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The class number one problem for
the non-abelian normal CM-fields

of degree 24 and 40

by

Young-Ho Park (Seoul)

1. Introduction. We fix an algebraic closure of Q. Assume that all
the number fields are subfields of the field C of complex numbers. We let c
denote complex conjugation and recall that if N is a normal CM-field, then
c is in the center Z(G) of its Galois group G.

There are 11 possible Galois groups for non-abelian normal CM-fields
N of degree 24: C2 ×A4, SL2(F3), C3 ×Q8, Q24, C3 o C8, D24, C2 ×Q12,
C2 ×D12, C4 ×D6, C3 ×D8, and V24 = C3 oD8. For two of them, namely
C2 × A4 and SL2(F3), whose 3-Sylow subgroups are not normal, there are
exactly 3 such CM-fields with class number one (see [LLO]). For the other
9 groups, N contains a normal octic CM-subfield N8 and the relative class
number of N8 divides that of N (see [LOO, Thm. 5]). Hence, N with Galois
group C3×Q8 or Q24 have even relative class numbers since the quaternion
octic CM-fields N8 have even relative class numbers ([LO2]). Moreover, the
relative class numbers of CM-fields N with Galois group C3oC8 are greater
than one (see [Lou4]) and there is only one dihedral CM-field of degree 24
with class number one (see [Lef]). Therefore, it remains to deal with the
following 5 groups: C2 × Q12, C2 ×D12, C3 oD8, C4 × D6, and C3 ×D8.
We will prove:

Theorem 1. (1) There is only one normal CM-field N with Galois group
C2×D12 and class number one: N = K3N8 where K3 is the non-normal cu-
bic field defined by the polynomial x3−6x−2 and N8 = Q(

√
−3,
√
−4,
√
−7).

Notice that dK3 = 22 · 33 · 7, dN8 = 28 · 34 · 74, and dN = 232 · 328 · 712.
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(2) There is only one normal CM-field N with Galois group C4 × D6

and relative class number one: K = K3N8 where K3 is the non-normal
totally real cubic field defined by the polynomial x3 − 10x − 10 and N8

= Q(exp(2πi/5),
√

13). This N has class number one. Notice that dK3 =
22 · 52 · 13, dN8 = 56 · 134, and dN = 216 · 522 · 1312.

(3) There is only one normal CM-field N with Galois group C3 × D8

and relative class number one: K = N3N8 where N3 is the real cyclic cubic
field defined by the polynomial x3 − x2 − 4x− 1 and

N8 = Q(
√

13,
√

17,
√
−(9 +

√
13)/2)

is a dihedral octic CM-field. This N has class number one. Notice that dN3 =
132, dN8 = 134 · 174, and dN = 1320 · 1712.

(4) The relative class numbers of normal CM-fields N with Galois group
C2 ×Q12 or C3 oD8 are greater than one.

Let N be a non-abelian normal CM-fields of degree 8p with p ≥ 5 a prime
and let G = Gal(N/Q). Since the Sylow p-subgroup of G is normal N is a
cyclic extension of degree p of a normal octic CM-field N8, and the relative
class number h−N8

of N8 divides that of N (see [LOO, Thm. 5]). Let us con-
sider the CM-fields N of degree 40. There are 11 non-abelian finite groups
G of order 40: C5oC8 (2 groups), C2×D20, C2×Q20, C4×D10, C2×F5,4,
C5×D8, D40, V40 = C5oD8, C5×Q8, and Q40. Moreover, since the center
Z(G) of each of these eleven G’s contains an element of order 2, nothing pre-
vents each of these groups from being the Galois group for some non-abelian
normal CM-field N of degree 40. If G = D40 then h−N > 1 (see [Lef]). If
G = C5 ×Q8 or Q40 then h−N8

is even (see [LO1]), hence h−N is even. More-

over, if G = C5
1
o C8 = 〈a, b : a5 = b8 = 1, b−1ab = a4〉= 〈σ, τ : σ20 = 1,

τ2 = σ5, τ−1στ = σ9〉 or C5
2
o C8 = 〈a, b : a5 = b8 = 1, b−1ab = a2〉 =

〈σ, τ : σ10 = 1, τ4 = σ5, τ−1στ = σ3〉 then analysis similar to that in the
proof of [Lou4, Thm. 5] shows h−N > 1. Therefore, it remains to deal with
the following 6 groups: C2 × Q20, C2 ×D20, C5 oD8, C4 ×D10, C5 ×D8,
C2 × F5,4 = C2 × 〈a, b : a5 = b4 = 1, b−1ab = a2〉 = 〈σ, τ : σ10 = τ4 = 1,
τ−1στ = σ7〉. We will prove:

Theorem 2. There is only one normal CM-field N of degree 40 with
class number one: N = K5N8, where K5 is the non-normal totally real
quintic field defined by the polynomial x5 − 10x3 + 20x + 10 and N8 =
Q(exp(2πi/5),

√
−7). Notice that dK5 = 24 · 55 · 72, dN8 = 56 · 74, and

dN = 232 · 546 · 720. Its Galois group G(N/Q) is C2 × F5,4.

2. Lattices of subfields. According to the foregoing, it is natural to
closely investigate the non-abelian normal CM-fields N of degree 8p, p ≥ 3
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an odd prime, with Galois group G isomorphic to one of the following five
groups:

C2 ×Q4p = 〈σ, τ, u : σ2p = τ2 = 1, u2 = σp,

u−1σu = σ2p−1, στ = τσ, τu = uτ〉,
C2 ×D4p = 〈σ, τ, u : σ2p = τ2 = u2 = 1,

u−1σu = σ2p−1, στ = τσ, τu = uτ〉,
Cp oD8 = 〈σ, τ, u : σ2p = τ2 = 1, u2 = τ,

u−1σu = σ2p−1, στ = τσ, τu = uτ〉,
C4 ×D2p = 〈σ, τ : σ4p = τ2 = 1, τ−1στ = σ2p−1〉,
Cp ×D8 = 〈σ, τ : σ4p = τ2 = 1, τ−1στ = σ2p+1〉.

Then we have
Table 1

G C2 ×Q4p C2 ×D4p Cp oD8 C4 ×D2p Cp ×D8

Z(G) 〈σp, τ〉 〈σp, τ〉 〈τ〉 〈σp〉 〈σ2〉
D(G) 〈σ2〉 〈σ2〉 〈σ2τ〉 〈σ4〉 〈σ2p〉
c σp or τ τ τ σ2p σ2p

where Z(G), D(G), and c ∈ Z(G) denote the center of G, the derived
subgroup of G and the complex conjugation of G, respectively.

�
��
�
�
�
�
�
�
��

@
@
@
@
@














�
�
�
�
�
�
��

@
@
@
@
@











�
�
�
�
�
�
��














�
�
�
�
�
�
��











@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

Lattice I

Q
2 L

p

2
N+

1 = N+
2

N1 N2

M1
M2

2

N+
8

2

N8

2

N

p

N+

�
��
@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

Q

2 L

p

p
N2p

N+ N8

2

N+
8

2

N

Lattice II

If G = C2×Q4p, C2×D4p, or CpoD8, we let L, N8,N1, and N2 be the
fixed subfields of the subgroups 〈σ, τ〉, 〈σ2〉, 〈σpτ〉 and 〈cσpτ〉, respectively
(Lattice I). Hence, L is a real quadratic subfield of N, the extension N/L is
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abelian with Galois group G(N/L) ' C2p×C2 and N8 is an octic CM-field
containing L. The field N is the compositum of two CM-fields N1 and N2

of degree 4p with the same maximal real dihedral subfield N+
1 = N+

2 of
degree 2p containing L. Let Mi = N8 ∩Ni for i = 1, 2. Then N8 is also the
compositum of two CM-subfields M1 and M2 with the same maximal real
quadratic subfield L. We have

(1) h−N/h
−
N8

= (h−N1
/h−M1

)(h−N2
/h−M2

).

If G = C4 × D2p or Cp × D8, we let L, N8, and N2p be the fixed
subfields of the cyclic subgroup generated by σ, σ4, and σp, respectively
(see Lattice II). Hence, the extension N/L is cyclic. Considering D(G) we
can easily verify that wN = wN8 .

Table 2
Lattice I

G(N/Q) C2 ×Q4p C2 ×D4p Cp oD8

G(N8/Q) C4 × C2 (C2)3 D8

Remarks N1 or N2 N1 and N2 N1 ' N2, M1 'M2
dicyclic dihedral non-normal CM-fields

N1/L cyclic

Lattice II

G(N/Q) C4 ×D2p Cp ×D8

G(N8/Q) C4 × C2 D8

Remarks N2p dihedral N2p cyclic
N/L cyclic N/L cyclic

Let us set some notations we will use throughout this paper. If N is a
number field, we let dN, AN, wN, hN, and ζN denote the absolute value of
its discriminant, its ring of integers, its number of complex roots of unity,
its class number, and its Dedekind zeta function, respectively. If N is a
CM-field, we let N+, h−N and QN ∈ {1, 2} denote its maximal real subfield,
relative class number, and Hasse unit index, respectively (see [Wa]). If L is
a quadratic number field, we let χL denote the primitive quadratic Dirichlet
character modulo dL associated with L. For any abelian extension E/F let
FE/F be the finite part of its conductor and fE/F = NF/Q(FE/F) the norm
of the finite part of this conductor. Finally, we recall:

Proposition 3. (1) ([LOO, Th. 5]) Let k ⊆ K be two CM-fields. As-
sume that [K : k] is odd. Then QK = Qk and h−k divides h−K.

(2) ([LOO, Prop. 8]) Let p be any odd prime number. Let K/M be a
cyclic extension of degree p of CM-fields and let K+/M+ also be cyclic. Let
t be the number of prime ideals of M+ which split M/M+ and are ramified
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in K+/M+. Then pt−1h−M divides h−K, and pth−M divides h−K if p does not
divide wM.

(3) ([LO1]) Let t denote the number of prime ideals of K which are
ramified in the quadratic extension K/K+. Then 2t−1 divides h−K.

(4) Let p be an odd prime number. Let K be a real dihedral field of degree
2p which is cyclic over a real quadratic field L.

(a) ([LPL]) There exists a positive rational integer FK/L such that the
conductor of K/L is given by FK/L = (FK/L).

(b) ([Mar]) Let Q be a prime ideal of L above a rational prime q. If q
does not split in L/Q, then Q is not inert in K/L. Moreover , if q is totally
ramified in K/Q then q = p. If q 6= p and Q is ramified in K/L then
q ≡ χL(q) (mod p).

2.1. Numerical computation of relative class numbers. We use the tech-
nique developed in [Lou5] and [Lou6] to compute efficiently relative class
numbers of the CM-fields:

Proposition 4 (use [Lou6, Theorem 9]). Let E be a CM-field. Assume
that there exists some totally real subfield L of E+ such that the extension
E/L is cyclic of degree 2rp with r ≥ 1 and p ≥ 3 any odd prime. Let F be
a CM-subfield of N such that L ⊆ F ⊆ E and the degree of the extension
E/F is p. Finally , let χ be any one of the characters of order 2rp associated
with the cyclic extension E/L. Then wEL(0, χ) is an algebraic integer of the
cyclotomic field Q(ζ2rp), h−F divides h−E, wF divides wE, and

(2) h−E/h
−
F = (wE/wF)NQ(ζ2rp)/Q

(
1

2m
L(0, χ)

)
.

We refer the reader to [Lou6] to see how to use [Lou5] to compute the
exact value of L(0, χ) (i.e. the values of the rational integers which are the
coordinates in a given Z-basis of the algebraic integer wEL(0, χ)), prior to
using (2).

Theorem 5. Let K be a non-abelian normal CM-field of degree 2n = 2rp
(r ≥ 2) which is cyclic over a real quadratic field L and cyclic over a CM-
subfield K2r of degree 2r. Assume also that wK = wK2r . Then h−K2r

divides
h−K and h−K/h

−
K2r

= (h−K/K2r
)2 is a perfect square.

Proof. Let χ be any character of order n associated with K/L. Then

h−K/h
−
K2r

= NQ(ζn)/Q

(
1
4
L(0, χ)

)

(Proposition 4). Let τ be the non-trivial element in G(L/Q). Then for any
ideal I of L we have χ(τ(I)) = χ(I)k where k2 ≡ 1 (modn), which yields
χ ◦ τ = χk. Let σk denote the automorphism of Q(ζn) which sends ζn to
ζkn. Then σk(L(0, χ)) = L(0, χk) = L(0, χ ◦ τ) = L(0, χ) and L(0, χ) lies
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in the fixed subfield F of Q(ζn) by σk. Therefore, we have h−K/h
−
K2r

=

NQ(ζn)/Q
(

1
4L(0, χ)

)
=
(
NF/Q

(
1
4L(0, χ)

))2
, which completes the proof.

3. The case G ' C2 ×Q4p

Lemma 6 (due to S. Louboutin). Let N1 and N2 be two distinct CM-
fields with the same maximal totally real subfield. Set N = N1N2. Assume
that QN1 = 1 and that 4 does not divide wN1 . Then h−N1

h−N2
divides 2h−N.

In particular , if G(N/Q) ' C2 ×Q4p then h−N1
h−N2

divides 2h−N.

Proof. We have h−N=ηNh
−
N1
h−N2

, where ηN =QNwN/(QN1wN1QN2wN2)
= QNwN/(QN2wN1wN2) and wN1wN2 divides 2wN (see [LO2, Proof of
Prop. 2, point (b)]). We must prove that 2ηN is a positive rational inte-
ger. Clearly, we may assume that wN = 1

2wN1wN2 and QN2 = 2. Now, we
must prove that QN = 2. Since QN2 = 2, we have WN2 = 〈ε2/ε2〉 for some
ε2 ∈ UN2 , and since QN1 = 1 we have W 2

N2
= 〈ε1/ε1〉 for some ε1 ∈ UN1 .

Now, φ : (ε, ε′) ∈ W 2
N1
×WN2 → εε′ ∈ WN is injective (for W 2

N1
∩WN2 ⊂

WN1∩N2 = WN+
1

= {±1} and −1 6∈ W 2
N1

) and # Imφ = 1
2wN1wN2 = wN.

Thus, φ is surjective and WN ⊆ U1−c
N . Hence, QN = 2. If G(N/Q) '

Q4p×C2, then we may assume that N1 is dicyclic. We have QN1 = QM1 = 1
and 4 -wN1 = wM1 , where M1 is a cyclic quartic extension of Q.

Proposition 7. Let N be a normal CM-field of degree 8p with Galois
group G(N/Q) ' C2 ×Q4p. If p ≡ 3 (mod 4), then 2p−2 divides h−N which
is therefore even. If p ≡ 1 (mod 4), then h−N > 1.

Proof. We may assume that N1 is a dicyclic CM-field of degree 4p. Then
2p−1 divides h−N1

if p ≡ 3 (mod 4) (see [LOO, Thm. 6]) and h−N1
≥ 4 in any

case (see [LP]). Therefore, using Lemma 6, we get the desired results.

4. The case G ' C2×D4p. Using the determination of all the dihedral
CM-fields of degree 4p with relative class number one and the determination
of some imaginary abelian octic fields with class number one, we determine
all the normal CM-fields N of degree 8p with Galois group G(N/Q) '
C2 ×D4p which have class number one. We use the following lemma whose
proof is left to the reader (use Hilbert class fields):

Lemma 8. Let N1 and N2 be two distinct CM-fields with the same max-
imal totally real subfield. Set N = N1N2 and assume that hN = 1. If neither
hN1 nor hN2 is one, then h−N1

= h−N2
= 1.

Theorem 9. There is only one normal CM-field of degree 8p with Ga-
lois group G(N/Q) ' C2 ×D4p of class number one: the one given in The-
orem 1(1).
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Proof. Recall that N = N1N2 is a compositum of two dihedral CM-
fields N1 and N2 of degree 4p which are cyclic over the same real quadratic
number field L and that N is a cyclic extension of degree p of an elementary
imaginary abelian octic field N8 containing L (see Lattice I and Table 2).
We let N8 denote the finite set of all the elementary imaginary abelian
octic fields N8 which are equal to their own genus field and have relative
class number one. There are 17 such N8 ∈ N8: the 14 last fields in [Lou2,
Table 2] and the following three: Q(

√
−1,
√
−2,
√
−3), Q(

√
−1,
√
−2,
√
−11)

and Q(
√
−1,
√
−2,
√

5) (see [CK]). Since hN = 1, the genus field of N8 is
included in N. Since N8 is the maximal abelian subfield of N, N8 is its own
genus field and h−N8

= 1 (use Proposition 3(1)). Hence, N8 ∈ N8. Moreover,
according to Lemma 8 and noticing that no two of the 18 dihedral CM-fields
of degree 4p with relative class number one are cyclic extensions of the same
real quadratic field (see [Lef, Th. 4.1]), we may assume that N1 is one of
the 10 dihedral CM-fields of degree 4p with class number one. Hence, p = 3
or 5. Now, only 5 out of these 10 dihedral CM-fields N1 are such that the
imaginary biquadratic bicyclic subfield M1 of N1 is a subfield of one of the
17 fields N8 ∈ N8. These five dihedral CM-fields are of degree 12 and are
the ones of indices iN1 = 1, 2, 3, 4 and 6 in [Lef, Table 1, p. 85]. We have
only the following 16 possible choices for the pair (N1,N8):

Table 3

iN1
M1 dL N8 M2 h−M2

h−N

1 (−3,−15) 5 (−3,−4, 5) (−4,−20) 1 32

1 (−3,−15) 5 (−3,−7, 5) (−7,−35) 1 62

1 (−3,−15) 5 (−3,−8, 5) (−8,−40) 1 32

2 (−3,−4) 12 (−3,−4, 5) (−15,−20) 2 32

2 (−3,−4) 12 (−3,−4,−7) (−7,−84) 2 182

2 (−3,−4) 12 (−3,−4,−11) (−11,−33) 2 92

2 (−3,−4) 12 (−3,−4,−19) (−19,−57) 2 182

2 (−3,−4) 12 (−1,−2,−3) (−24,−8) 2 62

3 (−3,−7) 21 (−3,−7, 5) (−15,−35) 2 32

3 (−3,−7) 21 (−3,−7,−4) (−4,−84) 2 1
3 (−3,−7) 21 (−3,−7,−8) (−8,−168) 2 32

4 (−3,−8) 24 (−3,−8, 5) (−15,−40) 2 112

4 (−3,−8) 24 (−3,−7,−8) (−7,−42) 2 202

4 (−3,−8) 24 (−1,−2,−3) (−4,−24) 2 22

6 (−3,−19) 57 (−3,−19,−4) (−4,−57) 2 32

6 (−3,−19) 57 (−3,−19,−11) (−11,−627) 2 242

To compute h−N, we use Theorem 5. Note that according to (1) we have
h−N = (h−N1

/h−M1
)(h−N2

/h−M2
) = h−N2

/h−M2
. According to Table 3, Theorem 9

is proved.
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5. The cases G ' CpoD8, C4×D2p or Cp×D8. We use of the same
plan as in [LP].

5.1. Lower bounds for relative class numbers

Theorem 10 (see the proof of [LP, Thm. 6]). Let K be a CM-field of
degree 2n which is cyclic of degree 2m over an abelian real field L. Let
f+ denote the norm of the conductor of the extension K+/L. Set εK =
max{ε′K, ε′′K} where ε′K = 2

5 exp(−2πn/d1/(2n)
K ), ε′′K = 1−(2πne1/n/d

1/(2n)
K ).

Let M/L be the only quadratic subextension of K/L. Assume that ζM(s)≤0
for 0 < s < 1. Then for some constant µL depending on L only , we have

h−K ≥ εK
2QKwK

√
dK/dK+

e(2π)n(Ress=1(ζL))m
(

1
2 log f+ + 2µL

)m−1
log dK

.

To compute the numerical approximations of Ress=1(ζL) and µL we
use [Lou3].

Theorem 11. (1) ([CK]) Let N8 = L4L2 be an imaginary abelian octic
field with Galois group G(N8/Q) ' C4×C2, where L4 is an imaginary cyclic
quartic of conductor f4 and L2 is a real quadratic of conductor f2. Then
h−N8

= 1 if and only if (f4, f2) ∈ {(5, 8), (5, 13), (5, 17), (13, 5), (13, 8),
(16, 5)}. For these six fields N8 we have ζN+

8
(s) ≤ 0 for 0 < s < 1.

(2) ([LO1]) There are exactly 19 dihedral octic CM-fields N8 with relative
class number one: the narrow Hilbert 2-class fields of the 19 real quadratic
field L which appear in Table 6. For these 19 fields N8 we have ζN+

8
(s) ≤ 0

for 0 < s < 1.
(3) ([LO1]) There are 38 non-normal quartic CM-fields M with relative

class number one (they are pairwise isomorphic and their normal closures
are the previous 19 dihedral octic CM-fields with relative class number one).
For these 38 fields M we have ζM(s) ≤ 0 for 0 < s < 1.

Corollary 12. Let p ≥ 3 be a given odd prime. We can compute an
explicit bound on the discriminants of the normal CM-fields of degree 8p
with Galois groups G ' Cp oD8, C4 ×D2p, or Cp ×D8 and relative class
number one. More precisely :

(1) Assume that G ' C4 ×D2p or Cp ×D8 (Lattice II ). Then h−N8
= 1.

For each of these 25 (= 6 + 19) CM-fields N8 of relative class number one
we can compute a bound Bp(L) on the norm f+ of the conductor of the
extension N+/L such that h−N = 1 implies f+ ≤ Bp(L).

(2) Assume that G ' Cp oD8 (Lattice I ). Then h−N = 1 if and only if
h−N1

= 1. Now , h−N1
= 1 implies h−M1

= 1. For each of these 38 non-normal
quartic CM-fields M1 of relative class number one we can compute a bound
Bp(L) on the norm f+ of the conductor of the extension N+

1 /L such that
h−N1

= 1 implies f+ ≤ Bp(L).
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Proof. First, assume that G ' C4 ×D2p or Cp ×D8 (Lattice II). Then
N/L is a cyclic extension of degree 4p. For s real we have

(ζN/ζN+
8

)(s) =
∏

{χ,χ}, χ2 6=1

|L(s, χ)|2 ≥ 0

(where χ ranges over the 4p − 2 non-quadratic characters associated with
the extension N/L), and we conclude that ζN+

8
(s) ≤ 0 for 0 < s < 1 implies

ζN(s) ≤ 0 for 0 < s < 1. Now, assume that h−N = 1. Since h−N8
divides

h−N (Proposition 3), we have h−N8
= 1 and ζN+

8
(s) ≤ 0 for 0 < s < 1

(Theorem 11(1), (2)). On applying Theorem 10 with K = N and 2m = 4p,
for each of the finitely many N8 with h−N8

= 1 we obtain a good lower bound
of Bp(L). (See Tables 4, 6, and 7.)

Second, assume that G ' Cp o D8 (Lattice I). Then M1 is a non-
normal quartic CM-field, hence QM1 = 1 (see [Lou1, Lemma 1]), QN1 =
QM1 = 1, by Proposition 3(1), and h−N = (QN/2)(h−N1

/QN1)2 (see [LO2,
Prop. 2]). Hence, h−N = 1 implies h−N1

= 1 (and QN = 2) and h−M1
= 1

(Proposition 3(1)). Conversely, h−N1
= 1 implies h−N = 1 (and QN = 2).

Since N1/L is cyclic of degree 2p, as for the previous point we also obtain
a good lower bound of Bp(L). (See Table 9.)

If we followed the same line of reasoning as in [Lef], we could determine
all the normal CM-fields of degree 8p, p ≥ 3 any odd prime, with Galois
group G ' Cp oD8, C4 ×D2p or Cp ×D8 with relative class number one.
Instead of determining all the normal CM-fields of degree 8p we determine
the fields of degree 24 and 40 in the following three sections. We will prove:

Theorem 13. The only normal CM-fields of degree 24 with Galois group
G(N/Q) ' C3oD8, C4×D6, or C3×D8 of relative class number one are the
two fields given in Theorem 1(2), (3). If N is a normal CM-field of degree 40
with Galois group G(N/Q) ' C5oD8, C4×D10, or C5×D8, then h−N > 1.

5.2. The cases G ' C4 ×D6 and G ' C4 ×D10 (Lattice II )

Proposition 14. Let N be a normal CM-field of degree 8p with G(N/Q)
' C4 × D2p. Assume that h−N is odd. If a rational prime q is ramified in
N8/L, then q divides fN2p/L.

Proof. Suppose q splits in L/Q. Then t
N8/N

+
8
≥ 2 and 2 |h−N8

|h−N by

Proposition 3(1), (3), which is a contradiction. Hence, q does not split in
L/Q. Let QL denote the prime ideal of L above q. According to Propo-
sition 3(4), QL is not inert in N2p/L. Suppose QL were not ramified in
N2p/L. Then QL would split in N2p/L. Since QL is ramified in N8/L and
since N/L is cyclic, the p prime ideals Q1, . . . ,Qp of N2p above QL would
be ramified in the cyclic quartic extension N/N2p, hence the prime ideals
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of N+ above Qi would be ramified in the quadratic extension N/N+, we
would have tN/N+ ≥ p and 2p−1 would divide h−N (by Proposition 3(2)).
A contradiction. Hence, QL is ramified in N2p/L and q divides fN2p/L.

First, assume that G(N/Q) ' C4 × D6 and h−N = 1. Then h−N8
= 1

and N8 is known (Theorem 11(1)). In fact, we can get rid of two of the six
possible fields N8 and we can decide which one of the three real quadratic
subfields of a given N8 must be equal to L :

Lemma 15. If h−N = 1 then (f4, f2, dL) ∈ {(16, 5, 5), (5, 8, 8), (5, 13, 13),
(5, 17, 17)}.

Proof. If a rational prime q divides fN8/L, then q ∈ {2, 5, 13} and
q | fN6/L by Proposition 14. Note that if q is ramified in L/Q, then q is
totally ramified in N6/Q and q = 3. This implies that q is inert in L/Q and
3 | (q + 1) by Proposition 3(4), which yields the desired result.

For the four fields N8 we compute B3(L) such that h−N > 1 if fN6/L >
B3(L). Let nf be the number of conductors of N/L satisfying fN6/L ≤
B3(L) and Nf the number of conductors of N/L satisfying fN6/L ≤ B3(L)
and Proposition 14. We refer the reader to Table 4 for the result of our
computation. Notice that Nf is much small than nf , which clearly shows
how useful Proposition 14 is for alleviating the amount of computation re-
quired. Finally, in Table 5 we give the results of our relative class number
computations. According to Table 5, there is only one such CM-field with
h−N = 1. Notice that there are two fields N6 for which FN6/L = (5 · 22).
In the same way, for the case G(N/Q) ' C4 × D10 we computed Table 6
according to which there is no such N with h−N = 1.

Table 4 (G(N/Q) ' C4 ×D6)

dL hL RL ≤ µL ≤ fN8/L B3(L) nf Nf

1 5 1 0.431 0.1014 28 302 1 1
2 8 1 0.624 0.1409 52 3102 20 5
3 13 1 0.663 0.2215 52 2302 21 5
4 17 1 1.017 0.2167 52 3902 27 9

Table 5 (G(N/Q) ' C4 ×D6)

dL FN6/L h−N dL FN6/L h−N dL FN6/L h−N

1 5 (2 · 32) 652 8 13 (5 · 32) 132 14 17 (5 · 19) 522

2 8 (5 · 7) 42 9 13 (5 · 18) 612 15 17 (5 · 23) 1002

3 8 (5 · 32) 102 10 13 (5 · 22) 902 16 17 (5 · 29) 2612

4 8 (5 · 11) 92 13 (5 · 22) 902 17 17 (5 · 41) 3692

5 8 (5 · 31) 812 11 13 (5 · 43) 2052 18 17 (5 · 43) 5412

6 8 (5 · 53) 2412 12 17 (5 · 32) 252 19 17 (5 · 67) 9762

7 13 (5 · 2) 1 13 17 (5 · 13) 522 20 17 (5 · 71) 14762
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Table 6 (G(N/Q) ' C4 ×D10)

dL hL RL ≤ µL ≤ fN8
B5(L) nf Nf FN10/L h−K

1 40 2 1.151 0.3719 5 1102 1 0 − −
2 65 2 1.378 0.4718 5 1052 1 1 95 1453052

3 85 2 0.959 0.6116 5 552 0 0 − −

5.3. The cases G ' C3 × D8 and G ' C5 × D8 (Lattice II ). In these
cases we use the following proposition similar to Proposition 14:

Proposition 16. Let N be a normal CM-field of degree 8p with G(K/Q)
' Cp×D8. Assume that h−N = 1. If a rational prime q is inert in L/Q, then
q does not divide fN2p/L, the norm of the conductor FN2p/L of N2p/L.

Proof. If h−N = 1, then h−N8
= 1 and N8 is the narrow Hilbert 2-class

field of some real quadratic field L in Theorem 11(2). If q is ramified in
N2p/L, then, since q splits completely in N8/L and is ramified in N/N+,
we have p |h−N by Proposition 3(2).

We obtain Table 7 in the same way as Table 4. In Table 7, to provide the
reader with an excerpt of our relative class number computations, for each
of the 19 dihedral octic CM-fields N8 of relative class number one, we give
the value of the relative class number of the N with G(N/Q) ' C3 × D8

and containing N8 of least fN6/L. Table 8 provides the same data for the
case G(N/Q) ' C5×D8. According to these results there is no N of relative
class number one with G ' C3 ×D8 and G ' C5 ×D8. In Tables 7 and 8,
Pq denotes the prime ideal of L above a prime q ramified in L/Q.

Table 7 (G(N/Q) ' C3 ×D8)

dL hL RL ≤ µL ≤ B3(L) nf Nf FN6/L h−N
1 136 2 1.458 0.6285 127000 45 16 (9) 42

2 205 2 1.051 0.8512 22300 20 11 (7) 42

3 221 2 0.728 1.0622 6300 15 7 P13 1
4 305 2 1.578 0.9137 49700 33 13 (7) 72

5 377 2 1.266 1.1927 19300 22 10 (19) 912

6 545 2 1.418 1.2455 15600 19 7 (13) 522

7 584 2 0.939 1.4452 3700 9 3 (13) 642

8 712 2 1.210 1.4269 6300 12 8 (9) 522

9 745 2 2.500 0.9936 56300 31 14 (9) 672

10 1345 6 3.004 1.0595 40000 27 10 (7) 972

11 1537 2 2.626 1.2130 21800 20 13 (7) 522

12 1864 2 1.979 1.3345 6100 11 7 (7) 1092

13 1945 2 2.657 1.3607 16100 17 6 (9) 1572

14 2041 2 3.362 1.1322 30200 31 15 (7) 1722

15 2248 2 1.680 1.5128 2800 7 6 (7) 1122

16 2329 2 2.926 1.3022 16500 18 6 (9) 1962

17 2353 2 2.612 1.3896 11500 20 15 P13 522

18 4369 2 3.573 1.3589 11500 15 8 (7) 2172

19 7081 2 3.737 1.4961 6400 16 11 (7) 7242
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Table 8 (G(N/Q) ' C5 ×D8)

dL B5(L) nf Nf FN10/L h−N

136 9500 6 3 (11) 712

205 2400 4 3 P41 112

221 900 2 2 (11) 1812

305 4500 5 3 P61 1212

377 2200 4 3 (11) 13612

545 1800 4 2 P3
5 19912

584 600 1 1 (11) 30012

712 900 2 0 (61) 42501312

745 5000 5 3 P3
5 43662

1345 3800 5 4 (11) 184812

1537 2400 4 2 (31) 26206212

1864 900 2 2 (11) 260812

1945 1900 4 3 (11) 395812

2041 3000 4 2 (25) 15225762

2248 500 2 2 (11) 831712

2329 1900 4 3 (25) 25733712

2353 1400 4 2 P181 1223052

4369 1400 3 1 (25) 85276962

7081 900 2 1 (25) 290356512

5.4. The cases G ' C3oD8 and G ' C5oD8 (Lattice I ). Assume that

G(N/Q) ' C3 oD8 and h−N = 1.

For each of the 38 non-normal quartic CM-fields M1 of relative class number
one we have computed an upper bound B3(L) such that fN+

1 /L
> B3(L)

implies h−N1
> 1. For each possible N1, we have computed h−N1

/h−M1
for

the non-normal CM-field N1 which is cyclic of degree 3 over a non-normal
CM-field M1 by using (2). Finally, our computation shows that in all the
cases considered we have h−N1

> 1, which implies h−N > 1. In Table 9, we
also give the value of h−N for least fN+

1 /L
and we let nf denote the number

of conductors of N/L satisfying fN+
1 /L
≤ B3(L).

For the case G(N/Q) ' C5oD8 we obtain Table 10 in the same way. In
Table 10, we give all possible 12 non-normal CM-fields N with G ' C5oD8

and fN+
1 /L
≤ B5(L).

According to these results there is no N of relative class number one
with G ' C3oD8 or G ' C5oD8. In Tables 9 and 10, Pq denotes a prime
ideal of L above a split prime q. Note that there are two possible prime
ideals Pq. If we choose the other, then we get exactly the other isomorphic
non-normal CM-fields N2.
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Table 9 (G(N/Q) ' V24 = C3 oD8)

dL fM1/L B3(L) nf FN1/L h−N = (h−N1
)2

1 8 17 1202 10 (29)P17 2082

2 8 73 402 2 (29)P73 1482

3 8 89 302 1 (29)P89 1242

4 8 233 202 0 − −
5 8 281 202 0 − −
6 5 41 502 5 (18)P41 572

7 5 61 402 3 (18)P61 842

8 5 109 302 1 (18)P109 632

9 5 149 202 1 (18)P149 1002

10 5 269 202 1 (18)P269 2112

11 5 389 102 0 − −
12 13 17 902 8 (10)P17 122

13 13 29 602 5 (10)P29 272

14 13 157 202 3 (10)P157 1962

15 13 181 202 3 (10)P181 2282

16 17 137 302 1 (11)P137 3242

17 17 257 202 1 (11)P257 4442

18 29 53 202 2 (9)P53 522

19 73 97 302 1 (5)P97 2922

20 17 8 6702 47 (11)P3
2 42

21 73 8 5502 35 (5)P3
2 162

22 89 8 3302 5 (29)P3
2 4002

23 233 8 1502 14 (17)P3
2 5162

24 281 8 1902 7 (9)P3
2 2082

25 41 5 8602 43 (17)P5 192

26 61 5 3602 34 (22)P5 572

27 109 5 2802 27 (11)P5 362

28 149 5 1102 16 (18)P5 1332

29 269 5 702 3 (2)P5 42

30 389 5 702 4 (2)P5 42

31 17 13 1902 13 (11)P13 162

32 29 13 602 6 (9)P13 122

33 157 13 302 4 (10)P13 432

34 181 13 302 3 (17)P13 5162

35 137 17 502 3 (9)P17 2682

36 257 17 302 1 P17 42

37 53 29 202 3 (10)P29 842

38 97 73 302 2 (23)P73 7562
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Table 10 (G(N/Q) ' V40 = C5 oD8)

dL FN1/L h−N = (h−N1
)2 dL FN1/L h−N = (h−N1

)2

1 17 (79) · P3
2 732052 7 89 (52) · P3

2 865252

2 41 (109) · P5 36889552 8 89 (59) · P3
2 27328162

3 41 (179) · P5 52632802 9 109 (79) · P5 20446552

4 41 (199) · P5 97820052 10 181 (19) · P13 1940112

5 61 (59) · P5 1016802 11 257 (19) · P17 10304802

6 73 (52) · P3
2 91362 12 389 (29) · P5 2280052

6. The case G ' C2 × F5,4. Let N be a normal CM-field of degree
40 with Galois group G = G(N/Q) ' C2 × F5,4 = C2 × 〈a, b : a5 =
b4 = 1, b−1ab = a2〉 ' 〈σ, τ : σ10 = τ4 = 1, τ−1στ = σ7〉. Note that
N+ is a normal real field with Galois group G(N+/Q) ' F5,4. Moreover,
D(G) = 〈σ2〉 and Z(G) = 〈σ5〉. Hence, σ5 is the complex conjugation in
G. Let N8 be the fixed subfield of the 5-Sylow normal subgroup D(G) of
G. Then N8 is an imaginary abelian octic field whose maximal totally real
subfield N+

8 is cyclic quartic, and we let L denote the quadratic subfield
of N+

8 and Lim be any one of the two imaginary quadratic subfield of N8.
Notice that wN = wN8 . We have the following lattice of subfields:
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@
@
@
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�
�

�
�
�

@
@
@
@

�
�
�

Q
2
L Lim

2

4

N+

N8

2N+
8

2

N

5

2
5 G(N+/Q) ' F5,4

G(N8/Q) ' C4 × C2

G(N+
8 /Q) ' C4

G(N/N+
8 ) ' C10

Proposition 17. Let K/M be a cyclic quintic extension of a real cyclic
quartic field M. Let χ be a character of order 5 associated with K/M. Fix
a generator b of G(M/Q).

(1) K is a normal number field with Galois group G(K/Q) ' F5,4 if
and only if FK/M is invariant under the action of G(M/Q) and for some
u ∈ {2, 3} we have χ(b(P)) = χ(P)u for all prime ideals P of M.

(2) Let K be a normal real field of degree 20 with G(K/Q) ' F5,4.
Let Pq, eq and fq denote a prime ideal of M above a rational prime q, its
ramification index , and its inertial degree, respectively.

(a) If q does not split completely in M/Q, then Pq is not inert in K/M.
Moreover , if Pq is ramified in both M/Q and K/M then q = 5.
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(b) Let I5 denote the ideal of M such that (5) = Ie55 . Then

FK/M = Ie5
(∏

q
)

where
∏
q is a finite product of distinct rational primes q’s such that




q ≡ 1 (mod 5) if fq = 1,
q ≡ ±1 (mod 5) if fq = 2,
q 6≡ 1 (mod p) if fq = 4,

and either e = 0 or 


e = 2 if e5 = 1,
e ∈ {2, 3} if e5 = 2,
e ∈ {2, 3, 4, 6} if e5 = 4.

Proof. (1) We first prove the necessity. Let ΦK/M denote the Artin map
associated with K/M. Note that

χ(b(P)) = χ(P)u ⇔ ΦK/M(b(P)) = b−1ΦK/M(P)b = ΦK/M(P)u.

This shows that if FK/M is invariant under b, so is the kernel Ker(ΦK/M),
which yields the normality of K (see [Cohn, Thm. 8.2.5]). Therefore, consid-
ering the Galois group G(K/Q), we get the desired result. The sufficiency
is easily checked.

(2) First, if q does not split completely in M/Q then there exists some
i0 ∈ {1, 2, 3} such that bi0(Pq) = Pq. Hence, χ(bi0(Pq)) = χ(Pq)u

i0 = χ(Pq),
which gives χ(Pq) = 1, and the first claim of (a) is proved. The last claim
of (a) follows from ramification theory.

Second, assume that q 6= 5 and Pq divides FK/M. Then, since FK/M
is invariant under action of G(M/Q), (q) divides FK/M. By the method
of [LPL, Lemma 5] we get νq(FK/M) = 1, where νq denotes the q-adic
valuation. Note that there exists a primitive modular character of order 5
on (AM/(q))∗ which is trivial on ImZ, the image of Z. Hence, the order of
(AM/(q))∗/ImZ must be divisible by 5.

Third, assume that 5 is ramified in K/M. It is easily checked that e > 1.
Assume that e ≥ 3 for e5 = 1, e ≥ 4 for e5 = 2, and e ≥ 7 for e5 = 4. Let
α ≡ 1 (modPe−1

5 ). Then there exists β ∈ Pe−1−e5
5 such that α = 1 + 5β. By

using ν5(C5
k) = 1 − ν5(k) for 1 ≤ k ≤ 5, we obtain α ≡ (1 + β)5 (modPe5),

which contradicts the existence of a primitive modular character of order 5
on (AM/Pe5 )∗. Finally, by the same trick of [LPL, Lemma 5] we get e 6= 5
for e5 = 4, which complete the proof of (b).

Theorem 18. Let χ denote any primitive character of order 10 asso-
ciated with N/N+

8 and let Wχ denote the Artin root number associated
with χ. Then Wχ = ±1 and L(0, χ) ∈ 16Z. Moreover , h−N8

divides h−N, and



78 Y.-H. Park

h−N/h
−
N8

= (h−N/N8
)4 is the 4th power of the rational integer :

h−N/N8
=

1
16
L(0, χ).

Proof. The proof is similar to that of Theorem 5. Let σu denote a gen-
erator of the Galois group G(Q(ζ10)/Q) such that σu(ζ10) = ζu10, where
ζ10 = e2πi/10. Then, since for any ideal I, σu(χ(I)) = χ(I)u = χ(b(I)) for
a generator b ∈ G(N+

8 /Q), we conclude that the algebraic number L(0, χ)
which is invariant under the action of G(Q(ζ10)/Q) is rational.

To compute numerical approximations of L(0, χ) by using the technique
developed in [Lou5] and [Lou6], we have to be able to compute the coeffi-
cients an(χ) :=

∑
N

N+
8 /Q

(I)=n χ(I). For convenience, let us set some nota-

tions. Let Pq and fq denote a prime ideal in N+
8 above a rational prime q

and its inertial degree, respectively. We have:

Proposition 19. Let χ+ and χ− denote the characters associated with
the cyclic extensions N+/N+

8 and N8/N+
8 , respectively , such that χ =

χ+χ− is a character of order 10 associated with N/N+
8 . If either q di-

vides fN/N+
8

or fq does not divide k, then aqk(χ) = 0. Otherwise, set
εq = χ−(Pq) = ±1 and ηq = χ+(Pq) = ζn5 , for some n ∈ Z. Then

aqk(χ) =





εkq if eq = 4 and fq = 1,

ε
k/2
q if eq = 2 and fq = 2,
εkq (k + 1) if eq = 2 and fq = 1,
1 if eq = 1 and fq = 4,
k/2 + 1 if eq = 1 and fq = 2.

If eq = fq = 1, then

aqk(χ) =





(k + 1)(k + 2)(k + 3)
6

εkq if ηq = 1,

εkq if k ≡ 0 (mod 5) and if ηq 6= 1,
−εkq if k ≡ 1 (mod 5) and if ηq 6= 1,
0 otherwise.

Proof. Assume that eq = fq = 1. Then

aqk(χ) = εkq
∑

r+s+t+u=k
r,s,t,u≥0

ηr+2s+3t+4u
q .

If ηq 6= 1 then since
∑
r+s+t+u=k η

r+2s+3t+4u
q is the coefficient of xk in

(1−x)/(1−x5) = (1−x)(
∑
a≥0 x

5a), we have the desired result. The others
are immediate from the definition of aqk(χ) and ramification theory.

Now, assume that h−N = 1. Then h−N8
= 1, and there are 18 such N8’s (see

[CK]). An easy computation shows that ζN8(s) ≤ 0 in the range 0 < s < 1
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for these 18 fields N8. Therefore, by using Theorem 10, for each of these
18 fields N8 we can compute an upper bound B(N+

8 ) such that h−N > 1 if
fN+/N+

8
> B(N+

8 ). In Table 11, we let fN+
8

and f2 denote the conductor

of N+
8 and that of an imaginary quadratic subfield of N8, respectively. In

the factorization fN+
8

, we mark the conductor of a character of order 4 with

the bold face. Let nf denote the number of possible conductors of N+/N+
8

satisfying fN+/N+
8
≤ B(N+

8 ) and let Nf denote the number of possible con-

ductors of N/N+
8 satisfying fN+/N+

8
≤ B(N+

8 ) and being filtered by using
either Proposition 3(2) or Propositions 3(3) and 17(2)(a). In Table 12, we
list the relative class numbers h−N = (h−N/N8

)4 of the six CM-fields K which
are obtained in the last column of Table 11. We should point out that in Ta-
bles 11 and 12, we used PARI-GP to construct primitive characters of order
5 on the ray class group ClN+

8
(FN+/N+

8
). According to our computations,

the normal CM-field of degree 40 given in Theorem 2 is the only normal
CM-field of degree 40 with G(N/Q) ' C2 × F5,4 and relative class number
one.

Table 11 (G(N/Q) ' C2 × F5,4)

fN+
8

f2 hN+
8

QN wN RegN+
8
≤ µN+

8
≤ B(N+

8 ) nf Nf

1 5 · 3 3 1 2 30 0.2780 0.5089 234 2 2
2 5 · 4 4 1 2 20 0.3315 0.6025 224 3 1
3 5 · 7 7 1 2 10 0.3441 0.9326 174 3 2
4 5 · 8 8 1 2 10 0.4028 0.9337 174 2 0
5 13 · 4 4 1 2 4 0.3811 1.5474 124 0 0
6 13 · 7 7 1 2 2 0.3238 2.1847 94 0 0
7 16 · 3 3 1 2 6 0.6586 1.0155 194 0 0
8 16 4 1 1 4 0.4317 0.5604 314 1 0
9 16 · 11 11 1 2 2 0.4205 2.8114 94 0 0

10 16 · 5 20 2 1 2 0.6950 1.3391 174 2 0
11 37 · 4 4 1 2 4 1.4646 1.8139 104 0 0
12 29 · 8 8 1 2 2 0.7201 2.5180 64 0 0
13 16 · 5 4 2 1 4 0.6950 1.3391 154 2 0
14 16 3 1 1 6 0.4317 0.5604 154 0 0
15 16 · 3 · 11 11 2 1 2 0.9479 2.4740 74 0 0
16 17 · 7 · 3 3 2 1 6 3.6084 1.9785 134 0 0
17 17 · 7 · 11 11 2 1 2 3.7957 3.0471 74 0 0
18 61 · 7 7 5 2 2 2.2448 2.4298 64 2 1

Table 12 (G(N/Q) ' C2 × F5,4, all WN = 1)

fN+
8

f2 FN+/N+
8

h−N/N8
fN+

8
f2 FK+/N+

8
h−N/N8

1 5 · 3 3 (10) 2 4 5 · 7 7 (2) · P2
5 1

2 5 · 3 3 (7) · P2
5 5 5 5 · 7 7 (15) 12

3 5 · 4 4 P6
5 3 6 61 · 7 7 (1) 4
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