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On the number of solutions of simultaneous Pell equations

by

Pingzhi Yuan (Changsha)

1. Introduction. In this paper, we shall investigate positive integer
solutions (x, y, z) of the simultaneous Diophantine equations

x2 − az2 = y2 − bz2 = 1,(1)

where a and b are distinct nonzero integers. These and related equations
have connections with polygonal numbers, Pi-sets and elliptic curves. Here
we refer the reader to [7], [8], [11] and [12].

Denote by N(a, b) the number of solutions to (1) in positive integers
(x, y, z). Let m be a positive integer,

n(l,m) =
(m+

√
m2 − 1)2l − (m−

√
m2 − 1)2l

4
√
m2 − 1

,

and let Nl,m = N(a, b), where (a, b) = (m2 − 1, n2(l,m) − 1). In [3] and
[4], combining bounds for linear forms in logarithms of algebraic numbers
with techniques from computational Diophantine approximation, Bennett,
sharpening work of Masser and Rickert [10], proved

Theorem 1.1 ([3], Th.1.1). If a and b are distinct positive integers,
then the simultaneous equations (1) have at most three solutions (x, y, z) in
positive integers.

Theorem 1.2 ([4], Th.1.3). If l and m are positive integers with l ≥ 2
and m ≥ 3 · 107

√
l log2 l, then Nl,m = 2.

Bennett [4] also proposed

Conjecture 1.3. If a and b are distinct positive integers, then N(a, b)
≤ 2.

In this paper, we prove
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Theorem 1.4. If a and b are distinct positive integers with max(a, b) ≥
1.4 · 1057, then N(a, b) ≤ 2.

This result provides an almost affirmative answer to Conjecture 1.3.
Lower bounds for linear forms in the logarithms of (three) algebraic numbers
allow one to effectively solve any given system of equations of the form (1),
in conjunction with techniques from computational Diophantine approxima-
tion (see e.g. [1] where it is shown that (1) has at most one positive solution
for 2 ≤ a < b ≤ 200). That being said, the computations remaining to
resolve Conjecture 1.3 appear to be highly nontrivial.

2. Some lemmas. Suppose that b > a ≥ 2 are nonsquare integers. Let
us first note (see [4] and later in this paper) that we can restrict ourselves
to a and b of the form a = m2 − 1 and b = n2 − 1 (m < n) without loss of
generality (provided N(a, b) ≥ 1). Henceforth, we assume that a and b are
of this form and put α = m+

√
m2 − 1, β = n+

√
n2 − 1,

Uk =
αk − α−k

2
√
a

, U ′k =
βk − β−k

2
√
b

, Vk =
αk + α−k

2
.(2)

Lemma 2.1. Let k0, k1, k2 and q be positive integers with k2 = 2qk1±k0,
0 ≤ k0 ≤ k1. Then Uk2 ≡ ±Uk0 (modUk1).

Proof. Since Uk2∓Uk0 = 2Vkq1±k0Uqk1 by direct computation, the lemma
follows readily from the well known fact that if Um 6= 1, then Um |Un if and
only if m |n (see [13]).

Suppose that (x, y, z) is a positive integer solution to (1). Then

z =
αl − α−l

2
√
a

=
βk − β−k

2
√
b

(3)

for some positive integers l and k. Since n > m, from (3) it is readily seen
that √

b/a αl > βk > αl(4)

and (β/α)2 > b/a, so if k > 1 and l > 1, then l > k.
Let

Λ = 1
2 log(b/a) + l logα− k log β.(5)

Then (3) implies that

0 < Λ = log(1− β−2k)− log(1− α−2l) < − log(1− α−2l) <
α2

α2 − 1
· α−2l.

It follows that

logΛ < −2l logα+ log
α2

α2 − 1
.(6)
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Suppose that N(a, b) ≥ 3. Then from Theorem 1.1 of [3], we have N(a, b)
= 3. Let (xi, yi, zi) (i = 1, 2, 3) be positive solutions to (1). Then

zi =
αli − α−li

2
√
a

=
βki − β−ki

2
√
b

for positive integers li and ki (i = 1, 2, 3) with 1 = k1 < k2 < k3 and 1 =
l1 < l2 < l3. From the discussion above, we also have (x1, y1, z1) = (m,n, 1)
and li > ki (i = 2, 3).

Lemma 2.2. With the above notations, we have either l2 | l3 and k2 | k3,
or l3 = 2ql2 ± 1 and k3 = 2q1k2 ± 1 for some positive integers q and q1.

Proof. If l2 | l3, then z2 | z3, so k2 | k3. Conversely, if k2 | k3, then l2 | l3.
Now assume that l2 - l3, k2 - k3, and let

l3 = 2ql2 ± l0, 0 < l0 < l2, k3 = 2q1k2 ± k0, 0 < k0 < k2(7)

for positive integers q, q1, k0 and l0. By Lemma 2.1 we have z3 = Ul3 ≡ ±Ul0
(mod z2) and z3 = U ′k3

≡ ±U ′k0
(mod z2), so

Ul0 ≡ ±U ′k0
(mod z2).(8)

Notice that z2 = Ul2 = U ′k2
and max(Ul0 , U

′
k0

) < 1
2 max(Ul2 , U

′
k2

) = 1
2z2, so

(8) holds if and only if Ul0 = U ′k0
and (7) takes the same plus or minus sign.

From our assumptions, we thus have l0 = k0 = 1.

Note. With a similar argument as that in the above proof, if z0 is the
least positive integer z of the solution (x, y, z) of (1), then z0 | z for any
solution (x, y, z) of (1). This justifies our restriction.

To deduce a lower bound of l3, we require

Lemma 2.3 ([6] or [14]). The equation x4−Dy2 = 1 has at most one solu-
tion in positive integers x, y unless D = 1785, 4 ·1785, 16 ·1785 in which case
the equation has two positive integer solutions (x, y) = (13, 4), (239, 1352);
(x, y) = (13, 2), (239, 676); (x, y) = (13, 1), (239, 338) respectively. If the
equation x4 − Dy2 = 1 has one solution (x1, y1) in positive integers, then
x2

1 = x0 or x2
1 = 2x2

0 − 1, where x0 + y0
√
D is the fundamental solution of

the Pell equation x2 −Dy2 = 1.

A result of Ljunggren [9] ensures that the equation Ax2−By4 =1 (A>1)
has at most one positive integer solution. Let (u, v) be the solution in positive
integers of Ax2 − By2 = 1 with u minimal, and put η = u

√
A + v

√
B. Let

v = k2l with l squarefree. If a solution to Ax2 − By4 = 1 exists, then
x
√
A+ y2

√
B = ηl. With these results, we get

Lemma 2.4. k2 6= 3.

Proof. If k2 = 3, then z2 = U ′3 = 4n2 − 1 = Ul2 , from which it follows
that l2 is odd, say, l2 = 2l+ 1. Therefore Ul2 + 1 = 2Ul+1Vl = 4n2. We claim
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that l is odd. In fact, if l is even, then 2 -Vl and 2 -Ul+1, which contradicts
2VlUl+1 = 4n2. Since l is odd, we have (Vl, Ul+1) = m. So Ul+1/U2 = 2 and
Vl/V2 = 2 (hereafter 2 stands for a perfect square), that is, Ul+1 = 2my2.
Since V 2

l+1 − (m2 − 1)U2
l+1 = 1, we have

V 2
l+1 − 4m2(m2 − 1)y4 = 1.(9)

Notice that α2 = 2m2 − 1 + 2m
√
m2 − 1, so

Vl+1 ≡
{

1 (mod 4m2(m2 − 1)) if 4 | l + 1,
−1 (mod 2m2) if 4 - l + 1.

(10)

Combining (9) with (10) leads to the following two possibilities.

Case I. If 4 | l+ 1, then Vl+1− 1 = 2m2(m2 − 1)A4 and Vl+1− 1 = 2B4

for some A and B. This leads to B4−m2(m2−1)A4 = 1, which is impossible
by Lemma 2.3 since the fundamental solution of x2 −m2(m2 − 1)y2 = 1 is
2m2 − 1 + 2

√
m2(m2 − 1).

Case II. If 4 - l+ 1, then Vl+1− 1 = 2(m2− 1)A4 and Vl+1 + 1 = 2m2B4

for some A and B. It follows that m2B4 − (m2 − 1)A4 = 1 has a solution
(B,A) = (1, 1). So by the above result of Ljunggren we have y = 1, l = 1
and l2 = 3, which contradicts l2 > k2 = 3. This completes the proof of
Lemma 2.4.

Lemma 2.5. If b/a = 2, then N(a, b) = 1.

Proof. Since b/a = 2, we have β = αd for some positive integer d. If
N(a, b) > 1, then there are positive integers l and k with

z2 = Ul = U ′k = Ukd/Ud,(11)

and hence l | kd. The lemma therefore follows from results of Carmichael [5]
and Voutier [15] concerning primitive divisors of Lucas sequences.

Lemma 2.6. If k2 6= 2, then l3 > 2.8l2β.

Proof. If k2 6= 2, then by Lemma 2.4 we have k2 ≥ 4, so z2 = U ′k2
> β3.

By Lemma 2.2 we can divide the proof of this lemma into two cases according
as l2 | l3 or not.

First if l2 | l3, then by Lemma 2.2 we have l3 = ql2, k3 = q1k2 for some
positive integers q and q1. Further

z3

z2
=
Uql2
Ul2

=
U ′q1k2

U ′k2

(12)

implies that q > q1. Considering the second equality in (12) modulo z2
2 , we

have
qxq−1

2 ≡ q1y
q1−1
2 (mod z2

2).(13)
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Since x2
2 ≡ y2

2 ≡ 1 (mod z2
2), we have q2 ≡ q2

1 (mod z2
2) by (13). Hence

q > z2 > β3 and
l3 > l2β

3.

Now if l2 - l3, by Lemma 2.2 we have l3 = 2ql2 ± 1 and k3 = 2q1k2 ± 1
for some positive integers q and q1. From z3 = U ′k3

= Ul3 , we have q > q1.
Notice that β2k2 = 2z2

2(n2 − 1) + 1 + 2y2z2
√
n2 − 1, so

z3 = U ′k3
≡ 2nq1y2z2 ± 1 (mod 2z2

2(n2 − 1)).(14)

Similarly,
z3 = Ul3 ≡ 2mqx2z2 ± 1 (mod 2z2

2(m2 − 1)).(15)

From (14) and (15) we have

mqx2 ≡ nq1y2 (mod z2).(16)

If k2 is even, then n | z2. From (16) and x2
2 ≡ y2

2 ≡ 1 (mod z2
2) we have n |mq

and (mq/n)2 ≡ q2
1 (mod z1/n). From z3 = U ′k3

= Ul3 it is easily seen that
mq 6= nq1. Hence

q1 >

√
z2

n
or

mq

n
>

√
z2

n
.(17)

Since z2 > β3 and q > q1, we have

l3 = 2ql2 ± 1 > 2
(√

β3

n
+ 1
)
l2β − 1 ≥ 2.8l2β.(18)

If k2 is odd, then z2 > β4. So from (16) and x2
2 ≡ y2

2 ≡ 1 (mod z2
2), we have

mq >
√
z2 or nq1 >

√
z2.

It follows that q > q1 > 2β and l3 = 2ql2±1 ≥ 3.8l2β. Lemma 2.6 is proved.

Lemma 2.7. If k2 = 2 and β > 1000, then n = n(l,m) for some positive
integer l and l3 > 1.5l2β2/3.

Proof. Obviously, we just need to prove the latter conclusion. If 2 | k3,
let k3 = 2q1 and l3 = l2q for some positive integers q and q1. We have

qxq−1
2 ≡ q1y

q1−1
2 (mod z2

2).

Notice that z2 = 2n(l,m) and x2
2 ≡ y2

2 ≡ 1 (mod z2
2), so q > z2 = 2n(l,m) >

β+ 1 and l3 = ql2 > l2(β+ 1). If 2 - k3, let k3 = 4q1± 1 and l3 = 2ql2± 1 for
some positive integers q and q1. Similarly, we have

z3 ≡ 2nq1y2z2 ± 1 ≡ ±1 (mod z2
2), z3 ≡ 2mqx2z2 ± 1 (mod z2

2).(19)

From (19) and (x2, z2)=1 we have z2 | 2mq. So q ≥ z2/(2m)=2n(l,m)/(2m)
> 0.759β2/3 and l3 ≥ 2ql2 − 1 > 1.5l2β2/3 (provided β > 1000).

To prove Theorem 1.4, we still require an estimate for linear forms in
the logarithms of (three) algebraic numbers. We use the following result
of Baker and Wüstholz [2]. Let α1, . . . , αn (with n ≥ 2) denote algebraic
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numbers not equal to 0 or 1. Let K = Q(α1, . . . , αn) and set d = [K : Q].
Define a modified height by the formula

hm(α) = max{h(α), |logα|/d, 1/d},
where h(α) denotes the standard logarithmic Weil height of an algebraic
number α.

Theorem 2.8 (Baker–Wüstholz [2]). Let b1, . . . , bn be integers such that

Λ = b1 logα1 + . . .+ bn logαn
is nonzero. Then if B = max{|b1|, . . . , |bn|} ≥ 3 we have the inequality

log |Λ| > −C1hm(α1) . . . hm(αn) logB

with
C1 = 18(n+ 1)!nn+1(32d)n+2 log(2nd).

3. Proof of Theorem 1.4. We apply Theorem 2.8 with

α1 =
√
b/a, α2 = α, α3 = β, b1 = 1, b2 = l3, b3 = −k3, n = 3.

By Lemma 2.5 we may take d = 4, and

hm(α1) = 1
2 log b < β, hm(α2) = 1

2 logα, hm(α3) = 1
2 log β, B = l3.

Therefore by Theorem 2.8 we have

log |Λ| > −9.56 · 1014 logα log2 β log l3.(20)

If k2 6= 2, combining (20) with (6), by Lemma 2.6 we have

l3 < 4.78 · 1014 log3 l3.

It follows that l3 < 4.5 · 1019. Therefore by Lemma 2.6 and l2 ≥ 6, we have

b < 1.8 · 1036.

If k2 = 2, combining (20) and (6), by Lemma 2.7 we have

l3 < 1.0775 · 1015 log3 l3.

It follows that l3 < 1.06 · 1020. Therefore by Lemma 2.7 and l2 ≥ 4, we have

b < 1.4 · 1057.

This completes the proof.

Acknowledgements. I am grateful to the referee for his/her valuable
suggestions.
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