The class number one problem for the non-abelian normal CM-fields of degree 24 and 40

by
Young-Ho Park (Seoul)

1. Introduction. We fix an algebraic closure of \mathbb{Q}. Assume that all the number fields are subfields of the field \mathbb{C} of complex numbers. We let c denote complex conjugation and recall that if \mathbf{N} is a normal CM-field, then c is in the center $Z(\mathbf{G})$ of its Galois group \mathbf{G}.

There are 11 possible Galois groups for non-abelian normal CM-fields \mathbf{N} of degree 24: $C_{2} \times \mathcal{A}_{4}, \mathrm{SL}_{2}\left(\mathbf{F}_{3}\right), C_{3} \times Q_{8}, Q_{24}, C_{3} \rtimes C_{8}, D_{24}, C_{2} \times Q_{12}$, $C_{2} \times D_{12}, C_{4} \times D_{6}, C_{3} \times D_{8}$, and $V_{24}=C_{3} \rtimes D_{8}$. For two of them, namely $C_{2} \times \mathcal{A}_{4}$ and $\mathrm{SL}_{2}\left(\mathbf{F}_{3}\right)$, whose 3 -Sylow subgroups are not normal, there are exactly 3 such CM-fields with class number one (see [LLO]). For the other 9 groups, \mathbf{N} contains a normal octic CM-subfield \mathbf{N}_{8} and the relative class number of \mathbf{N}_{8} divides that of \mathbf{N} (see [LOO, Thm. 5]). Hence, \mathbf{N} with Galois group $C_{3} \times Q_{8}$ or Q_{24} have even relative class numbers since the quaternion octic CM-fields \mathbf{N}_{8} have even relative class numbers ([LO2]). Moreover, the relative class numbers of CM-fields \mathbf{N} with Galois group $C_{3} \rtimes C_{8}$ are greater than one (see [Lou4]) and there is only one dihedral CM-field of degree 24 with class number one (see [Lef]). Therefore, it remains to deal with the following 5 groups: $C_{2} \times Q_{12}, C_{2} \times D_{12}, C_{3} \rtimes D_{8}, C_{4} \times D_{6}$, and $C_{3} \times D_{8}$. We will prove:

Theorem 1. (1) There is only one normal CM-field \mathbf{N} with Galois group $C_{2} \times D_{12}$ and class number one $\mathbf{N}=\mathbf{K}_{3} \mathbf{N}_{8}$ where \mathbf{K}_{3} is the non-normal cubic field defined by the polynomial $x^{3}-6 x-2$ and $\mathbf{N}_{8}=\mathbb{Q}(\sqrt{-3}, \sqrt{-4}, \sqrt{-7})$. Notice that $d_{\mathbf{K}_{3}}=2^{2} \cdot 3^{3} \cdot 7, d_{\mathbf{N}_{8}}=2^{8} \cdot 3^{4} \cdot 7^{4}$, and $d_{\mathbf{N}}=2^{32} \cdot 3^{28} \cdot 7^{12}$.

[^0](2) There is only one normal CM-field \mathbf{N} with Galois group $C_{4} \times D_{6}$ and relative class number one: $\mathbf{K}=\mathbf{K}_{3} \mathbf{N}_{8}$ where \mathbf{K}_{3} is the non-normal totally real cubic field defined by the polynomial $x^{3}-10 x-10$ and \mathbf{N}_{8} $=\mathbb{Q}(\exp (2 \pi i / 5), \sqrt{13})$. This \mathbf{N} has class number one. Notice that $d_{\mathbf{K}_{3}}=$ $2^{2} \cdot 5^{2} \cdot 13, d_{\mathbf{N}_{8}}=5^{6} \cdot 13^{4}$, and $d_{\mathbf{N}}=2^{16} \cdot 5^{22} \cdot 13^{12}$.
(3) There is only one normal CM-field \mathbf{N} with Galois group $C_{3} \times D_{8}$ and relative class number one: $\mathbf{K}=\mathbf{N}_{3} \mathbf{N}_{8}$ where \mathbf{N}_{3} is the real cyclic cubic field defined by the polynomial $x^{3}-x^{2}-4 x-1$ and
$$
\mathbf{N}_{8}=\mathbb{Q}(\sqrt{13}, \sqrt{17}, \sqrt{-(9+\sqrt{13}) / 2})
$$
is a dihedral octic CM-field. This \mathbf{N} has class number one. Notice that $d_{\mathbf{N}_{3}}=$ $13^{2}, d_{\mathbf{N}_{8}}=13^{4} \cdot 17^{4}$, and $d_{\mathbf{N}}=13^{20} \cdot 17^{12}$.
(4) The relative class numbers of normal CM-fields \mathbf{N} with Galois group $C_{2} \times Q_{12}$ or $C_{3} \rtimes D_{8}$ are greater than one.

Let \mathbf{N} be a non-abelian normal CM-fields of degree $8 p$ with $p \geq 5$ a prime and let $\mathbf{G}=\operatorname{Gal}(\mathbf{N} / \mathbb{Q})$. Since the Sylow p-subgroup of \mathbf{G} is normal \mathbf{N} is a cyclic extension of degree p of a normal octic CM-field \mathbf{N}_{8}, and the relative class number $h_{\mathbf{N}_{8}}^{-}$of \mathbf{N}_{8} divides that of \mathbf{N} (see [LOO, Thm. 5]). Let us consider the CM-fields \mathbf{N} of degree 40 . There are 11 non-abelian finite groups G of order 40: $C_{5} \rtimes C_{8}$ (2 groups), $C_{2} \times D_{20}, C_{2} \times Q_{20}, C_{4} \times D_{10}, C_{2} \times F_{5,4}$, $C_{5} \times D_{8}, D_{40}, V_{40}=C_{5} \rtimes D_{8}, C_{5} \times Q_{8}$, and Q_{40}. Moreover, since the center $Z(\mathbf{G})$ of each of these eleven \mathbf{G} 's contains an element of order 2 , nothing prevents each of these groups from being the Galois group for some non-abelian normal CM-field \mathbf{N} of degree 40. If $\mathbf{G}=D_{40}$ then $h_{\mathbf{N}}^{-}>1$ (see [Lef]). If $\mathbf{G}=C_{5} \times Q_{8}$ or Q_{40} then $h_{\mathbf{N}_{8}}^{-}$is even (see [LO1]), hence $h_{\mathbf{N}}^{-}$is even. Moreover, if $\mathbf{G}=C_{5} \stackrel{1}{\rtimes} C_{8}=\left\langle a, b: a^{5}=b^{8}=1, b^{-1} a b=a^{4}\right\rangle=\left\langle\sigma, \tau: \sigma^{20}=1\right.$, $\left.\tau^{2}=\sigma^{5}, \tau^{-1} \sigma \tau=\sigma^{9}\right\rangle$ or $C_{5} \stackrel{2}{\rtimes} C_{8}=\left\langle a, b: a^{5}=b^{8}=1, b^{-1} a b=a^{2}\right\rangle=$ $\left\langle\sigma, \tau: \sigma^{10}=1, \tau^{4}=\sigma^{5}, \tau^{-1} \sigma \tau=\sigma^{3}\right\rangle$ then analysis similar to that in the proof of [Lou4, Thm. 5] shows $h_{\mathbf{N}}^{-}>1$. Therefore, it remains to deal with the following 6 groups: $C_{2} \times Q_{20}, C_{2} \times D_{20}, C_{5} \rtimes D_{8}, C_{4} \times D_{10}, C_{5} \times D_{8}$, $C_{2} \times F_{5,4}=C_{2} \times\left\langle a, b: a^{5}=b^{4}=1, b^{-1} a b=a^{2}\right\rangle=\left\langle\sigma, \tau: \sigma^{10}=\tau^{4}=1\right.$, $\left.\tau^{-1} \sigma \tau=\sigma^{7}\right\rangle$. We will prove:

Theorem 2. There is only one normal CM-field \mathbf{N} of degree 40 with class number one: $\mathbf{N}=\mathbf{K}_{5} \mathbf{N}_{8}$, where \mathbf{K}_{5} is the non-normal totally real quintic field defined by the polynomial $x^{5}-10 x^{3}+20 x+10$ and $\mathbf{N}_{8}=$ $\mathbb{Q}(\exp (2 \pi i / 5), \sqrt{-7})$. Notice that $d_{\mathbf{K}_{5}}=2^{4} \cdot 5^{5} \cdot 7^{2}, d_{\mathbf{N}_{8}}=5^{6} \cdot 7^{4}$, and $d_{\mathbf{N}}=2^{32} \cdot 5^{46} \cdot 7^{20}$. Its Galois group $G(\mathbf{N} / \mathbb{Q})$ is $C_{2} \times F_{5,4}$.
2. Lattices of subfields. According to the foregoing, it is natural to closely investigate the non-abelian normal CM-fields \mathbf{N} of degree $8 p, p \geq 3$
an odd prime, with Galois group \mathbf{G} isomorphic to one of the following five groups:

$$
\begin{aligned}
& C_{2} \times Q_{4 p}=\left\langle\sigma, \tau, u: \sigma^{2 p}=\right. \tau^{2}= \\
& 1, u^{2}=\sigma^{p} \\
&\left.u^{-1} \sigma u=\sigma^{2 p-1}, \sigma \tau=\tau \sigma, \tau u=u \tau\right\rangle \\
& C_{2} \times D_{4 p}=\left\langle\sigma, \tau, u: \sigma^{2 p}=\right. \tau^{2}= \\
& u^{2}=1, \\
&\left.u^{-1} \sigma u=\sigma^{2 p-1}, \sigma \tau=\tau \sigma, \tau u=u \tau\right\rangle \\
& C_{p} \rtimes D_{8}=\left\langle\sigma, \tau, u: \sigma^{2 p}=\right. \tau^{2}=1, u^{2}=\tau \\
&\left.u^{-1} \sigma u=\sigma^{2 p-1}, \sigma \tau=\tau \sigma, \tau u=u \tau\right\rangle \\
& C_{4} \times D_{2 p}=\left\langle\sigma, \tau: \sigma^{4 p}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{2 p-1}\right\rangle \\
& C_{p} \times D_{8}=\left\langle\sigma, \tau: \sigma^{4 p}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{2 p+1}\right\rangle
\end{aligned}
$$

Then we have
Table 1

\mathbf{G}	$C_{2} \times Q_{4 p}$	$C_{2} \times D_{4 p}$	$C_{p} \rtimes D_{8}$	$C_{4} \times D_{2 p}$	$C_{p} \times D_{8}$
$Z(\mathbf{G})$	$\left\langle\sigma^{p}, \tau\right\rangle$	$\left\langle\sigma^{p}, \tau\right\rangle$	$\langle\tau\rangle$	$\left\langle\sigma^{p}\right\rangle$	$\left\langle\sigma^{2}\right\rangle$
$D(\mathbf{G})$	$\left\langle\sigma^{2}\right\rangle$	$\left\langle\sigma^{2}\right\rangle$	$\left\langle\sigma^{2} \tau\right\rangle$	$\left\langle\sigma^{4}\right\rangle$	$\left\langle\sigma^{2 p}\right\rangle$
c	σ^{p} or τ	τ	τ	$\sigma^{2 p}$	$\sigma^{2 p}$

where $Z(\mathbf{G}), D(\mathbf{G})$, and $c \in Z(\mathbf{G})$ denote the center of \mathbf{G}, the derived subgroup of \mathbf{G} and the complex conjugation of \mathbf{G}, respectively.

Lattice I

Lattice II

If $\mathbf{G}=C_{2} \times Q_{4 p}, C_{2} \times D_{4 p}$, or $C_{p} \rtimes D_{8}$, we let $\mathbf{L}, \mathbf{N}_{8}, \mathbf{N}_{1}$, and \mathbf{N}_{2} be the fixed subfields of the subgroups $\langle\sigma, \tau\rangle,\left\langle\sigma^{2}\right\rangle,\left\langle\sigma^{p} \tau\right\rangle$ and $\left\langle c \sigma^{p} \tau\right\rangle$, respectively (Lattice I). Hence, \mathbf{L} is a real quadratic subfield of \mathbf{N}, the extension \mathbf{N} / \mathbf{L} is
abelian with Galois group $G(\mathbf{N} / \mathbf{L}) \simeq C_{2 p} \times C_{2}$ and \mathbf{N}_{8} is an octic CM-field containing \mathbf{L}. The field \mathbf{N} is the compositum of two CM-fields \mathbf{N}_{1} and \mathbf{N}_{2} of degree $4 p$ with the same maximal real dihedral subfield $\mathbf{N}_{1}^{+}=\mathbf{N}_{2}^{+}$of degree $2 p$ containing \mathbf{L}. Let $\mathbf{M}_{i}=\mathbf{N}_{8} \cap \mathbf{N}_{i}$ for $i=1,2$. Then \mathbf{N}_{8} is also the compositum of two CM-subfields \mathbf{M}_{1} and \mathbf{M}_{2} with the same maximal real quadratic subfield \mathbf{L}. We have

$$
\begin{equation*}
h_{\mathbf{N}}^{-} / h_{\mathbf{N}_{8}}^{-}=\left(h_{\mathbf{N}_{1}}^{-} / h_{\mathbf{M}_{1}}^{-}\right)\left(h_{\mathbf{N}_{2}}^{-} / h_{\mathbf{M}_{2}}^{-}\right) . \tag{1}
\end{equation*}
$$

If $\mathbf{G}=C_{4} \times D_{2 p}$ or $C_{p} \times D_{8}$, we let $\mathbf{L}, \mathbf{N}_{8}$, and $\mathbf{N}_{2 p}$ be the fixed subfields of the cyclic subgroup generated by σ, σ^{4}, and σ^{p}, respectively (see Lattice II). Hence, the extension \mathbf{N} / \mathbf{L} is cyclic. Considering $D(\mathbf{G})$ we can easily verify that $w_{\mathbf{N}}=w_{\mathbf{N}_{8}}$.

Table 2
Lattice I

$G(\mathbf{N} / \mathbb{Q})$	$C_{2} \times Q_{4 p}$	$C_{2} \times D_{4 p}$	$C_{p} \rtimes D_{8}$
$G\left(\mathbf{N}_{8} / \mathbb{Q}\right)$	$C_{4} \times C_{2}$	$\left(C_{2}\right)^{3}$	D_{8}
Remarks	\mathbf{N}_{1} or \mathbf{N}_{2}	\mathbf{N}_{1} and \mathbf{N}_{2}	$\mathbf{N}_{1} \simeq \mathbf{N}_{2}, \mathbf{M}_{1} \simeq \mathbf{M}_{2}$
dicyclic	dihedral	non-normal CM-fields $\mathbf{N}_{1} / \mathbf{L}$ cyclic	

Lattice II		
$G(\mathbf{N} / \mathbb{Q})$	$C_{4} \times D_{2 p}$	$C_{p} \times D_{8}$
$G\left(\mathbf{N}_{8} / \mathbb{Q}\right)$	$C_{4} \times C_{2}$	D_{8}
Remarks	$\mathbf{N}_{2 p}$ dihedral	$\mathbf{N}_{2 p}$ cyclic
	\mathbf{N} / \mathbf{L} cyclic	\mathbf{N} / \mathbf{L} cyclic

Let us set some notations we will use throughout this paper. If \mathbf{N} is a number field, we let $d_{\mathbf{N}}, A_{\mathbf{N}}, w_{\mathbf{N}}, h_{\mathbf{N}}$, and $\zeta_{\mathbf{N}}$ denote the absolute value of its discriminant, its ring of integers, its number of complex roots of unity, its class number, and its Dedekind zeta function, respectively. If \mathbf{N} is a CM-field, we let $\mathbf{N}^{+}, h_{\mathbf{N}}^{-}$and $Q_{\mathbf{N}} \in\{1,2\}$ denote its maximal real subfield, relative class number, and Hasse unit index, respectively (see [Wa]). If \mathbf{L} is a quadratic number field, we let $\chi_{\mathbf{L}}$ denote the primitive quadratic Dirichlet character modulo $d_{\mathbf{L}}$ associated with \mathbf{L}. For any abelian extension \mathbf{E} / \mathbf{F} let $\mathcal{F}_{\mathbf{E} / \mathbf{F}}$ be the finite part of its conductor and $f_{\mathbf{E} / \mathbf{F}}=N_{\mathbf{F} / \mathbb{Q}}\left(\mathcal{F}_{\mathbf{E} / \mathbf{F}}\right)$ the norm of the finite part of this conductor. Finally, we recall:

Proposition 3. (1) ([LOO, Th. 5]) Let $\mathbf{k} \subseteq \mathbf{K}$ be two CM-fields. Assume that $[\mathbf{K}: \mathbf{k}]$ is odd. Then $Q_{\mathbf{K}}=Q_{\mathbf{k}}$ and $h_{\mathbf{k}}^{-}$divides $h_{\mathbf{K}}^{-}$.
(2) ([LOO, Prop. 8]) Let p be any odd prime number. Let K/M be a cyclic extension of degree p of CM-fields and let $\mathbf{K}^{+} / \mathbf{M}^{+}$also be cyclic. Let t be the number of prime ideals of \mathbf{M}^{+}which split $\mathbf{M} / \mathbf{M}^{+}$and are ramified
in $\mathbf{K}^{+} / \mathbf{M}^{+}$. Then $p^{t-1} h_{\mathbf{M}}^{-}$divides $h_{\mathbf{K}}^{-}$, and $p^{t} h_{\mathbf{M}}^{-}$divides $h_{\mathbf{K}}^{-}$if p does not divide $w_{\mathbf{M}}$.
(3) ([LO1]) Let t denote the number of prime ideals of \mathbf{K} which are ramified in the quadratic extension $\mathbf{K} / \mathbf{K}^{+}$. Then 2^{t-1} divides $h_{\mathbf{K}}^{-}$.
(4) Let p be an odd prime number. Let \mathbf{K} be a real dihedral field of degree $2 p$ which is cyclic over a real quadratic field \mathbf{L}.
(a) ([LPL]) There exists a positive rational integer $F_{\mathbf{K} / \mathbf{L}}$ such that the conductor of \mathbf{K} / \mathbf{L} is given by $\mathcal{F}_{\mathbf{K} / \mathbf{L}}=\left(F_{\mathbf{K} / \mathbf{L}}\right)$.
(b) ([Mar]) Let \mathcal{Q} be a prime ideal of \mathbf{L} above a rational prime q. If q does not split in \mathbf{L} / \mathbb{Q}, then \mathcal{Q} is not inert in \mathbf{K} / \mathbf{L}. Moreover, if q is totally ramified in \mathbf{K} / \mathbb{Q} then $q=p$. If $q \neq p$ and \mathcal{Q} is ramified in \mathbf{K} / \mathbf{L} then $q \equiv \chi_{\mathbf{L}}(q)(\bmod p)$.
2.1. Numerical computation of relative class numbers. We use the technique developed in [Lou5] and [Lou6] to compute efficiently relative class numbers of the CM-fields:

Proposition 4 (use [Lou6, Theorem 9]). Let E be a CM-field. Assume that there exists some totally real subfield \mathbf{L} of \mathbf{E}^{+}such that the extension \mathbf{E} / \mathbf{L} is cyclic of degree $2^{r} p$ with $r \geq 1$ and $p \geq 3$ any odd prime. Let \mathbf{F} be a CM-subfield of \mathbf{N} such that $\mathbf{L} \subseteq \mathbf{F} \subseteq \mathbf{E}$ and the degree of the extension \mathbf{E} / \mathbf{F} is p. Finally, let χ be any one of the characters of order $2^{r} p$ associated with the cyclic extension \mathbf{E} / \mathbf{L}. Then $w_{\mathbf{E}} L(0, \chi)$ is an algebraic integer of the cyclotomic field $\mathbb{Q}\left(\zeta_{2^{r} p}\right), h_{\mathbf{F}}^{-}$divides $h_{\mathbf{E}}^{-}, w_{\mathbf{F}}$ divides $w_{\mathbf{E}}$, and

$$
\begin{equation*}
h_{\mathbf{E}}^{-} / h_{\mathbf{F}}^{-}=\left(w_{\mathbf{E}} / w_{\mathbf{F}}\right) N_{\mathbb{Q}\left(\zeta_{2} r_{p}\right) / \mathbb{Q}}\left(\frac{1}{2^{m}} L(0, \chi)\right) . \tag{2}
\end{equation*}
$$

We refer the reader to [Lou6] to see how to use [Lou5] to compute the exact value of $L(0, \chi)$ (i.e. the values of the rational integers which are the coordinates in a given \mathbb{Z}-basis of the algebraic integer $w_{\mathbf{E}} L(0, \chi)$), prior to using (2).

Theorem 5. Let K be a non-abelian normal CM-field of degree $2 n=2^{r} p$ $(r \geq 2)$ which is cyclic over a real quadratic field \mathbf{L} and cyclic over a CMsubfield $\mathbf{K}_{2^{r}}$ of degree 2^{r}. Assume also that $w_{\mathbf{K}}=w_{\mathbf{K}_{2^{r}}}$. Then $h_{\mathbf{K}_{2^{r}}}^{-}$divides $h_{\mathbf{K}}^{-}$and $h_{\mathbf{K}}^{-} / h_{\mathbf{K}_{2^{r}}}^{-}=\left(h_{\mathbf{K} / \mathbf{K}_{2^{r}}}^{-}\right)^{2}$ is a perfect square.

Proof. Let χ be any character of order n associated with \mathbf{K} / \mathbf{L}. Then

$$
h_{\mathbf{K}}^{-} / h_{\mathbf{K}_{2^{r}}}^{-}=N_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}\left(\frac{1}{4} L(0, \chi)\right)
$$

(Proposition 4). Let τ be the non-trivial element in $G(\mathbf{L} / \mathbb{Q})$. Then for any ideal \mathcal{I} of \mathbf{L} we have $\chi(\tau(\mathcal{I}))=\chi(\mathcal{I})^{k}$ where $k^{2} \equiv 1(\bmod n)$, which yields $\chi \circ \tau=\chi^{k}$. Let σ_{k} denote the automorphism of $\mathbb{Q}\left(\zeta_{n}\right)$ which sends ζ_{n} to ζ_{n}^{k}. Then $\sigma_{k}(L(0, \chi))=L\left(0, \chi^{k}\right)=L(0, \chi \circ \tau)=L(0, \chi)$ and $L(0, \chi)$ lies
in the fixed subfield \mathbf{F} of $\mathbb{Q}\left(\zeta_{n}\right)$ by σ_{k}. Therefore, we have $h_{\mathbf{K}}^{-} / h_{\mathbf{K}_{2^{r}}}^{-}=$ $N_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}\left(\frac{1}{4} L(0, \chi)\right)=\left(N_{\mathbf{F} / \mathbb{Q}}\left(\frac{1}{4} L(0, \chi)\right)\right)^{2}$, which completes the proof.

3. The case $\mathbf{G} \simeq C_{2} \times Q_{4 p}$

Lemma 6 (due to S. Louboutin). Let \mathbf{N}_{1} and \mathbf{N}_{2} be two distinct CMfields with the same maximal totally real subfield. Set $\mathbf{N}=\mathbf{N}_{1} \mathbf{N}_{2}$. Assume that $Q_{\mathbf{N}_{1}}=1$ and that 4 does not divide $w_{\mathbf{N}_{1}}$. Then $h_{\mathbf{N}_{1}}^{-} h_{\mathbf{N}_{2}}^{-}$divides $2 h_{\mathbf{N}}^{-}$. In particular, if $G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times Q_{4 p}$ then $h_{\mathbf{N}_{1}}^{-} h_{\mathbf{N}_{2}}^{-}$divides $2 h_{\mathbf{N}}^{-}$.

Proof. We have $h_{\mathbf{N}}^{-}=\eta_{\mathbf{N}} h_{\mathbf{N}_{1}}^{-} h_{\mathbf{N}_{2}}^{-}$, where $\eta_{\mathbf{N}}=Q_{\mathbf{N}} w_{\mathbf{N}} /\left(Q_{\mathbf{N}_{1}} w_{\mathbf{N}_{1}} Q_{\mathbf{N}_{2}} w_{\mathbf{N}_{2}}\right)$ $=Q_{\mathbf{N}} w_{\mathbf{N}} /\left(Q_{\mathbf{N}_{2}} w_{\mathbf{N}_{1}} w_{\mathbf{N}_{2}}\right)$ and $w_{\mathbf{N}_{1}} w_{\mathbf{N}_{2}}$ divides $2 w_{\mathbf{N}}$ (see [LO2, Proof of Prop. 2, point (b)]). We must prove that $2 \eta_{\mathbf{N}}$ is a positive rational integer. Clearly, we may assume that $w_{\mathbf{N}}=\frac{1}{2} w_{\mathbf{N}_{1}} w_{\mathbf{N}_{2}}$ and $Q_{\mathbf{N}_{2}}=2$. Now, we must prove that $Q_{\mathbf{N}}=2$. Since $Q_{\mathbf{N}_{2}}=2$, we have $W_{\mathbf{N}_{2}}=\left\langle\varepsilon_{2} / \bar{\varepsilon}_{2}\right\rangle$ for some $\varepsilon_{2} \in U_{\mathbf{N}_{2}}$, and since $Q_{\mathbf{N}_{1}}=1$ we have $W_{\mathbf{N}_{2}}^{2}=\left\langle\varepsilon_{1} / \bar{\varepsilon}_{1}\right\rangle$ for some $\varepsilon_{1} \in U_{\mathbf{N}_{1}}$. Now, $\phi:\left(\varepsilon, \varepsilon^{\prime}\right) \in W_{\mathbf{N}_{1}}^{2} \times W_{\mathbf{N}_{2}} \rightarrow \varepsilon \varepsilon^{\prime} \in W_{\mathbf{N}}$ is injective (for $W_{\mathbf{N}_{1}}^{2} \cap W_{\mathbf{N}_{2}} \subset$ $W_{\mathbf{N}_{1} \cap \mathbf{N}_{2}}=W_{\mathbf{N}_{1}^{+}}=\{ \pm 1\}$ and $\left.-1 \notin W_{\mathbf{N}_{1}}^{2}\right)$ and $\# \operatorname{Im} \phi=\frac{1}{2} w_{\mathbf{N}_{1}} w_{\mathbf{N}_{2}}=w_{\mathbf{N}}$. Thus, ϕ is surjective and $W_{\mathbf{N}} \subseteq U_{\mathbf{N}}^{1-c}$. Hence, $Q_{\mathbf{N}}=2$. If $G(\mathbf{N} / \mathbb{Q}) \simeq$ $Q_{4 p} \times C_{2}$, then we may assume that \mathbf{N}_{1} is dicyclic. We have $Q_{\mathbf{N}_{1}}=Q_{\mathbf{M}_{1}}=1$ and $4 \nmid w_{\mathbf{N}_{1}}=w_{\mathbf{M}_{1}}$, where \mathbf{M}_{1} is a cyclic quartic extension of \mathbb{Q}.

Proposition 7. Let \mathbf{N} be a normal CM-field of degree $8 p$ with Galois group $G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times Q_{4 p}$. If $p \equiv 3(\bmod 4)$, then 2^{p-2} divides $h_{\mathbf{N}}^{-}$which is therefore even. If $p \equiv 1(\bmod 4)$, then $h_{\mathbf{N}}^{-}>1$.

Proof. We may assume that \mathbf{N}_{1} is a dicyclic CM-field of degree $4 p$. Then 2^{p-1} divides $h_{\mathbf{N}_{1}}^{-}$if $p \equiv 3(\bmod 4)\left(\right.$ see $[$ LOO, Thm. 6] $)$ and $h_{\mathbf{N}_{1}}^{-} \geq 4$ in any case (see [LP]). Therefore, using Lemma 6, we get the desired results.
4. The case $\mathbf{G} \simeq C_{2} \times D_{4 p}$. Using the determination of all the dihedral CM-fields of degree $4 p$ with relative class number one and the determination of some imaginary abelian octic fields with class number one, we determine all the normal CM-fields \mathbf{N} of degree $8 p$ with Galois group $G(\mathbf{N} / \mathbb{Q}) \simeq$ $C_{2} \times D_{4 p}$ which have class number one. We use the following lemma whose proof is left to the reader (use Hilbert class fields):

Lemma 8. Let \mathbf{N}_{1} and \mathbf{N}_{2} be two distinct CM-fields with the same maximal totally real subfield. Set $\mathbf{N}=\mathbf{N}_{1} \mathbf{N}_{2}$ and assume that $h_{\mathbf{N}}=1$. If neither $h_{\mathbf{N}_{1}}$ nor $h_{\mathbf{N}_{2}}$ is one, then $h_{\mathbf{N}_{1}}^{-}=h_{\mathbf{N}_{2}}^{-}=1$.

Theorem 9. There is only one normal CM-field of degree $8 p$ with Galois group $G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times D_{4 p}$ of class number one: the one given in Theorem 1(1).

Proof. Recall that $\mathbf{N}=\mathbf{N}_{1} \mathbf{N}_{2}$ is a compositum of two dihedral CMfields \mathbf{N}_{1} and \mathbf{N}_{2} of degree $4 p$ which are cyclic over the same real quadratic number field \mathbf{L} and that \mathbf{N} is a cyclic extension of degree p of an elementary imaginary abelian octic field \mathbf{N}_{8} containing \mathbf{L} (see Lattice I and Table 2). We let \mathcal{N}_{8} denote the finite set of all the elementary imaginary abelian octic fields \mathbf{N}_{8} which are equal to their own genus field and have relative class number one. There are 17 such $\mathbf{N}_{8} \in \mathcal{N}_{8}$: the 14 last fields in [Lou2, Table 2] and the following three: $\mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-3}), \mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-11})$ and $\mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{5})$ (see $[\mathrm{CK}])$. Since $h_{\mathbf{N}}=1$, the genus field of \mathbf{N}_{8} is included in \mathbf{N}. Since \mathbf{N}_{8} is the maximal abelian subfield of $\mathbf{N}, \mathbf{N}_{8}$ is its own genus field and $h_{\mathbf{N}_{8}}^{-}=1$ (use Proposition $3(1)$). Hence, $\mathbf{N}_{8} \in \mathcal{N}_{8}$. Moreover, according to Lemma 8 and noticing that no two of the 18 dihedral CM-fields of degree $4 p$ with relative class number one are cyclic extensions of the same real quadratic field (see [Lef, Th. 4.1]), we may assume that \mathbf{N}_{1} is one of the 10 dihedral CM-fields of degree $4 p$ with class number one. Hence, $p=3$ or 5 . Now, only 5 out of these 10 dihedral CM-fields \mathbf{N}_{1} are such that the imaginary biquadratic bicyclic subfield \mathbf{M}_{1} of \mathbf{N}_{1} is a subfield of one of the 17 fields $\mathbf{N}_{8} \in \mathcal{N}_{8}$. These five dihedral CM-fields are of degree 12 and are the ones of indices $i_{\mathbf{N}_{1}}=1,2,3,4$ and 6 in [Lef, Table 1, p. 85]. We have only the following 16 possible choices for the pair $\left(\mathbf{N}_{1}, \mathbf{N}_{8}\right)$:

Table 3

$i_{\mathbf{N}_{1}}$	\mathbf{M}_{1}	$d_{\mathbf{L}}$	\mathbf{N}_{8}	\mathbf{M}_{2}	$h_{\mathbf{M}_{2}}^{-}$	$h_{\mathbf{N}}^{-}$
1	$(-3,-15)$	5	$(-3,-4,5)$	$(-4,-20)$	1	3^{2}
1	$(-3,-15)$	5	$(-3,-7,5)$	$(-7,-35)$	1	6^{2}
1	$(-3,-15)$	5	$(-3,-8,5)$	$(-8,-40)$	1	3^{2}
2	$(-3,-4)$	12	$(-3,-4,5)$	$(-15,-20)$	2	3^{2}
2	$(-3,-4)$	12	$(-3,-4,-7)$	$(-7,-84)$	2	18^{2}
2	$(-3,-4)$	12	$(-3,-4,-11)$	$(-11,-33)$	2	9^{2}
2	$(-3,-4)$	12	$(-3,-4,-19)$	$(-19,-57)$	2	18^{2}
2	$(-3,-4)$	12	$(-1,-2,-3)$	$(-24,-8)$	2	6^{2}
3	$(-3,-7)$	21	$(-3,-7,5)$	$(-15,-35)$	2	3^{2}
$\mathbf{3}$	$(-\mathbf{3},-\mathbf{7})$	21	$(-\mathbf{3},-\mathbf{7},-\mathbf{4})$	$(-\mathbf{4},-\mathbf{8 4})$	$\mathbf{2}$	$\mathbf{1}$
3	$(-3,-7)$	21	$(-3,-7,-8)$	$(-8,-168)$	2	3^{2}
4	$(-3,-8)$	24	$(-3,-8,5)$	$(-15,-40)$	2	11^{2}
4	$(-3,-8)$	24	$(-3,-7,-8)$	$(-7,-42)$	2	20^{2}
4	$(-3,-8)$	24	$(-1,-2,-3)$	$(-4,-24)$	2	2^{2}
6	$(-3,-19)$	57	$(-3,-19,-4)$	$(-4,-57)$	2	3^{2}
6	$(-3,-19)$	57	$(-3,-19,-11)$	$(-11,-627)$	2	24^{2}

To compute $h_{\mathbf{N}}^{-}$, we use Theorem 5. Note that according to (1) we have $h_{\mathbf{N}}^{-}=\left(h_{\mathbf{N}_{1}}^{-} / h_{\mathbf{M}_{1}}^{-}\right)\left(h_{\mathbf{N}_{2}}^{-} / h_{\mathbf{M}_{2}}^{-}\right)=h_{\mathbf{N}_{2}}^{-} / h_{\mathbf{M}_{2}}^{-}$. According to Table 3, Theorem 9 is proved.
5. The cases $\mathbf{G} \simeq C_{p} \rtimes D_{8}, C_{4} \times D_{2 p}$ or $C_{p} \times D_{8}$. We use of the same plan as in [LP].

5.1. Lower bounds for relative class numbers

Theorem 10 (see the proof of [LP, Thm. 6]). Let \mathbf{K} be a CM-field of degree $2 n$ which is cyclic of degree $2 m$ over an abelian real field \mathbf{L}. Let f_{+}denote the norm of the conductor of the extension $\mathbf{K}^{+} / \mathbf{L}$. Set $\varepsilon_{\mathbf{K}}=$ $\max \left\{\varepsilon_{\mathbf{K}}^{\prime}, \varepsilon_{\mathbf{K}}^{\prime \prime}\right\}$ where $\varepsilon_{\mathbf{K}}^{\prime}=\frac{2}{5} \exp \left(-2 \pi n / d_{\mathbf{K}}^{1 /(2 n)}\right), \varepsilon_{\mathbf{K}}^{\prime \prime}=1-\left(2 \pi n e^{1 / n} / d_{\mathbf{K}}^{1 /(2 n)}\right)$. Let \mathbf{M} / \mathbf{L} be the only quadratic subextension of \mathbf{K} / \mathbf{L}. Assume that $\zeta_{\mathbf{M}}(s) \leq 0$ for $0<s<1$. Then for some constant $\mu_{\mathbf{L}}$ depending on \mathbf{L} only, we have

$$
h_{\mathbf{K}}^{-} \geq \varepsilon_{\mathbf{K}} \frac{2 Q_{\mathbf{K}} w_{\mathbf{K}} \sqrt{d_{\mathbf{K}} / d_{\mathbf{K}^{+}}}}{e(2 \pi)^{n}\left(\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{L}}\right)\right)^{m}\left(\frac{1}{2} \log f_{+}+2 \mu_{\mathbf{L}}\right)^{m-1} \log d_{\mathbf{K}}} .
$$

To compute the numerical approximations of $\operatorname{Res}_{s=1}\left(\zeta_{\mathbf{L}}\right)$ and $\mu_{\mathbf{L}}$ we use [Lou3].

Theorem 11. (1) ([CK]) Let $\mathbf{N}_{8}=\mathbf{L}_{4} \mathbf{L}_{2}$ be an imaginary abelian octic field with Galois group $G\left(\mathbf{N}_{8} / \mathbb{Q}\right) \simeq C_{4} \times C_{2}$, where \mathbf{L}_{4} is an imaginary cyclic quartic of conductor f_{4} and \mathbf{L}_{2} is a real quadratic of conductor f_{2}. Then $h_{\mathbf{N}_{8}}=1$ if and only if $\left(f_{4}, f_{2}\right) \in\{(5,8),(5,13),(5,17),(13,5),(13,8)$, $(16,5)\}$. For these six fields \mathbf{N}_{8} we have $\zeta_{\mathbf{N}_{8}^{+}}(s) \leq 0$ for $0<s<1$.
(2) ([LO1]) There are exactly 19 dihedral octic CM-fields \mathbf{N}_{8} with relative class number one: the narrow Hilbert 2-class fields of the 19 real quadratic field \mathbf{L} which appear in Table 6. For these 19 fields \mathbf{N}_{8} we have $\zeta_{\mathbf{N}_{8}^{+}}(s) \leq 0$ for $0<s<1$.
(3) ([LO1]) There are 38 non-normal quartic CM-fields \mathbf{M} with relative class number one (they are pairwise isomorphic and their normal closures are the previous 19 dihedral octic CM-fields with relative class number one). For these 38 fields \mathbf{M} we have $\zeta_{\mathbf{M}}(s) \leq 0$ for $0<s<1$.

Corollary 12. Let $p \geq 3$ be a given odd prime. We can compute an explicit bound on the discriminants of the normal CM-fields of degree $8 p$ with Galois groups $\mathbf{G} \simeq C_{p} \rtimes D_{8}, C_{4} \times D_{2 p}$, or $C_{p} \times D_{8}$ and relative class number one. More precisely:
(1) Assume that $\mathbf{G} \simeq C_{4} \times D_{2 p}$ or $C_{p} \times D_{8}($ Lattice II $)$. Then $h_{\mathbf{N}_{8}}^{-}=1$. For each of these $25(=6+19)$ CM-fields \mathbf{N}_{8} of relative class number one we can compute a bound $B_{p}(\mathbf{L})$ on the norm f_{+}of the conductor of the extension $\mathbf{N}^{+} / \mathbf{L}$ such that $h_{\mathbf{N}}^{-}=1$ implies $f_{+} \leq B_{p}(\mathbf{L})$.
(2) Assume that $\mathbf{G} \simeq C_{p} \rtimes D_{8}$ (Lattice I). Then $h_{\mathbf{N}}^{-}=1$ if and only if $h_{\mathbf{N}_{1}}^{-}=1$. Now, $h_{\mathbf{N}_{1}}^{-}=1$ implies $h_{\mathbf{M}_{1}}^{-}=1$. For each of these 38 non-normal quartic CM-fields \mathbf{M}_{1} of relative class number one we can compute a bound $B_{p}(\mathbf{L})$ on the norm f_{+}of the conductor of the extension $\mathbf{N}_{1}^{+} / \mathbf{L}$ such that $h_{\mathbf{N}_{1}}^{-}=1$ implies $f_{+} \leq B_{p}(\mathbf{L})$.

Proof. First, assume that $\mathbf{G} \simeq C_{4} \times D_{2 p}$ or $C_{p} \times D_{8}$ (Lattice II). Then \mathbf{N} / \mathbf{L} is a cyclic extension of degree $4 p$. For s real we have

$$
\left(\zeta_{\mathbf{N}} / \zeta_{\mathbf{N}_{8}^{+}}\right)(s)=\prod_{\{\chi, \bar{\chi}\}, \chi^{2} \neq 1}|L(s, \chi)|^{2} \geq 0
$$

(where χ ranges over the $4 p-2$ non-quadratic characters associated with the extension \mathbf{N} / \mathbf{L}), and we conclude that $\zeta_{\mathbf{N}_{\mathbf{8}}}(s) \leq 0$ for $0<s<1$ implies $\zeta_{\mathbf{N}}(s) \leq 0$ for $0<s<1$. Now, assume that $h_{\mathbf{N}}^{-}=1$. Since $h_{\mathbf{N}_{8}}^{-}$divides $h_{\mathbf{N}}^{-}$(Proposition 3), we have $h_{\mathbf{N}_{8}}^{-}=1$ and $\zeta_{\mathbf{N}_{8}^{+}}(s) \leq 0$ for $0<s<1$ (Theorem 11(1), (2)). On applying Theorem 10 with $\mathbf{K}=\mathbf{N}$ and $2 m=4 p$, for each of the finitely many \mathbf{N}_{8} with $h_{\mathbf{N}_{8}}^{-}=1$ we obtain a good lower bound of $B_{p}(\mathbf{L})$. (See Tables 4, 6, and 7.)

Second, assume that $\mathbf{G} \simeq C_{p} \rtimes D_{8}$ (Lattice I). Then \mathbf{M}_{1} is a nonnormal quartic CM-field, hence $Q_{\mathbf{M}_{1}}=1$ (see [Lou1, Lemma 1]), $Q_{\mathbf{N}_{1}}=$ $Q_{\mathbf{M}_{1}}=1$, by Proposition 3(1), and $h_{\mathbf{N}}^{-}=\left(Q_{\mathbf{N}} / 2\right)\left(h_{\mathbf{N}_{1}}^{-} / Q_{\mathbf{N}_{1}}\right)^{2}$ (see [LO2, Prop. 2]). Hence, $h_{\mathbf{N}}^{-}=1$ implies $h_{\mathbf{N}_{1}}^{-}=1$ (and $Q_{\mathbf{N}}=2$) and $h_{\mathbf{M}_{1}}^{-}=1$ (Proposition 3(1)). Conversely, $h_{\mathbf{N}_{1}}^{-}=1$ implies $h_{\mathbf{N}}^{-}=1$ (and $Q_{\mathbf{N}}=2$). Since $\mathbf{N}_{1} / \mathbf{L}$ is cyclic of degree $2 p$, as for the previous point we also obtain a good lower bound of $B_{p}(\mathbf{L})$. (See Table 9.)

If we followed the same line of reasoning as in [Lef], we could determine all the normal CM-fields of degree $8 p, p \geq 3$ any odd prime, with Galois group $\mathbf{G} \simeq C_{p} \rtimes D_{8}, C_{4} \times D_{2 p}$ or $C_{p} \times D_{8}$ with relative class number one. Instead of determining all the normal CM-fields of degree $8 p$ we determine the fields of degree 24 and 40 in the following three sections. We will prove:

Theorem 13. The only normal CM-fields of degree 24 with Galois group $G(\mathbf{N} / \mathbb{Q}) \simeq C_{3} \rtimes D_{8}, C_{4} \times D_{6}$, or $C_{3} \times D_{8}$ of relative class number one are the two fields given in Theorem 1(2), (3). If \mathbf{N} is a normal CM-field of degree 40 with Galois group $G(\mathbf{N} / \mathbb{Q}) \simeq C_{5} \rtimes D_{8}, C_{4} \times D_{10}$, or $C_{5} \times D_{8}$, then $h_{\mathbf{N}}^{-}>1$.
5.2. The cases $\mathbf{G} \simeq C_{4} \times D_{6}$ and $\mathbf{G} \simeq C_{4} \times D_{10}$ (Lattice II)

Proposition 14. Let \mathbf{N} be a normal CM-field of degree $8 p$ with $G(\mathbf{N} / \mathbb{Q})$ $\simeq C_{4} \times D_{2 p}$. Assume that $h_{\mathbf{N}}^{-}$is odd. If a rational prime q is ramified in $\mathbf{N}_{8} / \mathbf{L}$, then q divides $f_{\mathbf{N}_{2 p} / \mathbf{L}}$.

Proof. Suppose q splits in \mathbf{L} / \mathbb{Q}. Then $t_{\mathbf{N}_{8} / \mathbf{N}_{8}^{+}} \geq 2$ and $2\left|h_{\mathbf{N}_{8}}^{-}\right| h_{\mathbf{N}}^{-}$by Proposition 3(1), (3), which is a contradiction. Hence, q does not split in \mathbf{L} / \mathbb{Q}. Let $\mathcal{Q}_{\mathbf{L}}$ denote the prime ideal of \mathbf{L} above q. According to Proposition $3(4), \mathcal{Q}_{\mathbf{L}}$ is not inert in $\mathbf{N}_{2 p} / \mathbf{L}$. Suppose $\mathcal{Q}_{\mathbf{L}}$ were not ramified in $\mathbf{N}_{2 p} / \mathbf{L}$. Then $\mathcal{Q}_{\mathbf{L}}$ would split in $\mathbf{N}_{2 p} / \mathbf{L}$. Since $\mathcal{Q}_{\mathbf{L}}$ is ramified in $\mathbf{N}_{8} / \mathbf{L}$ and since \mathbf{N} / \mathbf{L} is cyclic, the p prime ideals $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{p}$ of $\mathbf{N}_{2 p}$ above $\mathcal{Q}_{\mathbf{L}}$ would be ramified in the cyclic quartic extension $\mathbf{N} / \mathbf{N}_{2 p}$, hence the prime ideals
of \mathbf{N}^{+}above \mathcal{Q}_{i} would be ramified in the quadratic extension $\mathbf{N} / \mathbf{N}^{+}$, we would have $t_{\mathbf{N} / \mathbf{N}^{+}} \geq p$ and 2^{p-1} would divide $h_{\mathbf{N}}^{-}$(by Proposition 3(2)). A contradiction. Hence, $\mathcal{Q}_{\mathbf{L}}$ is ramified in $\mathbf{N}_{2 p} / \mathbf{L}$ and q divides $f_{\mathbf{N}_{2 p} / \mathbf{L}}$.

First, assume that $G(\mathbf{N} / \mathbb{Q}) \simeq C_{4} \times D_{6}$ and $h_{\mathbf{N}}^{-}=1$. Then $h_{\mathbf{N}_{8}}^{-}=1$ and \mathbf{N}_{8} is known (Theorem 11(1)). In fact, we can get rid of two of the six possible fields \mathbf{N}_{8} and we can decide which one of the three real quadratic subfields of a given \mathbf{N}_{8} must be equal to \mathbf{L} :

Lemma 15. If $h_{\mathbf{N}}^{-}=1$ then $\left(f_{4}, f_{2}, d_{\mathbf{L}}\right) \in\{(16,5,5),(5,8,8),(5,13,13)$, $(5,17,17)\}$.

Proof. If a rational prime q divides $f_{\mathbf{N}_{8} / \mathbf{L}}$, then $q \in\{2,5,13\}$ and $q \mid f_{\mathbf{N}_{6} / \mathbf{L}}$ by Proposition 14. Note that if q is ramified in \mathbf{L} / \mathbb{Q}, then q is totally ramified in $\mathbf{N}_{6} / \mathbb{Q}$ and $q=3$. This implies that q is inert in \mathbf{L} / \mathbb{Q} and $3 \mid(q+1)$ by Proposition 3(4), which yields the desired result.

For the four fields \mathbf{N}_{8} we compute $B_{3}(\mathbf{L})$ such that $h_{\mathbf{N}}^{-}>1$ if $f_{\mathbf{N}_{6} / \mathbf{L}}>$ $B_{3}(\mathbf{L})$. Let n_{f} be the number of conductors of \mathbf{N} / \mathbf{L} satisfying $f_{\mathbf{N}_{6} / \mathbf{L}} \leq$ $B_{3}(\mathbf{L})$ and N_{f} the number of conductors of \mathbf{N} / \mathbf{L} satisfying $f_{\mathbf{N}_{6} / \mathbf{L}} \leq B_{3}(\mathbf{L})$ and Proposition 14. We refer the reader to Table 4 for the result of our computation. Notice that N_{f} is much small than n_{f}, which clearly shows how useful Proposition 14 is for alleviating the amount of computation required. Finally, in Table 5 we give the results of our relative class number computations. According to Table 5, there is only one such CM-field with $h_{\mathbf{N}}^{-}=1$. Notice that there are two fields \mathbf{N}_{6} for which $\mathcal{F}_{\mathbf{N}_{6} / \mathbf{L}}=(5 \cdot 22)$. In the same way, for the case $G(\mathbf{N} / \mathbb{Q}) \simeq C_{4} \times D_{10}$ we computed Table 6 according to which there is no such \mathbf{N} with $h_{\mathbf{N}}^{-}=1$.

Table $4\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{4} \times D_{6}\right)$

	$d_{\mathbf{L}}$	$h_{\mathbf{L}}$	$\mathrm{R}_{\mathbf{L}} \leq$	$\mu_{\mathbf{L}} \leq$	$f_{\mathbf{N}_{8} / \mathbf{L}}$	$B_{3}(\mathbf{L})$	n_{f}	N_{f}
1	5	1	0.431	0.1014	2^{8}	30^{2}	1	1
2	8	1	0.624	0.1409	5^{2}	310^{2}	20	5
3	13	1	0.663	0.2215	5^{2}	230^{2}	21	5
4	17	1	1.017	0.2167	5^{2}	390^{2}	27	9

Table $5\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{4} \times D_{6}\right)$

	$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{6} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}$		$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{6} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}$		$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{6} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}$
1	5	$\left(2 \cdot 3^{2}\right)$	65^{2}	8	13	$\left(5 \cdot 3^{2}\right)$	13^{2}	14	17	$(5 \cdot 19)$	52^{2}
2	8	$(5 \cdot 7)$	4^{2}	9	13	$(5 \cdot 18)$	61^{2}	15	17	$(5 \cdot 23)$	100^{2}
3	8	$\left(5 \cdot 3^{2}\right)$	10^{2}	10	13	$(5 \cdot 22)$	90^{2}	16	17	$(5 \cdot 29)$	261^{2}
4	8	$(5 \cdot 11)$	9^{2}		13	$(5 \cdot 22)$	90^{2}	17	17	$(5 \cdot 41)$	369^{2}
5	8	$(5 \cdot 31)$	81^{2}	11	13	$(5 \cdot 43)$	205^{2}	18	17	$(5 \cdot 43)$	541^{2}
6	8	$(5 \cdot 53)$	241^{2}	12	17	$\left(5 \cdot 3^{2}\right)$	25^{2}	19	17	$(5 \cdot 67)$	976^{2}
$\mathbf{7}$	$\mathbf{1 3}$	$(\mathbf{5} \cdot \mathbf{2})$	$\mathbf{1}$	13	17	$(5 \cdot 13)$	52^{2}	20	17	$(5 \cdot 71)$	1476^{2}

Table $6\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{4} \times D_{10}\right)$

	$d_{\mathbf{L}}$	$h_{\mathbf{L}}$	$\mathrm{R}_{\mathbf{L}} \leq$	$\mu_{\mathbf{L}} \leq$	$f_{\mathbf{N}_{8}}$	$B_{5}(\mathbf{L})$	n_{f}	N_{f}	$\mathcal{F}_{\mathbf{N}_{10} / \mathbf{L}}$	$h_{\mathbf{K}}^{-}$
1	40	2	1.151	0.3719	5	110^{2}	1	0	-	-
2	65	2	1.378	0.4718	5	105^{2}	1	1	95	145305^{2}
3	85	2	0.959	0.6116	5	55^{2}	0	0	-	-

5.3. The cases $\mathbf{G} \simeq C_{3} \times D_{8}$ and $\mathbf{G} \simeq C_{5} \times D_{8}$ (Lattice II). In these cases we use the following proposition similar to Proposition 14:

Proposition 16. Let \mathbf{N} be a normal CM-field of degree $8 p$ with $G(\mathbf{K} / \mathbb{Q})$ $\simeq C_{p} \times D_{8}$. Assume that $h_{\mathbf{N}}^{-}=1$. If a rational prime q is inert in \mathbf{L} / \mathbb{Q}, then q does not divide $f_{\mathbf{N}_{2 p} / \mathbf{L}}$, the norm of the conductor $\mathcal{F}_{\mathbf{N}_{2 p} / \mathbf{L}}$ of $\mathbf{N}_{2 p} / \mathbf{L}$.

Proof. If $h_{\mathbf{N}}^{-}=1$, then $h_{\mathbf{N}_{8}}^{-}=1$ and \mathbf{N}_{8} is the narrow Hilbert 2-class field of some real quadratic field \mathbf{L} in Theorem 11(2). If q is ramified in $\mathbf{N}_{2 p} / \mathbf{L}$, then, since q splits completely in $\mathbf{N}_{8} / \mathbf{L}$ and is ramified in $\mathbf{N} / \mathbf{N}^{+}$, we have $p \mid h_{\mathbf{N}}^{-}$by Proposition 3(2).

We obtain Table 7 in the same way as Table 4. In Table 7, to provide the reader with an excerpt of our relative class number computations, for each of the 19 dihedral octic CM-fields \mathbf{N}_{8} of relative class number one, we give the value of the relative class number of the \mathbf{N} with $G(\mathbf{N} / \mathbb{Q}) \simeq C_{3} \times D_{8}$ and containing \mathbf{N}_{8} of least $f_{\mathbf{N}_{6} / \mathbf{L}}$. Table 8 provides the same data for the case $G(\mathbf{N} / \mathbb{Q}) \simeq C_{5} \times D_{8}$. According to these results there is no \mathbf{N} of relative class number one with $\mathbf{G} \simeq C_{3} \times D_{8}$ and $\mathbf{G} \simeq C_{5} \times D_{8}$. In Tables 7 and 8 , \mathcal{P}_{q} denotes the prime ideal of \mathbf{L} above a prime q ramified in \mathbf{L} / \mathbb{Q}.

Table $7\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{3} \times D_{8}\right)$

	$d_{\mathbf{L}}$	$h_{\mathbf{L}}$	$\mathrm{R}_{\mathbf{L}} \leq$	$\mu_{\mathbf{L}} \leq$	$B_{3}(\mathbf{L})$	n_{f}	N_{f}	$\mathcal{F}_{\mathbf{N}_{6} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}$
1	136	2	1.458	0.6285	127000	45	16	(9)	4^{2}
2	205	2	1.051	0.8512	22300	20	11	(7)	4^{2}
$\mathbf{3}$	$\mathbf{2 2 1}$	2	0.728	1.0622	6300	15	7	$\mathcal{P}_{\mathbf{1 3}}$	$1 \mathbf{1}$
4	305	2	1.578	0.9137	49700	33	13	(7)	7^{2}
5	377	2	1.266	1.1927	19300	22	10	(19)	91^{2}
6	545	2	1.418	1.2455	15600	19	7	(13)	52^{2}
7	584	2	0.939	1.4452	3700	9	3	(13)	64^{2}
8	712	2	1.210	1.4269	6300	12	8	(9)	52^{2}
9	745	2	2.500	0.9936	56300	31	14	(9)	67^{2}
10	1345	6	3.004	1.0595	40000	27	10	(7)	97^{2}
11	1537	2	2.626	1.2130	21800	20	13	(7)	52^{2}
12	1864	2	1.979	1.3345	6100	11	7	(7)	109^{2}
13	1945	2	2.657	1.3607	16100	17	6	(9)	157^{2}
14	2041	2	3.362	1.1322	30200	31	15	(7)	172^{2}
15	2248	2	1.680	1.5128	2800	7	6	(7)	112^{2}
16	2329	2	2.926	1.3022	16500	18	6	(9)	196^{2}
17	2353	2	2.612	1.3896	11500	20	15	\mathcal{P}_{13}	52^{2}
18	4369	2	3.573	1.3589	11500	15	8	(7)	217^{2}
19	7081	2	3.737	1.4961	6400	16	11	(7)	724^{2}

Table $\mathbf{8}\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{5} \times D_{8}\right)$					
$d_{\mathbf{L}}$	$B_{5}(\mathbf{L})$	n_{f}	N_{f}	$\mathcal{F}_{\mathbf{N}_{10} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}$
136	9500	6	3	(11)	71^{2}
205	2400	4	3	\mathcal{P}_{41}	11^{2}
221	900	2	2	(11)	181^{2}
305	4500	5	3	\mathcal{P}_{61}	121^{2}
377	2200	4	3	(11)	1361^{2}
545	1800	4	2	\mathcal{P}_{5}^{3}	1991^{2}
584	600	1	1	(11)	3001^{2}
712	900	2	0	(61)	4250131^{2}
745	5000	5	3	\mathcal{P}_{5}^{3}	4366^{2}
1345	3800	5	4	(11)	18481^{2}
1537	2400	4	2	(31)	2620621^{2}
1864	900	2	2	(11)	26081^{2}
1945	1900	4	3	(11)	39581^{2}
2041	3000	4	2	(25)	1522576^{2}
2248	500	2	2	(11)	83171^{2}
2329	1900	4	3	(25)	2573371^{2}
2353	1400	4	2	\mathcal{P}_{181}	122305^{2}
4369	1400	3	1	(25)	8527696^{2}
7081	900	2	1	(25)	29035651^{2}

5.4. The cases $\mathbf{G} \simeq C_{3} \rtimes D_{8}$ and $\mathbf{G} \simeq C_{5} \rtimes D_{8}$ (Lattice $\left.I\right)$. Assume that

$$
G(\mathbf{N} / \mathbb{Q}) \simeq C_{3} \rtimes D_{8} \quad \text { and } \quad h_{\mathbf{N}}^{-}=1
$$

For each of the 38 non-normal quartic CM-fields \mathbf{M}_{1} of relative class number one we have computed an upper bound $B_{3}(\mathbf{L})$ such that $f_{\mathbf{N}_{1}^{+} / \mathbf{L}}>B_{3}(\mathbf{L})$ implies $h_{\mathbf{N}_{1}}^{-}>1$. For each possible \mathbf{N}_{1}, we have computed $h_{\mathbf{N}_{1}}^{-} / h_{\mathbf{M}_{1}}^{-}$for the non-normal CM-field \mathbf{N}_{1} which is cyclic of degree 3 over a non-normal CM-field \mathbf{M}_{1} by using (2). Finally, our computation shows that in all the cases considered we have $h_{\mathbf{N}_{1}}^{-}>1$, which implies $h_{\mathbf{N}}^{-}>1$. In Table 9, we also give the value of $h_{\mathbf{N}}^{-}$for least $f_{\mathbf{N}_{1}^{+} / \mathbf{L}}$ and we let n_{f} denote the number of conductors of \mathbf{N} / \mathbf{L} satisfying $f_{\mathbf{N}_{1}^{+} / \mathbf{L}} \leq B_{3}(\mathbf{L})$.

For the case $G(\mathbf{N} / \mathbb{Q}) \simeq C_{5} \rtimes D_{8}$ we obtain Table 10 in the same way. In Table 10, we give all possible 12 non-normal CM-fields \mathbf{N} with $\mathbf{G} \simeq C_{5} \rtimes D_{8}$ and $f_{\mathbf{N}_{1}^{+} / \mathbf{L}} \leq B_{5}(\mathbf{L})$.

According to these results there is no \mathbf{N} of relative class number one with $\mathbf{G} \simeq C_{3} \rtimes D_{8}$ or $\mathbf{G} \simeq C_{5} \rtimes D_{8}$. In Tables 9 and $10, \mathcal{P}_{q}$ denotes a prime ideal of \mathbf{L} above a split prime q. Note that there are two possible prime ideals \mathcal{P}_{q}. If we choose the other, then we get exactly the other isomorphic non-normal CM-fields \mathbf{N}_{2}.

Table $9\left(G(\mathbf{N} / \mathbb{Q}) \simeq V_{24}=C_{3} \rtimes D_{8}\right)$

	$d_{\mathbf{L}}$	$f_{\mathbf{M}_{1} / \mathbf{L}}$	$B_{3}(\mathbf{L})$	n_{f}	$\mathcal{F}_{\mathbf{N}_{1} / \mathbf{L}}$	$h_{\overline{\mathbf{N}}}^{-}=\left(h_{\mathbf{N}_{1}}^{-}\right)^{2}$
1	8	17	120^{2}	10	$(29) \mathcal{P}_{17}$	208^{2}
2	8	73	40^{2}	2	(29) \mathcal{P}_{73}	148^{2}
3	8	89	30^{2}	1	$(29) \mathcal{P}_{89}$	124^{2}
4	8	233	20^{2}	0	-	-
5	8	281	20^{2}	0	-	-
6	5	41	50^{2}	5	$(18) \mathcal{P}_{41}$	57^{2}
7	5	61	40^{2}	3	(18) \mathcal{P}_{61}	84^{2}
8	5	109	30^{2}	1	(18) \mathcal{P}_{109}	63^{2}
9	5	149	20^{2}	1	(18) \mathcal{P}_{149}	100^{2}
10	5	269	20^{2}	1	$(18) \mathcal{P}_{269}$	211^{2}
11	5	389	10^{2}	0	-	-
12	13	17	90^{2}	8	(10) \mathcal{P}_{17}	12^{2}
13	13	29	60^{2}	5	$(10) \mathcal{P}_{29}$	27^{2}
14	13	157	20^{2}	3	(10) \mathcal{P}_{157}	$196{ }^{2}$
15	13	181	20^{2}	3	(10) \mathcal{P}_{181}	228^{2}
16	17	137	30^{2}	1	(11) \mathcal{P}_{137}	324^{2}
17	17	257	20^{2}	1	(11) \mathcal{P}_{257}	444^{2}
18	29	53	20^{2}	2	(9) \mathcal{P}_{53}	52^{2}
19	73	97	30^{2}	1	(5) \mathcal{P}_{97}	$292{ }^{2}$
20	17	8	670^{2}	47	(11) \mathcal{P}_{2}^{3}	4^{2}
21	73	8	$550{ }^{2}$	35	(5) \mathcal{P}_{2}^{3}	16^{2}
22	89	8	330^{2}	5	(29) \mathcal{P}_{2}^{3}	400^{2}
23	233	8	150^{2}	14	$(17) \mathcal{P}_{2}^{3}$	516^{2}
24	281	8	190^{2}	7	(9) \mathcal{P}_{2}^{3}	208^{2}
25	41	5	860^{2}	43	$(17) \mathcal{P}_{5}$	19^{2}
26	61	5	360^{2}	34	$(22) \mathcal{P}_{5}$	57^{2}
27	109	5	280^{2}	27	$(11) \mathcal{P}_{5}$	36^{2}
28	149	5	110^{2}	16	(18) \mathcal{P}_{5}	133^{2}
29	269	5	70^{2}	3	(2) \mathcal{P}_{5}	4^{2}
30	389	5	70^{2}	4	(2) \mathcal{P}_{5}	4^{2}
31	17	13	190^{2}	13	(11) \mathcal{P}_{13}	16^{2}
32	29	13	60^{2}	6	(9) \mathcal{P}_{13}	12^{2}
33	157	13	30^{2}	4	(10) \mathcal{P}_{13}	43^{2}
34	181	13	30^{2}	3	$(17) \mathcal{P}_{13}$	516^{2}
35	137	17	50^{2}	3	(9) \mathcal{P}_{17}	268^{2}
36	257	17	30^{2}	1	\mathcal{P}_{17}	4^{2}
37	53	29	20^{2}	3	$(10) \mathcal{P}_{29}$	84^{2}
38	97	73	30^{2}	2	(23) \mathcal{P}_{73}	756^{2}

Table $10\left(G(\mathbf{N} / \mathbb{Q}) \simeq V_{40}=C_{5} \rtimes D_{8}\right)$

$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{1} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}=\left(h_{\mathbf{N}_{1}}^{-}\right)^{2}$		$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{1} / \mathbf{L}}$	$h_{\mathbf{N}}^{-}=\left(h_{\mathbf{N}_{1}}^{-}\right)^{2}$	
1	17	$(79) \cdot \mathcal{P}_{2}^{3}$	73205^{2}	7	89	$\left(5^{2}\right) \cdot \mathcal{P}_{2}^{3}$	86525^{2}
2	41	$(109) \cdot \mathcal{P}_{5}$	3688955^{2}	8	89	$(59) \cdot \mathcal{P}_{2}^{3}$	2732816^{2}
3	41	$(179) \cdot \mathcal{P}_{5}$	5263280^{2}	9	109	$(79) \cdot \mathcal{P}_{5}$	2044655^{2}
4	41	$(199) \cdot \mathcal{P}_{5}$	9782005^{2}	10	181	$(19) \cdot \mathcal{P}_{13}$	194011^{2}
5	61	$(59) \cdot \mathcal{P}_{5}$	101680^{2}	11	257	$(19) \cdot \mathcal{P}_{17}$	1030480^{2}
6	73	$\left(5^{2}\right) \cdot \mathcal{P}_{2}^{3}$	9136^{2}	12	389	$(29) \cdot \mathcal{P}_{5}$	228005^{2}

6. The case $\mathbf{G} \simeq C_{2} \times F_{5,4}$. Let \mathbf{N} be a normal CM-field of degree 40 with Galois group $\mathbf{G}=G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times F_{5,4}=C_{2} \times\left\langle a, b: a^{5}=\right.$ $\left.b^{4}=1, b^{-1} a b=a^{2}\right\rangle \simeq\left\langle\sigma, \tau: \sigma^{10}=\tau^{4}=1, \tau^{-1} \sigma \tau=\sigma^{7}\right\rangle$. Note that \mathbf{N}^{+}is a normal real field with Galois group $G\left(\mathbf{N}^{+} / \mathbb{Q}\right) \simeq F_{5,4}$. Moreover, $D(\mathbf{G})=\left\langle\sigma^{2}\right\rangle$ and $Z(\mathbf{G})=\left\langle\sigma^{5}\right\rangle$. Hence, σ^{5} is the complex conjugation in \mathbf{G}. Let \mathbf{N}_{8} be the fixed subfield of the 5 -Sylow normal subgroup $D(\mathbf{G})$ of G. Then \mathbf{N}_{8} is an imaginary abelian octic field whose maximal totally real subfield \mathbf{N}_{8}^{+}is cyclic quartic, and we let \mathbf{L} denote the quadratic subfield of \mathbf{N}_{8}^{+}and \mathbf{L}_{im} be any one of the two imaginary quadratic subfield of \mathbf{N}_{8}. Notice that $w_{\mathbf{N}}=w_{\mathbf{N}_{8}}$. We have the following lattice of subfields:

$$
\begin{aligned}
& G\left(\mathbf{N}^{+} / \mathbb{Q}\right) \simeq F_{5,4} \\
& G\left(\mathbf{N}_{8} / \mathbb{Q}\right) \simeq C_{4} \times C_{2} \\
& G\left(\mathbf{N}_{8}^{+} / \mathbb{Q}\right) \simeq C_{4} \\
& G\left(\mathbf{N} / \mathbf{N}_{8}^{+}\right) \simeq C_{10}
\end{aligned}
$$

Proposition 17. Let \mathbf{K} / \mathbf{M} be a cyclic quintic extension of a real cyclic quartic field \mathbf{M}. Let χ be a character of order 5 associated with \mathbf{K} / \mathbf{M}. Fix a generator b of $G(\mathbf{M} / \mathbb{Q})$.
(1) \mathbf{K} is a normal number field with Galois group $G(\mathbf{K} / \mathbb{Q}) \simeq F_{5,4}$ if and only if $\mathcal{F}_{\mathbf{K} / \mathbf{M}}$ is invariant under the action of $G(\mathbf{M} / \mathbb{Q})$ and for some $u \in\{2,3\}$ we have $\chi(b(\mathcal{P}))=\chi(\mathcal{P})^{u}$ for all prime ideals \mathcal{P} of \mathbf{M}.
(2) Let \mathbf{K} be a normal real field of degree 20 with $G(\mathbf{K} / \mathbb{Q}) \simeq F_{5,4}$. Let \mathcal{P}_{q}, e_{q} and f_{q} denote a prime ideal of \mathbf{M} above a rational prime q, its ramification index, and its inertial degree, respectively.
(a) If q does not split completely in \mathbf{M} / \mathbb{Q}, then \mathcal{P}_{q} is not inert in \mathbf{K} / \mathbf{M}. Moreover, if \mathcal{P}_{q} is ramified in both \mathbf{M} / \mathbb{Q} and \mathbf{K} / \mathbf{M} then $q=5$.
(b) Let \mathcal{I}_{5} denote the ideal of \mathbf{M} such that (5) $=\mathcal{I}_{5}^{e_{5}}$. Then

$$
\mathcal{F}_{\mathbf{K} / \mathbf{M}}=\mathcal{I}_{5}^{e}\left(\prod q\right)
$$

where $\prod q$ is a finite product of distinct rational primes q 's such that

$$
\begin{cases}q \equiv 1(\bmod 5) & \text { if } f_{q}=1 \\ q \equiv \pm 1(\bmod 5) & \text { if } f_{q}=2 \\ q \neq 1(\bmod p) & \text { if } f_{q}=4\end{cases}
$$

and either $e=0$ or

$$
\begin{cases}e=2 & \text { if } e_{5}=1 \\ e \in\{2,3\} & \text { if } e_{5}=2 \\ e \in\{2,3,4,6\} & \text { if } e_{5}=4\end{cases}
$$

Proof. (1) We first prove the necessity. Let $\Phi_{\mathbf{K} / \mathbf{M}}$ denote the Artin map associated with \mathbf{K} / \mathbf{M}. Note that

$$
\chi(b(\mathcal{P}))=\chi(\mathcal{P})^{u} \Leftrightarrow \Phi_{\mathbf{K} / \mathbf{M}}(b(\mathcal{P}))=b^{-1} \Phi_{\mathbf{K} / \mathbf{M}}(\mathcal{P}) b=\Phi_{\mathbf{K} / \mathbf{M}}(\mathcal{P})^{u}
$$

This shows that if $\mathcal{F}_{\mathbf{K} / \mathbf{M}}$ is invariant under b, so is the kernel $\operatorname{Ker}\left(\Phi_{\mathbf{K} / \mathbf{M}}\right)$, which yields the normality of \mathbf{K} (see [Cohn, Thm. 8.2.5]). Therefore, considering the Galois group $G(\mathbf{K} / \mathbb{Q})$, we get the desired result. The sufficiency is easily checked.
(2) First, if q does not split completely in \mathbf{M} / \mathbb{Q} then there exists some $i_{0} \in\{1,2,3\}$ such that $b^{i_{0}}\left(\mathcal{P}_{q}\right)=\mathcal{P}_{q}$. Hence, $\chi\left(b^{i_{0}}\left(\mathcal{P}_{q}\right)\right)=\chi\left(\mathcal{P}_{q}\right)^{u^{i} 0}=\chi\left(\mathcal{P}_{q}\right)$, which gives $\chi\left(\mathcal{P}_{q}\right)=1$, and the first claim of (a) is proved. The last claim of (a) follows from ramification theory.

Second, assume that $q \neq 5$ and \mathcal{P}_{q} divides $\mathcal{F}_{\mathbf{K} / \mathbf{M}}$. Then, since $\mathcal{F}_{\mathbf{K} / \mathbf{M}}$ is invariant under action of $G(\mathbf{M} / \mathbb{Q}),(q)$ divides $\mathcal{F}_{\mathbf{K} / \mathbf{M}}$. By the method of [LPL, Lemma 5] we get $\nu_{q}\left(\mathcal{F}_{\mathbf{K} / \mathbf{M}}\right)=1$, where ν_{q} denotes the q-adic valuation. Note that there exists a primitive modular character of order 5 on $\left(A_{\mathbf{M}} /(q)\right)^{*}$ which is trivial on $\operatorname{Im} \mathbb{Z}$, the image of \mathbb{Z}. Hence, the order of $\left(A_{\mathbf{M}} /(q)\right)^{*} / \operatorname{Im} \mathbb{Z}$ must be divisible by 5 .

Third, assume that 5 is ramified in \mathbf{K} / \mathbf{M}. It is easily checked that $e>1$. Assume that $e \geq 3$ for $e_{5}=1, e \geq 4$ for $e_{5}=2$, and $e \geq 7$ for $e_{5}=4$. Let $\alpha \equiv 1\left(\bmod \mathcal{P}_{5}^{e-1}\right)$. Then there exists $\beta \in \mathcal{P}_{5}^{e-1-e_{5}}$ such that $\alpha=1+5 \beta$. By using $\nu_{5}\left(C_{k}^{5}\right)=1-\nu_{5}(k)$ for $1 \leq k \leq 5$, we obtain $\alpha \equiv(1+\beta)^{5}\left(\bmod \mathcal{P}_{5}^{e}\right)$, which contradicts the existence of a primitive modular character of order 5 on $\left(A_{\mathbf{M}} / \mathcal{P}_{5}^{e}\right)^{*}$. Finally, by the same trick of [LPL, Lemma 5] we get $e \neq 5$ for $e_{5}=4$, which complete the proof of (b).

Theorem 18. Let χ denote any primitive character of order 10 associated with $\mathbf{N} / \mathbf{N}_{8}^{+}$and let W_{χ} denote the Artin root number associated with χ. Then $W_{\chi}= \pm 1$ and $L(0, \chi) \in 16 \mathbb{Z}$. Moreover, $h_{\mathbf{N}_{8}}^{-}$divides $h_{\mathbf{N}}^{-}$, and
$h_{\mathbf{N}}^{-} / h_{\mathbf{N}_{8}}^{-}=\left(h_{\mathbf{N} / \mathbf{N}_{8}}^{-}\right)^{4}$ is the 4 th power of the rational integer:

$$
h_{\mathbf{N} / \mathbf{N}_{8}}^{-}=\frac{1}{16} L(0, \chi)
$$

Proof. The proof is similar to that of Theorem 5. Let σ_{u} denote a generator of the Galois group $G\left(\mathbb{Q}\left(\zeta_{10}\right) / \mathbb{Q}\right)$ such that $\sigma_{u}\left(\zeta_{10}\right)=\zeta_{10}^{u}$, where $\zeta_{10}=e^{2 \pi i / 10}$. Then, since for any ideal $\mathcal{I}, \sigma_{u}(\chi(\mathcal{I}))=\chi(\mathcal{I})^{u}=\chi(b(\mathcal{I}))$ for a generator $b \in G\left(\mathbf{N}_{8}^{+} / \mathbb{Q}\right)$, we conclude that the algebraic number $L(0, \chi)$ which is invariant under the action of $G\left(\mathbb{Q}\left(\zeta_{10}\right) / \mathbb{Q}\right)$ is rational.

To compute numerical approximations of $L(0, \chi)$ by using the technique developed in [Lou5] and [Lou6], we have to be able to compute the coefficients $a_{n}(\chi):=\sum_{N_{\mathbf{N}_{8}^{+} / \mathbb{Q}}}(\mathcal{I})=n=n(\mathcal{I})$. For convenience, let us set some notations. Let \mathcal{P}_{q} and f_{q} denote a prime ideal in \mathbf{N}_{8}^{+}above a rational prime q and its inertial degree, respectively. We have:

Proposition 19. Let χ_{+}and χ_{-}denote the characters associated with the cyclic extensions $\mathbf{N}^{+} / \mathbf{N}_{8}^{+}$and $\mathbf{N}_{8} / \mathbf{N}_{8}^{+}$, respectively, such that $\chi=$ $\chi_{+} \chi_{-}$is a character of order 10 associated with $\mathbf{N} / \mathbf{N}_{8}^{+}$. If either q divides $f_{\mathbf{N} / \mathbf{N}_{8}^{+}}$or f_{q} does not divide k, then $a_{q^{k}}(\chi)=0$. Otherwise, set $\varepsilon_{q}=\chi_{-}\left(\mathcal{P}_{q}\right)= \pm 1$ and $\eta_{q}=\chi_{+}\left(\mathcal{P}_{q}\right)=\zeta_{5}^{n}$, for some $n \in \mathbb{Z}$. Then

$$
a_{q^{k}}(\chi)= \begin{cases}\varepsilon_{q}^{k} & \text { if } e_{q}=4 \text { and } f_{q}=1, \\ \varepsilon_{q}^{k / 2} & \text { if } e_{q}=2 \text { and } f_{q}=2, \\ \varepsilon_{q}^{k}(k+1) & \text { if } e_{q}=2 \text { and } f_{q}=1, \\ 1 & \text { if } e_{q}=1 \text { and } f_{q}=4, \\ k / 2+1 & \text { if } e_{q}=1 \text { and } f_{q}=2\end{cases}
$$

If $e_{q}=f_{q}=1$, then

$$
a_{q^{k}}(\chi)= \begin{cases}\frac{(k+1)(k+2)(k+3)}{6} \varepsilon_{q}^{k} & \text { if } \eta_{q}=1, \\ \varepsilon_{q}^{k} & \text { if } k \equiv 0(\bmod 5) \text { and if } \eta_{q} \neq 1, \\ -\varepsilon_{q}^{k} & \text { if } k \equiv 1(\bmod 5) \text { and if } \eta_{q} \neq 1, \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. Assume that $e_{q}=f_{q}=1$. Then

$$
a_{q^{k}}(\chi)=\varepsilon_{q}^{k} \sum_{\substack{r+s+t+u=k \\ r, s, t, u \geq 0}} \eta_{q}^{r+2 s+3 t+4 u}
$$

If $\eta_{q} \neq 1$ then since $\sum_{r+s+t+u=k} \eta_{q}^{r+2 s+3 t+4 u}$ is the coefficient of x^{k} in $(1-x) /\left(1-x^{5}\right)=(1-x)\left(\sum_{a>0} x^{5 a}\right)$, we have the desired result. The others are immediate from the definition of $a_{q^{k}}(\chi)$ and ramification theory.

Now, assume that $h_{\mathbf{N}}^{-}=1$. Then $h_{\mathbf{N}_{8}}^{-}=1$, and there are 18 such \mathbf{N}_{8} 's (see [CK]). An easy computation shows that $\zeta_{\mathbf{N}_{8}}(s) \leq 0$ in the range $0<s<1$
for these 18 fields \mathbf{N}_{8}. Therefore, by using Theorem 10, for each of these 18 fields \mathbf{N}_{8} we can compute an upper bound $B\left(\mathbf{N}_{8}^{+}\right)$such that $h_{\mathbf{N}}^{-}>1$ if $f_{\mathbf{N}^{+} / \mathbf{N}_{8}^{+}}>B\left(\mathbf{N}_{8}^{+}\right)$. In Table 11, we let $f_{\mathbf{N}_{8}^{+}}$and f_{2} denote the conductor of \mathbf{N}_{8}^{+}and that of an imaginary quadratic subfield of \mathbf{N}_{8}, respectively. In the factorization $f_{\mathbf{N}_{8}^{+}}$, we mark the conductor of a character of order 4 with the bold face. Let n_{f} denote the number of possible conductors of $\mathbf{N}^{+} / \mathbf{N}_{8}^{+}$ satisfying $f_{\mathbf{N}^{+} / \mathbf{N}_{8}^{+}} \leq B\left(\mathbf{N}_{8}^{+}\right)$and let N_{f} denote the number of possible conductors of $\mathbf{N} / \mathbf{N}_{8}^{+}$satisfying $f_{\mathbf{N}^{+} / \mathbf{N}_{8}^{+}} \leq B\left(\mathbf{N}_{8}^{+}\right)$and being filtered by using either Proposition 3(2) or Propositions 3(3) and 17(2)(a). In Table 12, we list the relative class numbers $h_{\mathbf{N}}^{-}=\left(h_{\mathbf{N} / \mathbf{N}_{8}}^{-}\right)^{4}$ of the six CM-fields \mathbf{K} which are obtained in the last column of Table 11. We should point out that in Tables 11 and 12, we used PARI-GP to construct primitive characters of order 5 on the ray class group $C l_{\mathbf{N}_{8}^{+}}\left(\mathcal{F}_{\mathbf{N}^{+} / \mathbf{N}_{\mathbf{8}}^{+}}\right)$. According to our computations, the normal CM-field of degree 40 given in Theorem 2 is the only normal CM-field of degree 40 with $G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times F_{5,4}$ and relative class number one.

Table $11\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times F_{5,4}\right)$

	$f_{\mathbf{N}_{8}^{+}}$	f_{2}	$h_{\mathbf{N}_{8}^{+}}$	$Q_{\mathbf{N}}$	$w_{\mathbf{N}}$	$\operatorname{Reg}_{\mathbf{N}_{8}^{+}} \leq$	$\mu_{\mathbf{N}_{8}^{+}} \leq$	$B\left(\mathbf{N}_{8}^{+}\right)$	n_{f}	N_{f}
1	$\mathbf{5} \cdot 3$	3	1	2	30	0.2780	0.5089	23^{4}	2	2
2	$\mathbf{5} \cdot 4$	4	1	2	20	0.3315	0.6025	22^{4}	3	1
3	$\mathbf{5} \cdot 7$	7	1	2	10	0.3441	0.9326	17^{4}	3	2
4	$\mathbf{5} \cdot 8$	8	1	2	10	0.4028	0.9337	17^{4}	2	0
5	$\mathbf{1 3} \cdot 4$	4	1	2	4	0.3811	1.5474	12^{4}	0	0
6	$\mathbf{1 3} \cdot 7$	7	1	2	2	0.3238	2.1847	9^{4}	0	0
7	$\mathbf{1 6} \cdot 3$	3	1	2	6	0.6586	1.0155	19^{4}	0	0
8	$\mathbf{1 6}$	4	1	1	4	0.4317	0.5604	31^{4}	1	0
9	$\mathbf{1 6} \cdot 11$	11	1	2	2	0.4205	2.8114	9^{4}	0	0
10	$\mathbf{1 6} \cdot 5$	20	2	1	2	0.6950	1.3391	17^{4}	2	0
11	$\mathbf{3 7} \cdot 4$	4	1	2	4	1.4646	1.8139	10^{4}	0	0
12	$\mathbf{2 9} \cdot 8$	8	1	2	2	0.7201	2.5180	6^{4}	0	0
13	$\mathbf{1 6} \cdot 5$	4	2	1	4	0.6950	1.3391	15^{4}	2	0
14	$\mathbf{1 6}$	3	1	1	6	0.4317	0.5604	15^{4}	0	0
15	$\mathbf{1 6} \cdot 3 \cdot 11$	11	2	1	2	0.9479	2.4740	7^{4}	0	0
16	$\mathbf{1 7} \cdot 7 \cdot 3$	3	2	1	6	3.6084	1.9785	13^{4}	0	0
17	$\mathbf{1 7} \cdot 7 \cdot 11$	11	2	1	2	3.7957	3.0471	7^{4}	0	0
18	$\mathbf{6 1} \cdot 7$	7	5	2	2	2.2448	2.4298	6^{4}	2	1

Table $12\left(G(\mathbf{N} / \mathbb{Q}) \simeq C_{2} \times F_{5,4}\right.$, all $\left.W_{\mathbf{N}}=1\right)$

	$f_{\mathbf{N}_{8}^{+}}$	f_{2}	$\mathcal{F}_{\mathbf{N}+/ \mathbf{N}_{8}^{+}}$	$h_{\mathbf{N} / \mathbf{N}_{8}}^{-}$		$f_{\mathbf{N}_{8}^{+}}$	f_{2}	$\mathcal{F}_{\mathbf{K}^{+} / \mathbf{N}_{8}^{+}}$	$h_{\mathbf{N} / \mathbf{N}_{8}}^{-}$
1	$5 \cdot 3$	3	(10)	2	$\mathbf{4}$	$\mathbf{5} \cdot \mathbf{7}$	$\mathbf{7}$	$(\mathbf{2}) \cdot \mathcal{P}_{\mathbf{5}}^{\mathbf{2}}$	$\mathbf{1}$
2	$5 \cdot 3$	3	$(7) \cdot \mathcal{P}_{5}^{2}$	5	5	$5 \cdot 7$	7	(15)	12
3	$5 \cdot 4$	4	\mathcal{P}_{5}^{6}	3	6	$61 \cdot 7$	7	(1)	4

Acknowledgments. The author gratefully appreciates many helpful suggestions by S. Louboutin during the preparation of the paper.

References

[CK] K.-Y. Chang and S.-H. Kwon, Class numbers of imaginary abelian number fields, Proc. Amer. Math. Soc. 128 (2000), 2517-2528.
[Cohn] H. Cohn, Introduction to the Construction of Class Fields, Cambridge Univ. Press, Cambridge, 1985.
[Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, Ann. Inst. Fourier (Grenoble) 50 (2000), 67-103.
[LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux 11 (1999), 387-406.
[Lou1] S. Louboutin, On the class number one problem for non-normal quartic CMfields, Tôhoku Math. J. 46 (1994), 1-12.
[Lou2] -, Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith. 74 (1996), 121-140.
[Lou3] -, Upper bounds on $|L(1, \chi)|$ and applications, Canad. J. Math. 50 (1998), 794815.
[Lou4] -, The class number one problem for the dihedral and dicyclic CM-fields, Colloq. Math. 80 (1999), 259-265.
[Lou5] -, Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp. 69 (2000), 371-393.
[Lou6] -, Computation of $L(0, \chi)$ and of relative class numbers of CM-fields, Nagoya Math. J. 161 (2001), 171-191.
[LO1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62.
[LO2] —, 一, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc. 76 (1998), 523-548.
[LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657-3678.
[LP] S. Louboutin and Y.-H. Park, Class number problems for dicyclic CM-fields, Publ. Math. Debrecen 57/3-4 (2000), 283-295.
[LPL] S. Louboutin, Y.-H. Park and Y. Lefeuvre, Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith. 89 (1999), 201-215.
[Mar] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre $2 p$, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 1-80.
[Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1997.

CIST
Korea University
136-701 Seoul, South Korea
E-mail: youngho@semi.korea.ac.kr

[^0]: 2000 Mathematics Subject Classification: Primary 11R29, 11R21, 11 Y 35.
 Key words and phrases: CM-field, relative class number, class field theory.
 This work is supported in part by the Ministry of Information \& Communication of Korea ("Support Project of University Information Technology Research Center" supervised by IITA).

