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Incomplete character sums over finite fields and their
application to the interpolation of the discrete

logarithm by Boolean functions

by

Tanja Lange (Essen) and Arne Winterhof (Wien)

1. Introduction. Let Fq denote the finite field of order q = pr with a
prime p and an integer r ≥ 1. Let {β0, . . . , βr−1} be a basis of Fq over Fp
and define ξk for 0 ≤ k < q by

ξk = k0β0 + k1β1 + . . .+ kr−1βr−1

if
k = k0 + k1p+ . . .+ kr−1p

r−1 with 0 ≤ ki < p for 0 ≤ i < r.

For 1 ≤ K ≤ p put

KK = {k = k0 + k1p+ . . .+ kr−1p
r−1 | 0 ≤ ki < K for 0 ≤ i < r}.

Consider the incomplete character sums
∑

k∈KK χ(f(ξk)), where f ∈ Fq[x]
and χ is a multiplicative character of Fq. Excluding trivial cases we show in
Section 2 that these sums are at most of the order of magnitude

O(K1/2p1/4) if r = 1 and O(Kr−1p1/2) if r ≥ 2,(1)

which improves previous results obtained with the standard method of Pólya
and Vinogradov for K of the order of magnitude between O(p1/2) and
O(p1/2(log(p))2) if r = 1 and O(p1/2(log(p))r/(r−1)) if r ≥ 2.

If γ is a primitive element of Fq and ξ ∈ Fq, ξ 6= 0, then ξ = γl for
some integer l with 0 ≤ l ≤ q− 2 and we say that l is the discrete logarithm
(or index ) of ξ to the base γ, denoted by indγ(ξ) = l. For many practical
purposes it would be sufficient to have an easily computable function which
represents indγ(ξ) for almost all ξ 6= 0 or at least its rightmost bit, which
is obviously 0 if ξ is a square in Fq and 1 if ξ is a non-square in Fq in the
case of p > 2. To obtain a lower bound on the complexity of the discrete
logarithm we investigate interpolating Boolean functions.
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A Boolean function B can be represented as a multilinear polynomial
over F2 and the sparsity (or weight) spr(B) of B is the number of non-zero
coefficients of B. In the special case when r = 1 and β0 = 1, i.e. ξk = k
for 0 ≤ k < p, and p > 2, in Coppersmith and Shparlinski [1, Theorem 5]
and Shparlinski [10, Theorem 6.1] it was shown that for a Boolean function
B(U1, . . . , Us) of s = blog2(p)c variables satisfying

B(u1, . . . , us) =
{

0 if k is a quadratic residue in Fp,
1 if k is a quadratic non-residue in Fp,

where k = u1 + . . .+ us2s−1 with uj ∈ {0, 1} for 1 ≤ j ≤ s and 1 ≤ k < 2s,
we have

spr(B) ≥ 2−3/2p1/4(log2(p))−1/2 − 1.(2)

Shparlinski mentioned in [10, p. 145] that using a “symmetrization” trick one
can replace p1/4(log2(p))−1/2 by p1/4 in (2) with a slightly worse constant.
In Section 3 we extend the latter result to arbitrary r. The proof is based
on the new estimate (1) for incomplete character sums.

2. A bound for incomplete character sums. Let χ be a non-trivial
multiplicative character of Fq of order t, with the convention χ(0) = 0, and
let f(x) ∈ Fq[x] be a monic polynomial of positive degree that is not a tth
power of a polynomial. Let v be the number of distinct roots of f(x) in its
splitting field over Fq. First we recall Weil’s bound for complete character
sums.

Lemma 1. We have∣∣∣
∑

ξ∈Fq
χ(f(ξ))

∣∣∣ ≤ (v − 1)q1/2.

Proof. Lidl and Niederreiter [4, Theorem 5.41].

Now we prove a new bound for incomplete character sums.

Theorem 1. For 1 ≤ K < p we have∣∣∣
∑

k∈KK
χ(f(ξk))

∣∣∣ < Kr/2(3v − 1)1/2q1/4 + rp1/2Kr−1.

Proof. We modify the method used in Niederreiter and Shparlinski [7].
(See also Gutierrez, Niederreiter, and Shparlinski [3], Niederreiter and
Shparlinski [6], and Niederreiter and Winterhof [8].) For any integer

m = m0 +m1p+ . . .+mr−1p
r−1 with 0 ≤ mi < p for 0 ≤ i < r

we have∣∣∣
∑

k∈KK
χ(f(ξk))−

∑

k∈KK
χ(f(ξk + ξm))

∣∣∣ ≤ 2(m0 + . . .+mr−1)Kr−1.
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(We have ξk + ξm 6= ξl for all l ∈ KK only if at least one coordinate ki of ξk
satisfies ki +mi ≥ K. The number of possible k ∈ KK with this property is
at most (m0 + . . .+mr−1)Kr−1. Similarly we can verify that the number of
k with ξk 6= ξl + ξm for all l ∈ KK is at most (m0 + . . .+mr−1)Kr−1.) Then
for any integer M with 1 ≤M ≤ p we have

2
∑

m∈KM
(m0 + . . .+mr−1) = rM r(M − 1)

and
M r
∣∣∣
∑

k∈KK
χ(f(ξk))

∣∣∣ ≤W + rM r(M − 1)Kr−1,(3)

where

W =
∣∣∣
∑

k∈KK

∑

m∈KM
χ(f(ξk + ξm))

∣∣∣ ≤
∑

k∈KK

∣∣∣
∑

m∈KM
χ(f(ξk + ξm))

∣∣∣.

Using the Cauchy–Schwarz inequality we obtain

W 2 ≤ Kr
∑

k∈KK

∣∣∣
∑

m∈KM
χ(f(ξk + ξm))

∣∣∣
2
≤ Kr

∑

ξ∈Fq

∣∣∣
∑

m∈KM
χ(f(ξ + ξm))

∣∣∣
2

= Kr
∑

m,m′∈KM

∑

ξ∈Fq
χ(f(ξ + ξm)f(ξ + ξm′)

t−1).

Let f(x) =
∏v
j=1(x− νj)cj be the factorization of f(x) in its splitting field.

Since f(x) is not a tth power, there exists some h with 1 ≤ h ≤ v and
ch 6≡ 0 mod t. If

ξm = ξm′ + νh − νj for some j with 1 ≤ j ≤ v,(4)

then the sum over ξ is estimated trivially by q. (There are at most v possible
indices m′ satisfying (4) for given m and h.) If ξm 6= ξm′ + νh − νj for all j
with 1 ≤ j ≤ v, then the polynomial g(x) = f(x+ ξm)f(x+ ξm′)t−1 is not
a tth power and has at most 2v distinct zeros. Hence,

W 2 ≤ KrM rvq +KrM2r(2v − 1)q1/2

by Lemma 1. Choosing M = dp1/2e we get

W 2/M2r < Kr(3v − 1)q1/2

and the assertion by (3).

Corollary 1. For 1 ≤ K < p we have
∣∣∣
∑

k∈KK
χ(f(ξk))

∣∣∣ <
{

2.2K1/2v1/2p1/4 if r = 1,
(31/r + r)Kr−1v1/rp1/2 if r ≥ 2.

Proof. Since otherwise the bound is trivial we may assume that either
r = 1 and K ≥ 4.84p1/2 or r ≥ 2 and K ≥ 31/rv1/rp1/2. Then Theorem 1
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yields for r = 1,∣∣∣
∑

k∈KK
χ(f(ξk))

∣∣∣ < K1/2v1/2p1/4(
√

3 +K−1/2p1/4) < 2.2K1/2v1/2p1/4,

and for r ≥ 2,∣∣∣
∑

k∈KK
χ(f(ξk))

∣∣∣ < Kr−1v1/rp1/2(31/2K−r/2+1v1/2−1/rpr/4−1/2 + r)

≤ (31/r + r)Kr−1v1/rp1/2,

which completes the proof.

Remarks. 1. The standard method of Pólya and Vinogradov yields∣∣∣
∑

k∈KK
χ(f(ξk))

∣∣∣ < vq1/2(1 + log(p))r(5)

(see Davenport and Lewis [2, Theorem 1] for linear polynomials and Win-
terhof [11, Theorem 2] for arbitrary polynomials). Equation (5) is only non-
trivial if K is at least of the order of magnitude O(p1/2 log(p)). Theorem 1 is
non-trivial if K is at least of the order of magnitude O(p1/2) and it is better
than (5) if K is at most of the order of magnitude O(p1/2(log(p))2) if r = 1
and O(p1/2(log(p))r/(r−1)) if r ≥ 2.

2. In [9, Theorem 3.1] Niederreiter and the second author showed that
for any 1 ≤ K < q we have

∣∣∣
K−1∑

k=0

χ(f(ξk))
∣∣∣ < K1/2(3v − 1)1/2q1/4 + q1/2.(6)

For r = 1 Theorem 1 and (6) coincide.

3. Interpolation by Boolean functions. In this section we give lower
bounds for the sparsity and the degree of a Boolean function representing
the rightmost bit of the discrete logarithm for almost all non-zero elements
of Fq.

Theorem 2. Let p > 2. Put s = blog2(p)c, and let

B(U11, . . . , U1s, . . . , Ur1, . . . , Urs)

be a Boolean function satisfying

B(u11, . . . , u1s, . . . , ur1, . . . , urs) =
{

0 if ξk is a square in Fq,
1 if ξk is a non-square in Fq,

where ki−1 = ui1 + ui22 + . . . + uis2s−1 with uij ∈ {0, 1} for 1 ≤ j ≤ s,
1 ≤ i ≤ r, and k ∈ K2s \ {0}. Then spr(B) is at least of the order of
magnitude O(q1/4), where the implied constant depends only on r.
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Proof. Define the integer a by 2a > (spr(B) + 1)1/r ≥ 2a−1 and put
M = {0, . . . , 2a − 1}r \ {(0, . . . , 0)}. For each m = (m1, . . . ,mr) ∈ M we
consider the function

Bm(U11, . . . , U1,s−a, . . . , Ur1, . . . , Ur,s−a)

:= B(U11, . . . , U1,s−a,m11, . . . ,m1a, . . . , Ur1, . . . , Ur,s−a,mr1, . . . ,mra),

where mi = mi1 + . . . + mia2a−1 with mij ∈ {0, 1} for 1 ≤ j ≤ a and
1 ≤ i ≤ r.

The number of distinct monomials in U11, . . . , U1,s−a, . . . , Ur1, . . . , Ur,s−a
occurring in all the Bm does not exceed spr(B). Since |M| = 2ar − 1 >
spr(B) we can find a non-trivial linear combination∑

m∈M
cmBm(U11, . . . , U1,s−a, . . . , Ur1, . . . , Ur,s−a) with cm ∈ F2 for m∈M,

which vanishes identically.
Let χ be the quadratic character of Fq. By the condition of the theorem

we have

χ(ξk) = (−1)B(u11,...,u1s,...,ur1,...,urs) for k ∈ K2s \ {0}.
Put K = 2s−a. Then for k = k0 + k1p+ . . .+ kr−1p

r−1 ∈ KK we have
∏

m∈M
χ((k0 +m12s−a)β0 + . . .+ (kr−1 +mr2s−a)βr−1)cm

= (−1)
∑
m∈M cmBm(u11,...,u1,s−a,...,ur1,...,ur,s−a) = 1

and thus

2(s−a)r =
∑

k∈KK
χ
( ∏

m∈M
((k0 +m12s−a)β0 + . . .+ (kr−1 +mr2s−a)βr−1)cm

)
.

Hence, for r = 1 Corollary 1 yields

2s−a < 2.2 · 2s/2p1/4

and thus
2a > 0.45 · 2s/2p−1/4 ≥ 0.31p1/4.

Hence,
spr(B) ≥ 2a−1 − 1 > 0.15p1/4 − 1.(7)

For r ≥ 2 Corollary 1 yields

2(s−a)r < (31/r + r)2(s−a)(r−1)2ap1/2.

Hence,
22a > (31/r + r)−1p−1/22s ≥ 2−1(31/r + r)−1p1/2

and thus

(spr(B) + 1)1/r ≥ 2a−1 ≥ 2−3/2(31/r + r)−1/2p1/4,(8)

which yields the assertion.
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Using this bound we obtain the following bound on the degree of the
Boolean function B.

Corollary 2. Under the conditions of Theorem 2 for any r ≥ 1 and
any ε > 0 there exists a p0(ε, r) such that for all p ≥ p0 we have

deg(B) > (0.04− ε)rs.
Proof. Put n = deg(B). Since otherwise the corollary is trivial we may

suppose 2n ≤ rs. Obviously,

spr(B) ≤
n∑

i=0

(
rs

i

)
≤ 2rsH(n/(rs))

by van Lint [5, Theorem 1.4.5], where H(x) = −x log2(x)−(1−x) log2(1−x)
for 0 < x ≤ 1/2 denotes the binary entropy function. Equations (7) and (8)
yield

H

(
n

rs

)
≥ 1

4
+
c

s

with a constant c < 0 depending only on r and thus

n ≥ (θ − ε)rs for p ≥ p0,

where θ > 0.04 denotes the solution of H(x) = 1/4.

Remarks. 1. Theorem 2 and Corollary 2 can be improved if 2 is a non-
square in Fq, i.e. if and only if q ≡ ±3 mod 8. Then we define F (U11, . . . ,
U1,s−1, . . . , Ur1, . . . , Ur,s−1) by

F (U11, . . . , U1,s−1, . . . , Ur1, . . . , Ur,s−1)

:= B(U11, . . . , U1,s−1, 0, . . . , Ur1, . . . , Ur,s−1, 0)

+B(0, U11, . . . , U1,s−1, . . . , 0, Ur1, . . . , Ur,s−1).

We have F (u11, . . . , u1,s−1, . . . , ur1, . . . , ur,s−1) = 1 for every non-zero
ξk with k ∈ K2s−1 since exactly one of ξk and 2ξk is a square in Fq.
With F (0, . . . , 0) = 0 (which does not depend on the ambiguous value of
B(0, . . . , 0)) we get

F (U11, . . . , Ur,s−1) =
∏

1≤i≤r
1≤j≤s−1

(1 + Uij) + 1.

From the definition of F we have

deg(B) ≥ deg(F ) = r(s− 1)

and

spr(B) ≥ d0.5spr(F )e = d0.5(2r(s−1) − 1)e = 2r(s−1)−1 ≥ q

22r+1 .

For r = 1 these results were derived by Shparlinski [10, Section 6].
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2. In the same way as in the proof of Shparlinski [10, Theorem 6.2] one
can use Corollary 2 to deduce a lower bound for the depth d of bounded
fan-in Boolean circuits representing the rightmost bit of indγ(ξk) for all
k ∈ K2s \ {0} in case of arbitrary r:

d ≥ log2(rs) +O(1).

Acknowledgments. This paper was written during a visit of the first
author to the Austrian Academy of Sciences. She wishes to thank Prof.
H. Niederreiter and the Institute of Discrete Mathematics for hospitality
and financial support.

References

[1] D. Coppersmith and I. E. Shparlinski, On polynomial approximation of the discrete
logarithm and the Diffie–Hellman mapping , J. Cryptology 13 (2000), 339–360.

[2] H. Davenport and D. J. Lewis, Character sums and primitive roots in finite fields,
Rend. Circ. Mat. Palermo (2) 12 (1963), 129–136.

[3] J. Gutierrez, H. Niederreiter and I. E. Shparlinski, On the multidimensional dis-
tribution of inversive congruential pseudorandom numbers in parts of the period ,
Monatsh. Math. 129 (2000), 31–36.

[4] R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, Cambridge, 1997.
[5] J. H. van Lint, Introduction to Coding Theory , Springer, New York, 1982.
[6] H. Niederreiter and I. E. Shparlinski, Exponential sums and the distribution of in-

versive congruential pseudorandom numbers with prime-power modulus, Acta Arith.
92 (2000), 89–98.

[7] —, —, On the distribution of inversive congruential pseudorandom numbers in parts
of the period , Math. Comp. 70 (2001), 1569–1574.

[8] H. Niederreiter and A. Winterhof, Incomplete exponential sums over finite fields and
their applications to new inversive pseudorandom number generators, Acta Arith.
93 (2000), 387–399.

[9] —, —, Incomplete character sums over finite fields and polynomial interpolation of
the discrete logarithm, Finite Fields Appl., to appear.

[10] I. E. Shparlinski, Number Theoretic Methods in Cryptography: Complexity Lower
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