality is obtained by Lemma 2.3 and the definition of L in (4.1). Since
ĥ(mP ) = m2ĥ(P ), we have

2 log |AmBm′ −Am′Bm| ≥ 2m2ĥ(P )− L.

Combining this estimate and (4.5) gives

2m2ĥ(P )− L ≤ η(n) + 2n2ρ(n)ĥ(P ) + ω(n)K + 2(m−m′)2ĥ(P ) +K.
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Substituting m = 2e(2N + r)/3 and m′ = 2e(N − r)/3 gives

η(n) + ω(n)K +K + L ≥ 2
(

1
3
− r2

3N2
− ρ(n)

)
ĥ(P )n2(4.6)

≥ 2
(

1
3
− 1

3N2
− ρ(n)

)
ĥ(P )n2.

4.1.2. Proof of part (b). Assume that n is a positive integer divisible by
an odd prime p and x(P ) is a rational square, if n is odd. Write n = pk for
some positive integer k. Assume that Bn does not have a primitive divisor.
Then by Lemmas 3.4 and 3.5(a) (observe that ord2(p− 1) 6= ord2(p+ 1) so
3.5(a) is also applicable if n is even), we have

(4.7) 2 log |A(p+1)k/2B(p−1)k/2 −A(p−1)k/2B(p+1)k/2|

≤ logBn + logBk ≤ η(n) + 2n2ρ(n)ĥ(P ) + ω(n)K + logBk.

On the other hand,

(4.8) 2 log |A(p+1)k/2B(p−1)k/2 −A(p−1)k/2B(p+1)k/2|
= 2 log |a2

(p+1)k/2b
2
(p−1)k/2 − a

2
(p−1)k/2b

2
(p+1)k/2|

= 2 log
∣∣|a(p+1)k/2b(p−1)k/2| − |a(p−1)k/2b(p+1)k/2|

∣∣
+ 2 log(|a(p+1)k/2b(p−1)k/2|+ |a(p−1)k/2b(p+1)k/2|)

≥ 2 log |bk|+ 2 log(|a(p+1)k/2|+ |b(p+1)k/2|) since bk | b(p±1)k/2,

≥ logBk + h(((p+ 1)k/2)P )

≥ logBk + 2((p+ 1)k/2)2ĥ(P )− L.

Combining (4.7) and (4.8) gives

2((p+ 1)k/2)2ĥ(P )− L ≤ η(n) + 2n2ρ(n)ĥ(P ) + ω(n)K.

Substituting k = n/p, we obtain

(4.9) 2
(

(p+ 1)2

4p2
− ρ(n)

)
ĥ(P )n2 ≤ η(n) + ω(n)K + L.

We have thus completed the proof of part (b).

4.2. Proof of Corollary 4.3. To prove Corollary 4.3, we use Robin’s
estimate for ω(n) (see Théorème 11 of [8]):

(4.10) ω(n) <
1.3841 log n

log log n
for all n ≥ 3.
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Furthermore, we use the following estimate for ρ(n):

ρ(n) <
∑

p<106

p−2 +
(
ζ(2)−

∑
m≤106

m−2
)
< 0.452248 + 0.000001(4.11)

< 0.45225,

where the first sum is over primes, p, and the second sum over positive
integers, m.

4.2.1. Proof of Corollary 4.3(a). Let P ∈ Ea(Q) be a point of infinite
order. Let n ≥ 3 be an odd integer, and assume that x(P ) is a rational
square. We will distinguish three cases.

Case 1. Assume that n is not divisible by either 3 or 5. Then n ≥ 7 and
ρ(n) < 0.45225−1/4−1/9−1/25 < 0.052. Here we apply Proposition 4.1(a),
so we have N = n and

2
(

1
3
− 1

3N2
− ρ(n)

)
> 0.549,

and the corollary follows in this case.

Case 2. Assume that n is divisible by 3. Then ρ(n) < 0.45225− 1/4 <
0.2023. Here we apply Proposition 4.1(b) with p = 3, so

2
(

(p+ 1)2

4p2
− ρ(n)

)
= 2
(

4
9
− ρ(n)

)
> 0.484,

and the corollary follows in this case.

Case 3. Assume that n is divisible by 5, but not by 3. Then ρ(n) <
0.45225− 1/4− 1/9 < 0.092. Here Proposition 4.1(b) with p = 5 yields

2
(

(p+ 1)2

4p2
− ρ(n)

)
= 2
(

9
25
− ρ(n)

)
> 0.536,

and the corollary follows in this case as well, completing the proof of part (a).

4.2.2. Proof of Corollary 4.3(b). Let n be a positive even integer and
assume that Bn(P ) does not have a primitive divisor. If n is a power of
two, then n ≤ 4, so by excluding these values of n in the hypotheses of
the corollary, we may assume here that n is not a power of two. We will
distinguish two cases.

Case 1. Assume that n is not divisible by either 3 or 5. From (4.11),
we have ρ(n) < 0.45225− 1/9− 1/25 < 0.302.

Here we apply Proposition 4.1(a) and write n = 2eN with e ≥ 1 and
N ≥ 7 odd. In this way, we obtain

2
(

1
3
− 1

3N2
− ρ(n)

)
> 0.049,

and the corollary follows in this case.
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Case 2. Assume that n is divisible by 3 and not by 5. Then ρ(n) <
0.41225. Here we apply Proposition 4.1(b) with p = 3, so

2
(

(p+ 1)2

4p2
− ρ(n)

)
= 2
(

4
9
− ρ(n)

)
> 0.064,

and the corollary follows in this case.

We have thus completed the proof.

5. Proof of Theorem 1.3

5.1. n divisible by 5

Lemma 5.1. Let P ∈ Ea(Q) be a point of infinite order, and (Bn) =
(Bn(Ea, P )) an elliptic divisibility sequence. For all positive integers m, B5m

has a primitive divisor.

Remark 5.2. This technique can be applied for other values than 5,
provided that ψn(a, x) is reducible over Q (e.g., n = 13, 17, . . . , but not
n = 7, 11, 19, . . . , for which ψn(a, x) are irreducible).

Proof of Lemma 5.1. We can handle m = 1, 2, 3, 4 and 5 using the argu-
ments in Section 3 of [7] as they readily generalise to our curves.

For m ≥ 6, we follow the idea of Ingram [7, Lemma 7].
For a point P = (x, y) ∈ Ea(Q), we can factor ψ5(P ) = ψ5(a, x), the

5-th division polynomial, as

(a2 + 2ax2 + 5x4)(x8 + 12ax6 − 26a2x4 − 52a3x2 + a4).

Writing x([m]P ) = u/v2 with gcd(u, v) = 1, we obtain

x([5m]P ) =
φ5(a, u/v2)
ψ2

5(a, u/v2)
,

where ψ5(a, x) is a binary form in a and x2 of degree 12, while φ5(a, x) is x
times a binary form in a and x2 of degree 24. It follows that v50φ5(a, u/v2),
v50ψ2

5(a, u/v2) ∈ Z and

B5m = v50ψ2
5(a, u/v2)/g,

where g = gcd(v50φ5(a, u/v2), v50ψ2
5(a, u/v2)).

We can write v25ψ5(a, u/v2) = vf5,1(u2, v4)f5,2(u2, v4), where

f5,1(x, y) = x4 + 12ax3y − 26a2x2y2 − 52a3xy3 + a4y4

and
f5,2(x, y) = 5x2 + 2axy + a2y2.

Lower bounds in terms of y. The roots of f5,1(x, 1) are at the points
r1,1 = −13.6275 . . . a, r1,2 = −1.3167 . . . a, r1,3 = 0.0190 . . . a and r1,4 =
2.9252 . . . a.



180 P. Voutier and M. Yabuta

The roots of f5,2(x, 1) are r2,1 = (−1− 2i)a/5 and r2,2 = (−1 + 2i)a/5.
Hence f5,2(x, y) = 5(x− r2,1y)(x− r2,2y).

For any integers, x and y, with y 6= 0, there will be an i and a j such
that |x/y − ri,j | is minimal.

Suppose the closest root to z = x/y is either r2,1 or r2,2. The nearest roots
of f5,1(x, 1) to r2,1 and r2,2 are r1,2 and r1,3, so by solving (z−(−1.3167a))2 =
(z − (−a/5))2 + (2a/5)2 and (z − (0.019a))2 = (z − (−a/5))2 + (2a/5)2

respectively for z, we find that x/y must lie between −0.455a and −0.687a.
For such x and y,

|f5,1(x, y)|
> y4 |−0.687a− r1,1| |−0.687a− r1,2| |−0.455a− r1,3| |−0.455a− r1,4|
> 13a4y4

and

|f5,2(x, y)| > 5y2 |−0.455a− r2,1| |−0.455a− r2,2| 1.125a2y2.

In this case,

|y1/4| |f5,1 (x, y)| |f5,2 (x, y)| > 14.6a6|y|25/4.

If the closest root to x/y is one of the r1,j ’s, then |f5,2(x, y)| ≥ 5I2
y =

4a2y2/5 where Iy = |2ay/5| is the absolute value of the imaginary part of
r2,1 and r2,2.

In this case,

(5.1) |y1/4| |f5,1 (x, y)| |f5,2 (x, y)| ≥ (4/5)a2|y|9/4 > 3.8|y|9/4/|a|1/4,

since |a| ≥ 2 and |f5,1 (x, y)| ≥ 1 here.
Hence this last inequality always holds (including for y = 0).

Lower bounds in terms of x. The roots of f5,1(1, y) are at the points
s1,1 = −0.7594 . . . /a, s1,2 = −0.0733 . . . /a, s1,3 = 0.3418 . . . /a and s1,4 =
52.4909 . . . /a.

And the roots of f5,2(1, y) are s2,1 = (−1−2i)/a and s2,2 = (−1 + 2i)/a.
Hence f5,2(x, y) = a2 (y − s2,1x) (y − s2,2x).

For any integers, x and y, with x 6= 0, there will be an i and a j such
that |y/x− si,j | is minimal.

Suppose the closest root to y/x is either s2,1 or s2,2. The nearest root of
f5,1(1, y) is s1,1. By solving (z− (−0.7594/a))2 = (z− (−1/a))2 + (2/a)2 for
z = y/x, we find that y/x must lie beyond −9.192/a.

For such x and y, |f5,2(x, y)| > 71.1x2 and |f5,1(x, y)| > 45, 200x4.
In this case,

|y1/4| |f5,1 (x, y)| |f5,2 (x, y)| > 3.2 · 106x6|y1/4|.
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Since |y/x| > 9.192/|a|,
|y1/4| |f5,1 (x, y)| |f5,2 (x, y)| > 5.5 · 106|x|25/4/|a|1/4.

If the closest root to y/x is one of the s1,j ’s, then |f5,2(x, y)| ≥ a2(2/a)2x2

= 4x2.
If |y/x| > 0.045/|a|, then

|y1/4| |f5,1 (x, y)| |f5,2 (x, y)| > (0.045)1/4|x|1/4/|a|1/4 · 4x2(5.2)

> 1.83|x|9/4/|a|1/4,

since |f5,1 (x, y)| ≥ 1.
If |y/x| ≤ 0.045/|a|, we find that |f5,1(x, y)| > 0.3145x4 > 0.374x4/|a|1/4

and |f5,2(x, y)| > 4.912x2, so

|y1/4| |f5,1 (x, y)| |f5,2 (x, y)| > 0.374x4 · 4.912x2/|a|1/4 ≥ 1.83x6/|a|1/4

for |y| ≥ 1 and |a| ≥ 2.
So (5.2) always holds.
Combining (5.1) and (5.2) with x = u2 and y = v4, we find that

|v| |f5,1(u2, v4)| |f5,2(u2, v4)| > min{1.83|u|4.5/|a|1/4, 3.8|v|9/|a|1/4}(5.3)

≥ 1.83|a|−1/4 min{|u|4.5, |v|9}.
Hence

log |B5m| > 2 log(1.83) + 9h(u/v2)− (1/2) log |a| − log(g).

Next, using the Maple command gcdex(psi[5]^2,phi[5],x,’s’,’t’);
and factoring the common denominator, we find that this gcd must divide
245a24. As in the proof of Lemma 4 of [7], we have g | 245a24 and

log |B5m| > 9h(u/v2)− (49/2) log |a| − 29.983.

From Lemma 2.3,

h(mP ) = h(u/v2) ≥ 2ĥ(mP )− (1/2) log |a| − 0.32,

so

log |B5m| > 18ĥ(mP )− (9/2) log |a| − 2.88− (49/2) log |a| − 29.983

> 18m2ĥ(P )− 29 log |a| − 32.863,

since ĥ(mP ) = m2ĥ(P ).
From Lemma 3.4 applied with n = 5 and using mP here in place of P

there, we get

log |B5m| ≤ 2 log 5 + 2ĥ(mP ) + (1/2) log |a|+ 0.52

< 2m2ĥ(P ) + (1/2) log |a|+ 3.739.

Hence

(5.4) 16m2ĥ(P ) ≤ (59/2) log |a|+ 36.602.
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Unless a ≡ 4 mod 16, from Lemma 2.2 we find that

(5.5) ĥ(P ) ≥ (1/16) log |a|+ (1/4) log 2.

Furthermore, if a ≡ 4 mod 16 and x(2P ) 6∈ Z, then δ ≥ 2 if ord2(x(2P )) = 0
and δ ≥ 3 otherwise. In both cases, we find from Proposition 1.1 of [14] that
(5.5) holds.

Hence excluding the case of a ≡ 4 mod 16 and x(2P ) ∈ Z, we have

m2 (log |a|+ 4 log 2) ≤ (59/2) log |a|+ 36.602.

For m ≥ 6, this can never hold.
For a ≡ 4 mod 16 and a > 0, we have

m2 (log |a| − 2 log 2) ≤ (59/2) log |a|+ 36.602,

or
|a| < exp((36.602 + 2m2 log 2)/(m2 − (59/2))).

For m ≥ 6, this last inequality is false once a > exp(13.31) and hence for
a > 604, 200, since the right-hand side is decreasing for m ≥ 6.

For a ≡ 4 mod 16 and a < 0, we have

m2(log |a| − log 2) ≤ (59/2) log |a|+ 36.602,

or
|a| < exp((36.602 +m2 log 2)/(m2 − (59/2))).

For m ≥ 6, this last inequality is false once |a| > exp(9.471) and hence for
|a| > 13, 000, since the right-hand side is decreasing for m ≥ 6.

For m ≥ 7, the required inequalities hold for a < −37 and a > 213.

Search. For each of the remaining values of a with a ≡ 4 mod 16, we use
PARI to search for possible counterexamples to our lemma.

We search for any points, P , with x(2P ) ∈ Z, satisfying (5.4) for m = 6
and then check to ensure that B30(P ) always has a primitive divisor for such
points.

Using Lemma 2.3 and since ĥ(2P ) = 4ĥ(P ), we require

h(2P ) = log |x(2P )| ≤ 2
(

(1/4) log |a|+ 0.26 + 4
29.5 log |a|+ 36.602

16 · 36

)
< 0.91 log |a|+ 1.03.

Furthermore, x(2P ) must be a square by Lemma 6.1(a) of [14].
In this way, we were able to check all the remaining values in 4 minutes

using PARI on an ordinary laptop. We found 29 pairs (a, P ) such that (5.4)
holds and a is fourth-power-free (6 with −9996 ≤ a ≤ −12 and 23 with
180 ≤ a ≤ 515 508).

For all of them, B30(P ) has a primitive divisor. This completes the proof
for m = 6.
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Since the left-hand side of (5.4) is increasing in m, any pair (a, P ) sat-
isfying (5.4) for m > 6, must be among these 29 examples. As we noted
above, we must have −37 ≤ a ≤ 213 if B5m(P ) does not have a primitive
divisor for m > 6, so this leaves only a = −12, 180.

For a = −12, the point is P = (−2, 4) and ĥ(P ) = 0.1252 . . . . For
m ≥ 8, (5.4) is no longer satisfied in this case and we check that B35(P ) has
a primitive divisor.

For a = 180, the point is P = (−6, 36) with ĥ(P ) = 0.2564 . . . . We
proceed in the same way for this case.

5.2. n odd, n > 7. Let n be a positive odd integer and assume that
either x(P ) is a rational square or x(P ) < 0. Suppose that the term Bn(P )
does not have a primitive divisor.

5.2.1. x(P ) < 0. This only occurs for a < 0. In this case, Ea(R) has two
components and we are considering points, P , on the non-identity compo-
nent of Ea(R).

Remark 5.3. Since Lemma 3.4 applies for any elliptic curve and since
we can obtain results like Lemma 2.3 for any elliptic curve (see, for example,
Proposition 5.18(a) and Theorem 5.35(c) of [9]), if E is an elliptic curve such
that E(R) has two components and if we have an explicit version of Lang’s
conjecture for E(Q), then the same idea can be applied to bound from above
the odd indices n, such that Bn has no primitive divisor when P is on the
non-identity component of E(R).

If Bn ≥ |An|, then

logBn = h(x(nP )) ≥ 2ĥ(nP )− 1
2

log |a| − 0.32(5.6)

= 2n2ĥ(P )− 1
2

log |a| − 0.32,

from Lemma 2.3.
If Bn < |An|, then

−
√
|a| ≤ x(nP ) < 0,

since x(P ) < 0 and n odd implies x(nP ) < 0.
Thus |An/Bn| ≤

√
|a|, so

log |An| −
1
2

log |a| ≤ logBn.

Therefore, from Lemma 2.3,

(5.7) logBn > h(x(nP ))− 1
2

log |a| ≥ 2n2ĥ(P )− log |a| − 0.32.

Since this lower bound is weaker than (5.6), we shall use it in what
follows.
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Applying Lemma 3.4, we have

(5.8) 2n2(1− ρ(n))ĥ(P ) < η(n) + ω(n)K + log |a|+ 0.32.

From Lemma 2.2,

n2

8
(1− ρ(n)) (log |a| − 2 log 2) < η(n) + ω(n)K + log |a|+ 0.32.

For |a| ≥ 8,
1

log |a| − 2 log 2
< 1.443,

K

log |a| − 2 log 2
< 2.251,

log |a|+ 0.32
log |a| − 2 log 2

< 3.462.

Hence,

(5.9)
n2

8
(1− ρ(n)) < 1.443η(n) + 2.251ω(n) + 3.462.

Since n is odd, from (4.11), ρ(n) < 0.20225 and applying (4.10)

0.0997n2 < 2.886 log n+ 3.116
log n

log log n
+ 3.462.

Using this inequality, we obtain the bound n < 14.01, so n ≤ 13. We can
directly calculate both sides of (5.9) and find that it fails for n = 9 and
n = 11, proving our desired result for |a| ≥ 8.

Using PARI, we find that for −8 < a < 0, Ea(Q) is non-trivial only for
a = −2,−5,−6 and −7. Each of these is of rank 1 and the generator, P ,
satisfies ĥ(P ) ≥ 0.3043 . . . (attained for a = −2). Applying this lower bound
for the height and ρ(n) < 0.20225 to (5.8), we find that

0.485n2 > 2 log n+ 2.16
log n

log logn
+ 2.4 > 2 log n+ ω(n)K + log |a|+ 0.32

for −8 ≤ a ≤ −2 and n > 5.2, as required.

Note. Recall that the height function, ellheight, in PARI returns a
value that is twice our height here.

5.2.2. x(P ), a rational square. From Lemma 2.2, we have

(5.10) ĥ(P ) ≥ 1
16

log |a| − 1
8

log 2.

Assume further that |a| ≥ 33. Then
1

log |a| − 2 log 2
< 0.474,

K

log |a| − 2 log 2
< 1.075,

L

log |a| − 2 log 2
< 0.981.

(5.11)
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Substituting (5.10) into Corollary 4.3(a) shows that

0.484
(

1
16

log |a| − 1
8

log 2
)
n2 < 2 log n+

1.3841 log n
log log n

K +K + L

must hold if Bn(P ) does not have a primitive divisor.
Dividing both sides of this equation by log |a| − 2 log 2 and substituting

the estimates (5.11) yields

0.030n2 < 0.948 log n+ 1.075
1.3841 log n

log log n
+ 2.056

< (log n)
(

0.948 +
1.488

log logn

)
+ 2.056.

Using this inequality, we obtain the bound n < 17.13, so n ≤ 17, if Bn(P )
does not have a primitive divisor.

We will next give the better bounds by using the inequalities of Propo-
sition 4.1(b).

If n is odd and divisible by p, then, by Proposition 4.1(b), (5.10) and
(5.11),

0 <
1
8

(
(p+ 1)2

4p2
− ρ(n)

)
n2 ≤ η(n) + ω(n)K + L

log |a| − 2 log 2
< 0.474η(n) + 1.075ω(n) + 0.981.

Using this inequality, we can eliminate n = 9, 11, 13, 15 and 17 (with p = 3,
11, 13, 3 and 17, respectively) for |a| ≥ 33.

Next using Lemma 2.3, if x(P ) is a rational square and ĥ(P )≤(log |a|)/4,
then h(P ) ≤ (1/2) log |a| + (1/2) log |a| + 0.52 = log |a| + 0.52. That is,
writing x(P ) = r/s, max (|r|, |s|) < 1.7|a|. Using this bound on x(P ) we can
enumerate all points with x(P ) a rational square, ĥ(P ) ≤ (log |a|)/4 and
|a| ≤ 32 (in PARI, say):

Table 1

a P bh(P )

−12 (4,±4) 0.5011 . . .

3 (1,±2) 0.2505 . . .

15 (1,±4) 0.5673 . . .

20 (4,±12) 0.6355 . . .

Repeating the above arguments with |a| ≥ 2 (noting the E−1(Q) and
E1(Q) contain only torsion points) and ĥ(P ) ≥ (log |a|)/4, we obtain

0.12n2 < (log n)
(

2.886 +
1.732

log log n

)
+ 2.213
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from Corollary 4.3(a), and

0 <
1
2

(
(p+ 1)2

4p2
− ρ(n)

)
n2 < 1.443η(n) + 1.251ω(n) + 0.962

from Proposition 4.1(b).
From the first of these inequalities, we find that n < 10.8 and so n ≤ 9

for all a and P ∈ Ea(Q) with |a| ≥ 2 and ĥ(P ) ≥ (log |a|)/4. The second
inequality allows us to eliminate n = 9. Hence we find that n ≤ 7 for
all elliptic divisibility sequences such that Bn(P ) does not have a primitive
divisor, with the exception of those generated by the 8 points, P , in Table 1.

Substituting a = 3 and ĥ(P ) = 0.2505 . . . into the inequality in Corol-
lary 4.3(a), we find that

0.484n2 <

(
7.984 +

5.912
log logn

)
log n+ 7.744.

Using this inequality, we find that n ≤ 9. For n = 9, we use Proposi-
tion 4.1(b) with p = 3. The left-hand side exceeds the right-hand side, and
so we can eliminate n = 9 too.

We proceed in the same way for a = −12 and 15 and 20.
This completes the proof for n odd.

5.3. n even, n ≥ 20. Let n be a positive even integer and not a power
of two. Assume that Bn(P ) does not have a primitive divisor.

We suppose that |a| ≥ 384. Then

1
log |a| − 2 log 2

< 0.22,
K

log |a| − 2 log 2
< 0.766,

L

log |a| − 2 log 2
< 0.722.

(5.12)

From (5.10), (5.12) and using the same argument as for n odd, with Corol-
lary 4.3(b), we have

0.003n2 <

(
0.44 +

1.061
log log n

)
log n+ 0.722.

By using this inequality, we obtain the bound n < 42.4, so n ≤ 42.
From Proposition 4.1(a), (5.10) and (5.12), we have

1
8

(
1
3
− 1

3N2
− ρ(n)

)
n2 < 0.22η(n) + 0.766ω(n) + 1.488.

Using this inequality, we obtain n ≤ 20 or n = 24, 30, 32, 36, 42, for
|a| ≥ 384. Furthermore, recall that we need not consider n = 30, since we
have already eliminated those n divisible by 5.
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Applying Proposition 4.1(b), (5.10) and (5.12), we have

1
8

(
(p+ 1)2

4p2
− ρ(n)

)
n2 < 0.22η(n) + 0.766ω(n) + 0.722.

Using this inequality for the remaining values of n, we obtain n < 20 for
|a| ≥ 384 (n ≤ 14, in fact).

Now assume that −384 < a < 384. Again, we can proceed as in the case
of n odd. First, we use Corollary 4.3(b), Proposition 4.1(a) and Proposi-
tion 4.1(b) to shows that if Bn(P ) has no primitive divisor, then n ≤ 20 for
|a| ≥ 2 and ĥ(P ) ≥ (log |a|)/4.

Then we use Lemma 2.3 to find all points on Ea(Q) with |a| ≤ 384
and 0 < ĥ(P ) ≤ (log |a|)/4 and calculate Bn(P ) until the inequality in
Corollary 4.3(b) is no longer satisfied. Using PARI, 410 such points, P , were
found. Typically, we needed to check Bn(P ) for n up to 20 − 25, although
for a = −12, the search had to continue to n = 52. The entire calculation
took 11 minutes on an ordinary laptop.

5.4. n = 3. As mentioned in the proof of Lemma 3.5, from the arguments
on pages 92–93 of [13], we can write P =

(
b1M

2/e2, b1MN/e3
)

in lowest
terms. By the duplication formula, we have

x(2P ) =
(2b1M4 −N2)2

4M2N2e2
.

x(P ) is a square. Applying Lemma 3.5(a) with m = 2 and n = 1, we
have

(5.13) 0 < (A2B1 −A1B2)2 ≤ B1B3.

Since B1 |B2, we can write B2 = k2B1 for some integer k ≥ 1. Substi-
tuting this expression into (5.13), we obtain

(5.14) 0 < B1(A2 − k2A1)2 ≤ B3.

If |A2 − k2A1| > 3, then from (5.14), this implies that B3 > 32B1 holds.
Therefore from Lemma 3.3, B3 has a primitive divisor.

Assume that |A2 − k2A1| ≤ 3. Then writing A1 = a2
1 and A2 = a2

2 with
a1, a2 ≥ 1, we have

(5.15) |A2 − k2A1| = |(a2 − ka1)(a2 + ka1)| ≤ 3.

From Lemma 6.1(c) of [14], we have ord2(B2) ≥ ord2(B1) + 2 and so
k ≥ 2. By the left-hand inequality of (5.14), a2 6= ka1 and so a2 + ka1 ≤ 3.
Together, these two statements imply that a1 = a2 = 1 and k = 2. Since
A1 = 1 and gcd(b1, e) = gcd(M, e) = 1, it follows that b1 = M = ±1 and
so P = (1/e2,±N/e3). Therefore, x(2P ) = (±2−N2)2/(4N2e2) = 1/

(
4e2
)
,

since A2 = 1 and B2 = k2B1 = 4e2. Hence, N = ±1,±2.
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If N = ±1, then P = (1/e2,±1/e3), which is impossible. Next assume
that N = ±2. Then P =

(
1/e2,±2/e3

)
. Substituting x = 1/e2 and y =

±2/e3 into y2 = x3 +ax, we obtain a = 3 and e = ±1. That is, P = (1,±2).
In this case, B2 = 4 and B3 = 9. Thus B3 has a primitive divisor.

x(P ) < 0. Applying Lemma 3.5(b) with m = 2 and n = 1, we have

0 < (A2B1 −A1B2)2 ≤ 4B1B3.

Once again we can write B2 = k2B1 for some integer k ≥ 1 and we have

0 < B1(A2 − k2A1)2 ≤ 4B3.

In fact, from Lemma 3.5(a), we have

0 < B1(A2 − k2A1)2 ≤ B3,

unless a ≡ 4 mod 16 and ord2(x(P )) = 1.
If |A2 − k2A1| > 6, then B3 > 32B1 holds. Therefore from Lemma 3.3,

B3 has a primitive divisor.
Assume that |A2 − k2A1| ≤ 6 with 2 ‖ A1 or |A2 − k2A1| ≤ 3 otherwise.

Since A1 < 0 and A2 is a square, we have (A1, A2, k) = (−2, 4, 1), (−2, 1, 1)
or (−1, 1, 1).

In the first case, b1 = −2 and M = ±1, so P = (−2/e2,±2N/e3).
Therefore, x(2P ) = (−4 − N2)2/(4N2e2) = 4/e2 since A2 = 4 and B2 =
k2B1 = e2. Hence (−4 − N2)/(2N) = ±2, that is N = ±2 and so P =
(−2/e2,±4/e3). In order for P to be on the curve Ea, a = −12/e4. This
implies that e = ±1 and a = −12. In this case, B1 = B2 = 1 and B3 = 3, so
B3 has a primitive divisor.

In the second case (i.e., (A1, A2, k) = (−2, 1, 1)), once again we have
x(2P ) = (−4−N2)2/(4N2e2) and B2 = k2B1 = e2. Since A2 = 1, x(2P ) =
1/e2, so (−4 − N2)/(2N) = ±1. There are no such rational N and hence
this case is impossible too.

Lastly, we consider (A1, A2, k) = (−1, 1, 1). Here we have b1 = −1 and
M = ±1, so P = (−1/e2,±N/e3). Therefore, x(2P ) = (−2−N2)2/(4N2e2)
= 1/e2 since A2 = 1 and B2 = k2B1 = e2. Hence (−2 − N2)/(2N) = ±1.
There are no such rational N and hence this case is impossible too.

Thus B3 always has a primitive divisor in this case too.

5.5. 4 ≤ n ≤ 20. In Section 2 of [7], Ingram showed that there are no
solutions for n = 5 and 7. In Section 3 of the same paper, he proves the same
for n = 4, 6, 10, 12, 14, 18 and 20, provided that a = −N2. However, writing
x(P ) = A/B2 and setting X = A2/(A2, a) and Y = aB4/(A2, a), rather
than Ingram’s values, we find that the polynomials, Ψn, are still reducible
(although not always with as many factors as in the a = −N2 case). Hence
his same arguments hold (basically, for each of the possible values of the
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factors use a reduction technique to eliminate one of the variables and then
factor the resulting single-variable polynomial to solve for X).

One can easily show that if Bn(E,P ) has no primitive divisor, then
neither does Brad(n)(E, (n/rad(n))P ).

This completes the proof.

Lastly, note that the results for these values of n hold without any con-
ditions on x(P ) and thus provide evidence for our claim in Remark 1.5.
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