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1. Introduction. Let p ≥ 2 be a prime and q = ps with s ∈ N (s ≥ 1).
Denote by Fq the finite field with q elements and by Fq[T ] the integral
domain of polynomials with coefficients in Fq. The fraction field of Fq[T ]
is denoted by Fq(T ). It was shown in [11] that a value of the Carlitz–Goss
gamma function ΠT is transcendental over Fq(T ) if and only if the argument
is not an element of N = {0, 1, 2, . . .}. Using the same idea and that of [3],
we shall show that a value of the T -adic Carlitz–Goss gamma function ΠT

is transcendental over Fq(T ) if and only if the q-adic coefficients of the
argument are not ultimately constant.

For the convenience of the reader, we shall sometimes give more details
than needed for this purpose.

2. Carlitz gamma function. The factorial function Π for the ring
Fq[T ] was first introduced by L. Carlitz [4].

For any j ∈ N, let Dj be the product of all monic polynomials of degree
j, i.e.,

Dj =
∏

P monic in Fq[T ]
degP=j

P.

In particular we have D0 = 1. Now define the factorial function Π as follows.
For each n ∈ N with standard q-adic expansion n =

∑k
j=0 njq

j (0 ≤
nj ≤ q − 1), put Π(n) :=

∏k
j=0D

nj
j . The gamma function Γ is defined by

Γ (n+ 1) := Π(n).
Let P be a monic prime polynomial. Denote by vP the P -adic valuation,

i.e., for every Q ∈ Fq[T ], vP (Q) is the greatest integer k such that P k divides
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Q in Fq[T ]. With these definitions and notations, we have

Π(n) =
∏

P monic prime

PnP(1)

where for each monic prime polynomial P, nP :=vP (Π(n))=
∑∞

l=1bn/N(P )lc,
N(P ) is the cardinality of the residue class field Fq[T ]/PFq[T ], i.e., N(P ) =
qdegP and for any real number x, bxc means the integral part of x.

Relation (1) noticed by W. Sinnott explains partially why Π is called
the factorial function (we refer to [12] and the references there for several
other reasons why Π and Γ are good analogues of the classical factorial and
gamma functions). In fact, this prime polynomial factorization is an exact
analogue of the classical prime number factorization formula

n! =
∏

r prime

rnr(2)

where for each prime number r, nr =
∑∞

l=1bn/N(r)lc and N(r) is the car-
dinality of the residue class field Z/rZ, i.e., N(r) = r.

The analogy between (1) and (2) reveals a surprising similarity between
the two integral domains Fq[T ] and Z. Note in particular that the multiplica-
tive group Fq[T ]× of Fq[T ] is F×q = Fq\{0} and Z× = {1,−1}, thus monic
polynomials correspond to positive integers and monic prime polynomials
correspond to prime numbers (see [12] for more discussion).

3. Some properties of the integral domain Fq[T ]. We give two well
known results useful for our later study.

Lemma 1. For each j ∈ N (j ≥ 1), we have

[j] := T q
j − T =

∏

P monic prime in Fq[T ]
degP |j

P.(3)

Proof. Let Ωp be an algebraic closure of Fp. The set of all roots of [j] in
Ωp forms a subfield of Ωp isomorphic to the finite field Fqj . Let P ∈ Fq[T ]
be a monic prime polynomial of degree l and α ∈ Ωp be a root of P . The
field Fq(α) is a Fq-vector space of dimension l, thus isomorphic to Fql . But
Fql is a subfield of Fqj if and only if l | j. Moreover P divides [j] in Fq[T ] if
and only if [j](α) = 0, which is equivalent to saying that Fql is a subfield of
Fqj . So P divides [j] in Fq[T ] if and only if l divides j. But Fq[T ] is factorial
and every root in Ωp of [j] is simple, so [j] is the product of all monic prime
polynomials in Fq[T ] whose degree divides j.



Transcendence, automata theory and gamma functions 41

Lemma 2. For each j ∈ N (j ≥ 1), we have

Dj =
j−1∏

l=0

[j − l]ql =
j−1∏

l=0

(T q
j − T ql).

Proof. For any fixed j ∈ N (j ≥ 1), put Bj =
∏j−1
l=0 [j − l]ql . Since Dj

and Bj are monic and the integral domain Fq[T ] is factorial, we need only
show that for any monic prime polynomial P ∈ Fq[T ] of degree d, we have
vP (Dj) = vP (Bj).

Clearly for j < d, vP (Dj) = vP (Bj) = 0. We can thus assume j ≥ d.
By Lemma 1, for any l ∈ N (l ≥ 1), the monic polynomial [l] is the

product of all monic prime polynomials in Fq[T ] whose degrees divide l. So
vP ([l]) equals 0 or 1 and vP ([l]) = 1 if and only if d divides l. Consequently,

vP (Bj) =
j−1∑

l=0

qlvP ([j − l]) =
bj/dc∑

k=1

qj−kd.

For each m ∈ N, define Sm = {Q ∈ Fq[T ] | Q monic and degQ =
m}. Clearly Sm has qm elements. But for any m ∈ N (m ≥ d), obviously
Q ∈ Sm is a multiple of P if and only if Q ∈ PSm−d. Thus vP (Dm) =
qm−d+vP (Dm−d) for any m ∈ N satisfying m ≥ d. By recurrence, we obtain
vP (Dj) =

∑bj/dc
k=1 qj−kd = vP (Bj).

Now we give a proof of the prime polynomial factorization formula (1).
Let P be a monic prime polynomial of degree d. For each n ∈ N with

standard q-adic expansion n =
∑k

j=0 njq
j (0 ≤ nj ≤ q − 1), by virtue of

Lemma 2, we have

nP := vP (Π(n)) =
k∑

j=1

njvP (Dj) =
k∑

j=1

nj

bj/dc∑

l=1

qj−ld.

By interchanging the last two summations, we obtain immediately

nP =
bk/dc∑

l=1

k∑

j=ld

njq
j−ld =

bk/dc∑

l=1

bn/qdlc =
∞∑

l=1

bn/N(P )lc.

4. Carlitz–Goss gamma functions. We give a quick introduction
to Carlitz–Goss gamma functions ΠT and ΠT (in fact the “true” Carlitz–
Goss gamma functions Γ T and ΓT are defined by Γ T (n) = ΠT (n − 1) and
ΓT (n) = ΠT (n − 1) for any p-adic integer n ∈ Zp). They were invented by
D. Goss to interpolate the factorial function Π (see [8], [10], [12], [9] and
their references for more discussion).

We begin with the ∞-adic interpolation ΠT . For any Q ∈ Fq[T ], its
∞-adic valuation v∞(Q) is just −degQ. Extend v∞ over Fq(T ) and denote
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by Fq((T−1)) the topological completion of Fq(T ) about v∞. Then for any
f ∈ Fq((T−1)), we can write f =

∑∞
l=k a(l)T−l with v∞(f) = k ∈ Z, where

for any l ∈ Z (l ≥ k), we have a(l) ∈ Fq and a(k) 6= 0.
For each j ∈ N, define Dj := Dj/T

degDj . By Lemma 2, we have degDj =
jqj and v∞(Dj − 1) = (q− 1)qj−1 if j ≥ 1. Then Dj tends to 1 in Fq((T−1))
as j →∞. So for n ∈ Zp with n =

∑∞
j=0 njq

j (0 ≤ nj ≤ q − 1), the infinite
product

ΠT (n) :=
∞∏

j=0

D
nj
j := lim

k→∞

k∏

j=0

D
nj
j

converges and defines an element of Fq((T−1)).
Using rather different methods, many authors have studied the tran-

scendence of certain particular values of ΠT (see e.g. [12], [13], [14] and [3]).
J.-P. Allouche was the first to introduce automata theory in the study of
Carlitz–Goss gamma functions (cf. [2] and [3]). By following his idea but im-
proving his method, M. Mendès France and J.-Y. Yao showed the theorem
below (cf. [11]):

Theorem 1. For each n ∈ Zp, the formal Laurent series ΠT (n) is tran-
scendental over the field Fq(T ) if and only if n 6∈ N.

In duality with the ∞-adic valuation v∞, we have the T -adic valuation
vT and the corresponding T -adic interpolation ΠT .

Denote by Fq((T )) the T -adic completion of Fq(T ). Then every formal
power series f ∈ Fq((T )) takes the form f =

∑∞
l=k a(l)T l with vT (f) = k ∈

Z, where for any l ∈ Z (l ≥ k), we have a(l) ∈ Fq and a(k) 6= 0.
For any j ∈ N, denote by Dj,T the product of all monic polynomials in

Fq[T ] of degree j which are prime to T . Trivially D0,T = D0 = 1. Now fix
j ∈ N such that j ≥ 1. Clearly in Fq[T ], a monic polynomial of degree j is
divisible by T if and only if it is a product of T with a monic polynomial of
degree j − 1. But there are exactly qj−1 monic polynomials of degree j − 1.
So Dj,T = Dj/T

qj−1
Dj−1.

In [8], D. Goss showed that −Dj,T tends T -adically to 1 as j →∞. Below
we reproduce his proof which is quite simple and instructive.

Fix j ∈ N (j > 1). If Q ∈ Fq[T ] is a monic polynomial of degree j, we can
decompose Q into Q = T j + B with degB < deg T j = j. Clearly Q and T
are coprime if and only if B and T are coprime. Denote by (Fq[T ]/T jFq[T ])×

the multiplicative group of Fq[T ]/T jFq[T ]. For any g ∈ (Fq[T ]/T jFq[T ])×,
g = g−1 if and only if g = ±1 (modT j), hence we have

∏

g∈(Fq[T ]/T jFq [T ])×

g = −1.

Note that for any B ∈ Fq[T ] with degB < j, the residue class B (mod T j)
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contains only one monic polynomial of degree j. Then we have

Dj,T =
∏

gcd(Q,T )=1
degQ=j

Q ≡
∏

gcd(B,T )=1
degB<j

B (modT j) ≡ −1 (modT j),

which implies that −Dj,T tends T -adically to 1 as j → ∞. Thus for any
p-adic integer n ∈ Zp with n =

∑∞
j=0 njq

j (0 ≤ nj ≤ q − 1), the infinite
product

ΠT (n) :=
∞∏

j=0

(−Dj,T )nj

converges and defines an element of Fq((T )).
Analogous to Theorem 1, we have a similar result about ΠT .

Theorem 2. Let n =
∑∞

j=0 njq
j (0 ≤ nj ≤ q − 1) be a p-adic integer.

Then ΠT (n) is algebraic over Fq(T ) if and only if the sequence (nj)j≥0 is
ultimately constant.

5. Proof of the sufficiency of Theorem 2. Let n ∈ Zp be a p-adic
integer with n =

∑∞
j=0 njq

j (0 ≤ nj ≤ q−1) such that the sequence (nj)j≥0
is ultimately constant. We shall show that ΠT (n) is algebraic over Fq(T ).
Note that if we change a finite number of terms of (nj)j≥0, we do not change
the nature of ΠT (n). So we can assume nj = d for all j ∈ N. Then we have

ΠT (n) =
∞∏

j=0

(−Dj,T )d.

Put H =
∏∞
j=0(−Dj,T ). Then ΠT (n) = Hd and we need only show that

the infinite product H is algebraic over Fq(T ).
For any k ∈ N (k ≥ 1), put Hk :=

∏k
j=0(−Dj,T ). Then Hk tends T -

adically to H as k →∞. But Dj,T = Dj/T
qj−1

Dj−1 for any j ∈ N (j ≥ 1),
hence

Hk = (−1)k+1DkT
−(qk−1)/(q−1).

By Lemma 2, we have Dk =
∏k−1
j=0 [k − j]qj . Thus Dk = Dq

k−1[k]. Note also
that in the field Fqd , we have (−1)q = −1. Then

Hk

Hq
k−1

= − [k]
T

=
T − T qk

T
,

which implies H = Hq, i.e., H is algebraic over the field Fq(T ).

6. Elements of automata theory. In this section, we recall some basic
definitions, notations and results in automata theory. The reader can also
consult [1] and [6] for a more general discussion on this subject.
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Let E be a finite nonempty set. We call it an alphabet and denote by
Card(E) or |E| the number of elements in E. Every element in E is called
a letter. Fix ø an element not in E and call it an empty letter over E.

Take n ∈ N. If n = 0, define E0 := {ø}. For n ≥ 1, denote by En the set
of all finite sequences of length n with elements in E. Let E∗ :=

⋃∞
n=0E

n.
Every element w of E∗ is called a word over E and its length is denoted by
|w|. More precisely, for w ∈ En, we define |w| := n. In particular |ø| = 0.

Let w, v ∈ E∗ be two words over E. The concatenation of w and v
(denoted by w ∗ v or more simply by wv) is again a word over E defined as
follows:

(w ∗ v)(n) =
{
w(n) if 0 ≤ n < |w|,
v(n− |w|) if |w| ≤ n < |w|+ |v|.

In particular, for any w ∈ E∗, we have wø = øw = w. Obviously (E∗, ∗) is
a monoid with ø as the identity element.

Now we give a definition of a finite automaton (see for example [7]):
A finite automaton A = (S, i,Σ, t) (called a Σ-automaton) consists of

• an alphabet S of states; one state i is distinguished and called the
initial state;
• a map t : S × Σ → S, called a transition function, where Σ is an

alphabet containing at least two elements.

For any A ∈ S, put t(A, ø) = A. Extend t over S × Σ∗ (denoted again
by t) such that for all A ∈ S and l,m ∈ Σ∗, we have

t(A, lm) = t(t(A, l),m).

Fix r ∈ N (r ≥ 2) and set Σr := {0, 1, . . . , r− 1}. We call u = (u(n))n≥0
an r-automatic sequence if there exist a finite automaton A = (S, i,Σr, t)
and a map o defined on S with values in another alphabet Y such that
u(0) = o(i) and for any n ∈ N (n ≥ 1) with standard r-adic expansion
n =

∑blogn/log rc
j=0 njr

j , we have

u(n) = o(t(i, nk . . . n0)).

In this case we also say that u is generated by (A, o). In particular, if o
is the identity map of S, we say simply that u is generated by the finite
automaton A.

Below we give a simple characterization of automatic sequences (see e.g.
[1]).

Theorem 3. A sequence u = (u(n))n≥0 is r-automatic if and only if its
r-kernel

Nr(u) := {(u(rbn+ a))n≥0 | b ≥ 0, 0 ≤ a < rb}
is a finite set.
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This result can be found in a slightly different form in [7] (Prop. 3.3,
p. 107). It was also quoted by G. Christol in [5], p. 141.

Remark 1. All ultimately periodic sequences are r-automatic.

Remark 2. From Theorem 3, we can deduce easily that a sequence is
r-automatic if and only if it is rk-automatic for all k ∈ N (k ≥ 1).

Remark 3. Let u = (u(n))n≥0 and v = (v(n))n≥0 be two r-automatic
sequences with terms in a semigroup. The r-kernel of the sequence w =
(u(n)v(n))n≥0 is finite, so w is also r-automatic.

The theorem below reveals a surprising relationship between automatic
sequences and algebraic formal power series over a finite field and forms the
cornerstone of modern automata theory (see [5], [6] and [1] for more details).

Theorem 4. Let Fr be the finite field with r elements and u=(u(n))n≥0
be a sequence with terms in Fr. Then u is r-automatic if and only if the
formal power series

∑∞
n=0 u(n)Tn is algebraic over the field Fr(T ).

This result, due to G. Christol, T. Kamae, M. Mendès France and
G. Rauzy, appeared in [6]. A previous version of this theorem can be found
in [5] which was published one year before the joint paper [6].

Remark 4. Let f =
∑∞

n=k u(n)Tn with k ∈ Z be a formal power se-
ries in Fr((T )). The derivative of f with respect to T is defined as f ′ :=∑∞

n=k nu(n)Tn−1. Let t be the characteristic of the finite field Fr. The
sequence (n (mod t))n≥0 is ultimately periodic, so by Remark 1, it is r-
automatic. So if f is algebraic over Fr(T ), from Theorem 4 and Remark 3,
we know that the derivative f ′ of f is also algebraic over Fr(T ). Actually,
this result holds for any field in place of Fr.

7. An application of Theorem 4. We begin with a simple lemma.

Lemma 3. Let a, b, c, r ∈ N be such that a, b, c ≥ 1 and r ≥ 2. Then
rc − 1 divides ra(rb − 2) + 1 if and only if c | gcd(a, b).

Proof. This was shown in [11]. For completeness, we reproduce the proof
below.

If c | gcd(a, b), then rc−1 divides ra+b−1, ra−1. So rc−1 | ra(rb−2)+1,
for

ra(rb − 2) + 1 = (ra+b − 1)− 2(ra − 1).

The sufficiency is thus established.
Now we show the necessity. Suppose rc − 1 | ra(rb − 2) + 1. Let a1 and

b1 be two natural numbers such that 0 ≤ a1, b1 < c, a1 ≡ a+ b (mod c) and
b1 ≡ a (mod c). Write a + b = mc + a1 and a = nc + b1. For any k ∈ N
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(k ≥ 1), rc − 1 | rkc − 1 and

ra1 − 2rb1 + 1 = (ra(rb − 2) + 1)− ra1(rmc − 1) + 2rb1(rnc − 1),

therefore rc−1 | ra1−2rb1 +1. But |ra1−2rb1 +1| < rc−1 since 0 ≤ a1, b1 < c
and r ≥ 2, hence ra1+1 = 2rb1 , which implies a1 = b1 = 0, i.e., c | gcd(a, b).

The following theorem is the most important step towards Theorem 2.
The idea of its proof is quite similar to that of Theorem 1 in [11].

Theorem 5. Let Fr be the finite field with r elements and u=(u(n))n≥1
be a sequence in Fr. Then the formal power series in Fr((T )) defined by

f :=
∞∑

n=1

u(n)T r
n

T r
n − T

is algebraic over Fr(T ) if and only if the sequence u is ultimately zero.

Proof. The sufficiency is quite evident. Now we show the necessity. As-
sume that f is algebraic over Fr(T ) but u is not ultimately zero. Clearly

f = −
∞∑

n=1

u(n)T r
n−1

1− T rn−1 = −
∞∑

n=1

u(n)T r
n−1

∞∑

l=0

T l(r
n−1)

= −
∞∑

n=1

∞∑

l=1

u(n)T l(r
n−1) = −

∞∑

m=0

c(m)Tm,

where c(0) = 0 and for any m ∈ N (m ≥ 1), c(m) is defined by

c(m) :=
∑

n,l≥1
m=l(rn−1)

u(n) =
∑

n≥1
rn−1|m

u(n).

By Theorem 4, to obtain a contradiction, it suffices to show that (c(m))m≥0
is not r-automatic. Put C = {m ∈ N | u(m) 6= 0}. By our hypothesis on
u, the set C is infinite. For any t ∈ N (t ≥ 1), set ct := (c(rtm + 1))m≥0.
Obviously ct ∈ Nr(c). Let a, b ∈ C (a > b). We shall show ca 6= cb, which
implies directly that Nr(c) is infinite for C is. Thus by Theorem 3, the
sequence (c(m))m≥0 is not r-automatic.

Put V = {m ∈ N | u(m) 6= 0,m | a and m - b}. The set V is not empty as
a ∈ V . Let h be the least element of V . If there exists m ∈ N (1 ≤ m < h)
such that m |h and m - b, we necessarily have u(m) = 0. Hence by Lemma 3,

ca(rh − 2)− cb(rh − 2) =
∑

rm−1|ra(rh−2)+1

u(m)−
∑

rn−1|rb(rh−2)+1

u(n)

=
∑

m|gcd(a,h)

u(m)−
∑

n|gcd(b,h)

u(n)
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=
∑

m|h
u(m)−

∑

n|gcd(b,h)

u(n) (for h divides a)

=
∑

m|h
m-gcd(b,h)

u(m) =
∑

m|h,m-b
u(m) = u(h) 6= 0.

This ends the proof of our theorem.

8. Proof of the necessity of Theorem 2. Let n ∈ Zp be a p-adic
integer such that n =

∑∞
j=0 njq

j (0 ≤ nj ≤ q−1). Suppose that the sequence
(nj)j≥0 is not ultimately constant. We show that ΠT (n) is transcendental
over Fq(T ). We distinguish two cases.

Case I: The sequence (nj (mod p))j≥0 is not ultimately constant. Taking
the logarithmic derivative of ΠT (n) with respect to T , we obtain

(ΠT (n))′

ΠT (n)
=
∞∑

j=0

nj
D′j,T
Dj,T

=
∞∑

j=1

nj

(
D′j
Dj
−
D′j−1

Dj−1
− qj−1

T

)
,

where the prime denotes derivation with respect to T .
Since the integers in the preceding formula should be taken modulo p,

we obtain

(ΠT (n))′

ΠT (n)
+ n1

(
1
T
− D′1
D1

)
=
∞∑

j=2

nj

(
D′j
Dj
−
D′j−1

Dj−1

)
.

Recall that for any j ∈ N (j ≥ 1), we have Dj =
∏j−1
l=0 (T q

j − T ql). Thus

D′j
Dj

=
j−1∑

l=0

(T q
j − T ql)′

T q
j − T ql = − 1

T q
j − T .

From the two formulas above we deduce immediately

(ΠT (n))′

ΠT (n)
+ n1

(
1
T

+
1

T q − T

)
= −

∞∑

j=2

nj

(
1

T qj − T −
1

T qj−1 − T

)
,

which implies

T
(ΠT (n))′

ΠT (n)
= − n1T

q

T q − T −
∞∑

j=2

nj

(
T q

j

T qj − T −
T q

j−1

T qj−1 − T

)

=
∞∑

j=1

(nj+1 − nj)
T q

j

T qj − T .

But ((nj+1−nj) (mod p))j≥1 is not ultimately zero for (nj (mod p))j≥0 is not
ultimately constant. By Theorem 5, the formal power series (ΠT (n))′/ΠT (n)
is transcendental over Fq(T ). Then by Remark 4, this is also true for ΠT (n).
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Case II: The sequence (nj (mod p))j≥0 is ultimately constant . Since
(nj)j≥0 is bounded and not ultimately constant, we can find k ∈ N (1 ≤
k < s = log q/log p) such that (nj (modpk))j≥0 is ultimately constant but
(nj (modpk+1))j≥0 is not. Then there exist a, d ∈ N (0 ≤ a < pk) such
that pk |nj − a for any j ≥ d. For every j ∈ N, put mj = 0 if j < d and
mj = (nj − a)/pk if j ≥ d. Then (mj (modp))j≥0 is not ultimately constant
for (nj (modpk+1))j≥0 is not. Using the same argument as in Case I, we
know that the infinite product

∏∞
j=0(−Dj,T )mj is transcendental over the

field Fq(T ). Furthermore we have

ΠT (n) = ΠT

(
aqd

1− q

)( d−1∏

j=0

(−Dj,T )nj
)( ∞∏

j=0

(−Dj,T )mj
)pk

and by the sufficiency of Theorem 2, the formal power series ΠT

( aqd
1−q
)

is
algebraic over Fq(T ). So the formal power series ΠT (n) is transcendental
over Fq(T ).

9. Some corollaries. As a matter of fact, we have just proved the result
below.

Theorem 6. Let k be a positive integer and let (nj)j≥0 be a sequence
of rational integers such that (nj (modpk))j≥0 is not ultimately constant.
Then the formal power series

∏∞
j=0(−Dj,T )nj is transcendental over the

field Fq(T ).

As a corollary, we immediately obtain the following theorem.

Theorem 7. Let λ1, . . . , λk be rational integers and n(i) =
∑∞

j=0 n
(i)
j q

j

be p-adic integers with 0 ≤ n
(i)
j < q (1 ≤ i ≤ k). Then

∏k
i=1(ΠT (n(i)))λi

is transcendental over the field Fq(T ) if and only if (
∑k

i=1 λin
(i)
j )j≥0 is not

ultimately constant.

10. Further studies. Until now we have only studied the simplest case.
In this section, we discuss the general situation and put forward a conjec-
ture.

We begin with the definition of ΠP where P ∈ Fq[T ] is a monic prime
polynomial of degree d. Let Fq(T )P be the P -adic completion of Fq(T ).
For any j ∈ N, denote by Dj,P the product of all monic polynomials in
Fq[T ] of degree j which are prime to P . Then Dj,P = Dj for 0 ≤ j < d and
Dj,P = Dj/P

qj−dDj−d for j ≥ d. According to D. Goss (cf. [8]), −Dj,P tends
P -adically to 1 as j → ∞. Then for each n ∈ Zp with n =

∑∞
j=0 njq

j (0 ≤
nj ≤ q − 1), the infinite product
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ΠP (n) :=
∞∏

j=0

(−Dj,P )nj

converges and defines a formal power series in Fq(T )P .
Inspired by Theorem 2, we conjecture the following result.

Conjecture. Let n =
∑∞

j=0 njq
j (0 ≤ nj ≤ q − 1) be a p-adic integer

and let P ∈ Fq[T ] be a monic prime polynomial of degree d. Then the for-
mal power series ΠP (n) is algebraic over the field Fq(T ) if and only if the
sequence (nj)j≥0 is ultimately periodic of period d, i.e., there exists a ∈ N
such that nj+d = nj for any j ≥ a.

The sufficiency part of our Conjecture is quite evident and can be shown
analogously to Theorem 2 (see also [12]). In fact, we can assume nj = 0
(0 ≤ j < d) and nk+d = nk (k ≥ d) with d := degP . Then

ΠP (n) =
2d−1∏

j=d

( ∞∏

l=0

(−Dld+j,P )
)nj

.

For any j ∈ N, put Hj =
∏∞
l=0(−Dld+j,P ). Thus ΠP (n) =

∏2d−1
j=d H

nj
j

and we need only show that for each j ∈ N (d ≤ j < 2d), the infinite product
Hj is algebraic over Fq(T ).

Let α ∈ Ωp be a root of P . By Lemma 1, α is an element of Fqd and

α = αq
d
. Put X = T − α. The X-adic completion Fqd((X)) of Fqd(T ) is a

finite separable extension of Fq(T )P . So by a field homomorphism, we can
identify Fq(T )P to a subfield of Fqd((X)) such that vX(f) = vP (f) for all
f ∈ Fq(T )P .

For m ∈ N (m ≥ 1), define Hj(m) :=
∏m
l=0(−Dld+j,P ). As m → ∞,

Hj(m) tends P -adically to Hj . Hence Hj(m) also tends X-adically to Hj .
However for every l ∈ N, we have Dld+j,P = Dld+j/P

q(l−1)d+j
D(l−1)d+j. Then

Hj(m) = (−1)m+1
(
Dmd+j

Dj−d

)
P−(qj(q−d−qmd))/(1−qd).

By Lemma 2, we obtain Dmd+j =
∏md+j−1
l=0 [md+ j − l]ql. Therefore

Dmd+j = Dqd

(m−1)d+j

d−1∏

l=0

[md+ j − l]ql .

But in Fqd , we have (−1)q = −1. Then after a simple calculation, we obtain

Hj(m)
(Hj(m− 1))qd

= −P−qj−dDqd−1
j−d

d−1∏

l=0

[j +md− l]ql.
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Note that for every l ∈ N (0 ≤ l < d), we also have

[j +md− l] = T q
j+md−l − T = Xqj+md−l − T + αq

j−l
.

Hence as m→∞, we obtain

Hj = −Hqd

j P
−qj−dDqd−1

j−d

d−1∏

l=0

(−T + αq
j−l

)q
l
,

which implies that the infinite product Hj is algebraic over Fq(T ).

The necessity part of the preceding conjecture seems more difficult. For
the moment, we can only show the weaker result below.

Theorem 8. Let n =
∑∞

j=0 njq
j (0 ≤ nj ≤ q − 1) be a p-adic integer

and P ∈ Fq[T ] be a monic prime polynomial of degree d such that ΠP (n)
is algebraic over Fq(T ). Assume there exists a ∈ N such that for all j ∈ N
(j ≥ a) and all k ∈ N (1 ≤ k < d), njd+k = nk. Then the sequence (nj)j≥0
is ultimately periodic of period d.

Corollary. When degP = 1, our Conjecture holds.

The proof of Theorem 8, which is quite similar to that of Theorem 2,
will be left as a good exercise to the reader.
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