The class number one problem for the non-abelian normal CM-fields of degree 24 and 40

by

Young-Ho Park (Seoul)

1. Introduction. We fix an algebraic closure of \mathbb{Q} . Assume that all the number fields are subfields of the field \mathbb{C} of complex numbers. We let c denote complex conjugation and recall that if **N** is a normal CM-field, then c is in the center $Z(\mathbf{G})$ of its Galois group \mathbf{G} .

There are 11 possible Galois groups for non-abelian normal CM-fields **N** of degree 24: $C_2 \times \mathcal{A}_4$, $\operatorname{SL}_2(\mathbf{F}_3)$, $C_3 \times Q_8$, Q_{24} , $C_3 \rtimes C_8$, D_{24} , $C_2 \times Q_{12}$, $C_2 \times D_{12}$, $C_4 \times D_6$, $C_3 \times D_8$, and $V_{24} = C_3 \rtimes D_8$. For two of them, namely $C_2 \times \mathcal{A}_4$ and $\operatorname{SL}_2(\mathbf{F}_3)$, whose 3-Sylow subgroups are not normal, there are exactly 3 such CM-fields with class number one (see [LLO]). For the other 9 groups, **N** contains a normal octic CM-subfield \mathbf{N}_8 and the relative class number of \mathbf{N}_8 divides that of **N** (see [LOO, Thm. 5]). Hence, **N** with Galois group $C_3 \times Q_8$ or Q_{24} have even relative class numbers ([LO2]). Moreover, the relative class numbers of CM-fields **N** with Galois group $C_3 \rtimes C_8$ are greater than one (see [Lou4]) and there is only one dihedral CM-field of degree 24 with class number one (see [Lef]). Therefore, it remains to deal with the following 5 groups: $C_2 \times Q_{12}$, $C_2 \times D_{12}$, $C_3 \rtimes D_8$, $C_4 \times D_6$, and $C_3 \times D_8$. We will prove:

THEOREM 1. (1) There is only one normal CM-field **N** with Galois group $C_2 \times D_{12}$ and class number one: $\mathbf{N} = \mathbf{K}_3 \mathbf{N}_8$ where \mathbf{K}_3 is the non-normal cubic field defined by the polynomial $x^3 - 6x - 2$ and $\mathbf{N}_8 = \mathbb{Q}(\sqrt{-3}, \sqrt{-4}, \sqrt{-7})$. Notice that $d_{\mathbf{K}_3} = 2^2 \cdot 3^3 \cdot 7$, $d_{\mathbf{N}_8} = 2^8 \cdot 3^4 \cdot 7^4$, and $d_{\mathbf{N}} = 2^{32} \cdot 3^{28} \cdot 7^{12}$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R29, 11R21, 11Y35.

Key words and phrases: CM-field, relative class number, class field theory.

This work is supported in part by the Ministry of Information & Communication of Korea ("Support Project of University Information Technology Research Center" supervised by IITA).

(2) There is only one normal CM-field **N** with Galois group $C_4 \times D_6$ and relative class number one: $\mathbf{K} = \mathbf{K}_3 \mathbf{N}_8$ where \mathbf{K}_3 is the non-normal totally real cubic field defined by the polynomial $x^3 - 10x - 10$ and \mathbf{N}_8 $= \mathbb{Q}(\exp(2\pi i/5), \sqrt{13})$. This **N** has class number one. Notice that $d_{\mathbf{K}_3} = 2^2 \cdot 5^2 \cdot 13$, $d_{\mathbf{N}_8} = 5^6 \cdot 13^4$, and $d_{\mathbf{N}} = 2^{16} \cdot 5^{22} \cdot 13^{12}$.

(3) There is only one normal CM-field **N** with Galois group $C_3 \times D_8$ and relative class number one: $\mathbf{K} = \mathbf{N}_3 \mathbf{N}_8$ where \mathbf{N}_3 is the real cyclic cubic field defined by the polynomial $x^3 - x^2 - 4x - 1$ and

$$\mathbf{N}_8 = \mathbb{Q}(\sqrt{13}, \sqrt{17}, \sqrt{-(9+\sqrt{13})/2})$$

is a dihedral octic CM-field. This **N** has class number one. Notice that $d_{\mathbf{N}_3} = 13^2$, $d_{\mathbf{N}_8} = 13^4 \cdot 17^4$, and $d_{\mathbf{N}} = 13^{20} \cdot 17^{12}$.

(4) The relative class numbers of normal CM-fields **N** with Galois group $C_2 \times Q_{12}$ or $C_3 \rtimes D_8$ are greater than one.

Let **N** be a non-abelian normal CM-fields of degree 8p with p > 5 a prime and let $\mathbf{G} = \operatorname{Gal}(\mathbf{N}/\mathbb{Q})$. Since the Sylow *p*-subgroup of \mathbf{G} is normal \mathbf{N} is a cyclic extension of degree p of a normal octic CM-field N_8 , and the relative class number $h_{\mathbf{N}_8}^-$ of \mathbf{N}_8 divides that of \mathbf{N} (see [LOO, Thm. 5]). Let us consider the CM-fields \mathbf{N} of degree 40. There are 11 non-abelian finite groups **G** of order 40: $C_5 \rtimes C_8$ (2 groups), $C_2 \times D_{20}$, $C_2 \times Q_{20}$, $C_4 \times D_{10}$, $C_2 \times F_{5,4}$, $C_5 \times D_8$, D_{40} , $V_{40} = C_5 \rtimes D_8$, $C_5 \times Q_8$, and Q_{40} . Moreover, since the center $Z(\mathbf{G})$ of each of these eleven \mathbf{G} 's contains an element of order 2, nothing prevents each of these groups from being the Galois group for some non-abelian normal CM-field **N** of degree 40. If $\mathbf{G} = D_{40}$ then $h_{\mathbf{N}}^- > 1$ (see [Lef]). If $\mathbf{G} = C_5 \times Q_8$ or Q_{40} then $h_{\mathbf{N}_8}^-$ is even (see [LO1]), hence $h_{\mathbf{N}}^-$ is even. Moreover, if $\mathbf{G} = C_5 \stackrel{1}{\rtimes} C_8 = \langle a, b : a^5 = b^8 = 1, b^{-1}ab = a^4 \rangle = \langle \sigma, \tau : \sigma^{20} = 1, \sigma^{20} = 1 \rangle$ $\tau^2 = \sigma^5, \tau^{-1}\sigma\tau = \sigma^9$ or $C_5 \stackrel{2}{\rtimes} C_8 = \langle a, b : a^5 = b^8 = 1, b^{-1}ab = a^2 \rangle = 0$ $\langle \sigma, \tau : \sigma^{10} = 1, \tau^4 = \sigma^5, \tau^{-1}\sigma\tau = \sigma^3 \rangle$ then analysis similar to that in the proof of [Lou4, Thm. 5] shows $h_{\mathbf{N}}^- > 1$. Therefore, it remains to deal with the following 6 groups: $C_2 \times Q_{20}, C_2 \times D_{20}, C_5 \rtimes D_8, C_4 \times D_{10}, C_5 \times D_8, C_2 \times F_{5,4} = C_2 \times \langle a, b : a^5 = b^4 = 1, b^{-1}ab = a^2 \rangle = \langle \sigma, \tau : \sigma^{10} = \tau^4 = 1, \tau^4 = 1 \rangle$ $\tau^{-1}\sigma\tau = \sigma^7$. We will prove:

THEOREM 2. There is only one normal CM-field **N** of degree 40 with class number one: $\mathbf{N} = \mathbf{K}_5 \mathbf{N}_8$, where \mathbf{K}_5 is the non-normal totally real quintic field defined by the polynomial $x^5 - 10x^3 + 20x + 10$ and $\mathbf{N}_8 = \mathbb{Q}(\exp(2\pi i/5), \sqrt{-7})$. Notice that $d_{\mathbf{K}_5} = 2^4 \cdot 5^5 \cdot 7^2$, $d_{\mathbf{N}_8} = 5^6 \cdot 7^4$, and $d_{\mathbf{N}} = 2^{32} \cdot 5^{46} \cdot 7^{20}$. Its Galois group $G(\mathbf{N}/\mathbb{Q})$ is $C_2 \times F_{5,4}$.

2. Lattices of subfields. According to the foregoing, it is natural to closely investigate the non-abelian normal CM-fields N of degree $8p, p \ge 3$

an odd prime, with Galois group ${\bf G}$ isomorphic to one of the following five groups:

$$C_{2} \times Q_{4p} = \langle \sigma, \tau, u : \sigma^{2p} = \tau^{2} = 1, \ u^{2} = \sigma^{p},$$

$$u^{-1}\sigma u = \sigma^{2p-1}, \ \sigma\tau = \tau\sigma, \ \tau u = u\tau \rangle,$$

$$C_{2} \times D_{4p} = \langle \sigma, \tau, u : \sigma^{2p} = \tau^{2} = u^{2} = 1,$$

$$u^{-1}\sigma u = \sigma^{2p-1}, \ \sigma\tau = \tau\sigma, \ \tau u = u\tau \rangle,$$

$$C_{p} \rtimes D_{8} = \langle \sigma, \tau, u : \sigma^{2p} = \tau^{2} = 1, \ u^{2} = \tau,$$

$$u^{-1}\sigma u = \sigma^{2p-1}, \ \sigma\tau = \tau\sigma, \ \tau u = u\tau \rangle,$$

$$C_{4} \times D_{2p} = \langle \sigma, \tau : \sigma^{4p} = \tau^{2} = 1, \ \tau^{-1}\sigma\tau = \sigma^{2p-1} \rangle,$$

$$C_{p} \times D_{8} = \langle \sigma, \tau : \sigma^{4p} = \tau^{2} = 1, \ \tau^{-1}\sigma\tau = \sigma^{2p+1} \rangle.$$

Then we have

		Ta	ble 1		
G	$C_2 \times Q_{4p}$	$C_2 \times D_{4p}$	$C_p \rtimes D_8$	$C_4 \times D_{2p}$	$C_p \times D_8$
$Z(\mathbf{G})$	$\langle \sigma^p, \tau \rangle$	$\langle \sigma^p, \tau \rangle$	$\langle \tau \rangle$	$\langle \sigma^p \rangle$	$\langle \sigma^2 \rangle$
$D(\mathbf{G})$	$\langle \sigma^2 \rangle$	$\langle \sigma^2 \rangle$	$\langle \sigma^2 \tau \rangle$	$\langle \sigma^4 \rangle$	$\langle \sigma^{2p} \rangle$
c	σ^p or τ	au	au	σ^{2p}	σ^{2p}

where $Z(\mathbf{G})$, $D(\mathbf{G})$, and $c \in Z(\mathbf{G})$ denote the center of \mathbf{G} , the derived subgroup of \mathbf{G} and the complex conjugation of \mathbf{G} , respectively.

If $\mathbf{G} = C_2 \times Q_{4p}$, $C_2 \times D_{4p}$, or $C_p \rtimes D_8$, we let \mathbf{L} , \mathbf{N}_8 , \mathbf{N}_1 , and \mathbf{N}_2 be the fixed subfields of the subgroups $\langle \sigma, \tau \rangle$, $\langle \sigma^2 \rangle$, $\langle \sigma^p \tau \rangle$ and $\langle c \sigma^p \tau \rangle$, respectively (Lattice I). Hence, \mathbf{L} is a real quadratic subfield of \mathbf{N} , the extension \mathbf{N}/\mathbf{L} is

abelian with Galois group $G(\mathbf{N}/\mathbf{L}) \simeq C_{2p} \times C_2$ and \mathbf{N}_8 is an octic CM-field containing \mathbf{L} . The field \mathbf{N} is the compositum of two CM-fields \mathbf{N}_1 and \mathbf{N}_2 of degree 4p with the same maximal real dihedral subfield $\mathbf{N}_1^+ = \mathbf{N}_2^+$ of degree 2p containing \mathbf{L} . Let $\mathbf{M}_i = \mathbf{N}_8 \cap \mathbf{N}_i$ for i = 1, 2. Then \mathbf{N}_8 is also the compositum of two CM-subfields \mathbf{M}_1 and \mathbf{M}_2 with the same maximal real quadratic subfield \mathbf{L} . We have

(1)
$$h_{\mathbf{N}}^{-}/h_{\mathbf{N}_{8}}^{-} = (h_{\mathbf{N}_{1}}^{-}/h_{\mathbf{M}_{1}}^{-})(h_{\mathbf{N}_{2}}^{-}/h_{\mathbf{M}_{2}}^{-}).$$

If $\mathbf{G} = C_4 \times D_{2p}$ or $C_p \times D_8$, we let \mathbf{L} , \mathbf{N}_8 , and \mathbf{N}_{2p} be the fixed subfields of the cyclic subgroup generated by σ , σ^4 , and σ^p , respectively (see Lattice II). Hence, the extension \mathbf{N}/\mathbf{L} is cyclic. Considering $D(\mathbf{G})$ we can easily verify that $w_{\mathbf{N}} = w_{\mathbf{N}_8}$.

		Table 2Lattice I		
$G(\mathbf{N}/\mathbb{Q})$	$C_2 \times Q_{4p}$	$C_2 \times D_{4p}$	$C_p >$	$\triangleleft D_8$
$G(\mathbf{N}_8/\mathbb{Q})$	$C_4 \times C_2$	$(C_2)^3$	L) ₈
Remarks	$\mathbf{N}_1 ext{ or } \mathbf{N}_2$ dicyclic	\mathbf{N}_1 and \mathbf{N}_2 dihedral	$\mathbf{N}_1 \simeq \mathbf{N}_2,$ non-norma \mathbf{N}_1/\mathbf{L}	$\mathbf{M}_1 \simeq \mathbf{M}_2$ l CM-fields cyclic
		Lattice II		
	$G(\mathbf{N}/\mathbb{Q})$	$C_4 \times D_{2p}$	$C_p \times D_8$	
	$\overline{G(\mathbf{N}_8/\mathbb{Q})}$	$C_4 \times C_2$	D_8	
	Remarks	${f N}_{2p}$ dihedral ${f N}/{f L}$ cyclic	\mathbf{N}_{2p} cyclic \mathbf{N}/\mathbf{L} cyclic	:

Let us set some notations we will use throughout this paper. If **N** is a number field, we let $d_{\mathbf{N}}$, $A_{\mathbf{N}}$, $w_{\mathbf{N}}$, $h_{\mathbf{N}}$, and $\zeta_{\mathbf{N}}$ denote the absolute value of its discriminant, its ring of integers, its number of complex roots of unity, its class number, and its Dedekind zeta function, respectively. If **N** is a CM-field, we let \mathbf{N}^+ , $h_{\mathbf{N}}^-$ and $Q_{\mathbf{N}} \in \{1, 2\}$ denote its maximal real subfield, relative class number, and Hasse unit index, respectively (see [Wa]). If **L** is a quadratic number field, we let $\chi_{\mathbf{L}}$ denote the primitive quadratic Dirichlet character modulo $d_{\mathbf{L}}$ associated with **L**. For any abelian extension \mathbf{E}/\mathbf{F} let $\mathcal{F}_{\mathbf{E}/\mathbf{F}}$ be the finite part of its conductor and $f_{\mathbf{E}/\mathbf{F}} = N_{\mathbf{F}/\mathbb{Q}}(\mathcal{F}_{\mathbf{E}/\mathbf{F}})$ the norm of the finite part of this conductor. Finally, we recall:

PROPOSITION 3. (1) ([LOO, Th. 5]) Let $\mathbf{k} \subseteq \mathbf{K}$ be two CM-fields. Assume that $[\mathbf{K}:\mathbf{k}]$ is odd. Then $Q_{\mathbf{K}} = Q_{\mathbf{k}}$ and $h_{\mathbf{k}}^-$ divides $h_{\mathbf{K}}^-$.

(2) ([LOO, Prop. 8]) Let p be any odd prime number. Let \mathbf{K}/\mathbf{M} be a cyclic extension of degree p of CM-fields and let $\mathbf{K}^+/\mathbf{M}^+$ also be cyclic. Let t be the number of prime ideals of \mathbf{M}^+ which split \mathbf{M}/\mathbf{M}^+ and are ramified

in $\mathbf{K}^+/\mathbf{M}^+$. Then $p^{t-1}h_{\mathbf{M}}^-$ divides $h_{\mathbf{K}}^-$, and $p^th_{\mathbf{M}}^-$ divides $h_{\mathbf{K}}^-$ if p does not divide $w_{\mathbf{M}}$.

(3) ([LO1]) Let t denote the number of prime ideals of **K** which are ramified in the quadratic extension \mathbf{K}/\mathbf{K}^+ . Then 2^{t-1} divides $h_{\mathbf{K}}^-$.

(4) Let p be an odd prime number. Let \mathbf{K} be a real dihedral field of degree 2p which is cyclic over a real quadratic field \mathbf{L} .

(a) ([LPL]) There exists a positive rational integer $F_{\mathbf{K}/\mathbf{L}}$ such that the conductor of \mathbf{K}/\mathbf{L} is given by $\mathcal{F}_{\mathbf{K}/\mathbf{L}} = (F_{\mathbf{K}/\mathbf{L}})$.

(b) ([Mar]) Let \mathcal{Q} be a prime ideal of \mathbf{L} above a rational prime q. If q does not split in \mathbf{L}/\mathbb{Q} , then \mathcal{Q} is not inert in \mathbf{K}/\mathbf{L} . Moreover, if q is totally ramified in \mathbf{K}/\mathbb{Q} then q = p. If $q \neq p$ and \mathcal{Q} is ramified in \mathbf{K}/\mathbf{L} then $q \equiv \chi_{\mathbf{L}}(q) \pmod{p}$.

2.1. Numerical computation of relative class numbers. We use the technique developed in [Lou5] and [Lou6] to compute efficiently relative class numbers of the CM-fields:

PROPOSITION 4 (use [Lou6, Theorem 9]). Let \mathbf{E} be a CM-field. Assume that there exists some totally real subfield \mathbf{L} of \mathbf{E}^+ such that the extension \mathbf{E}/\mathbf{L} is cyclic of degree $2^r p$ with $r \ge 1$ and $p \ge 3$ any odd prime. Let \mathbf{F} be a CM-subfield of \mathbf{N} such that $\mathbf{L} \subseteq \mathbf{F} \subseteq \mathbf{E}$ and the degree of the extension \mathbf{E}/\mathbf{F} is p. Finally, let χ be any one of the characters of order $2^r p$ associated with the cyclic extension \mathbf{E}/\mathbf{L} . Then $w_{\mathbf{E}}L(0,\chi)$ is an algebraic integer of the cyclotomic field $\mathbb{Q}(\zeta_{2^r p})$, $h_{\mathbf{F}}^-$ divides $h_{\mathbf{E}}^-$, $w_{\mathbf{F}}$ divides $w_{\mathbf{E}}$, and

(2)
$$h_{\mathbf{E}}^{-}/h_{\mathbf{F}}^{-} = (w_{\mathbf{E}}/w_{\mathbf{F}})N_{\mathbb{Q}(\zeta_{2^{r_{p}}})/\mathbb{Q}}\left(\frac{1}{2^{m}}L(0,\chi)\right).$$

We refer the reader to [Lou6] to see how to use [Lou5] to compute the exact value of $L(0,\chi)$ (i.e. the values of the rational integers which are the coordinates in a given \mathbb{Z} -basis of the algebraic integer $w_{\mathbf{E}}L(0,\chi)$), prior to using (2).

THEOREM 5. Let **K** be a non-abelian normal CM-field of degree $2n = 2^r p$ $(r \ge 2)$ which is cyclic over a real quadratic field **L** and cyclic over a CMsubfield \mathbf{K}_{2^r} of degree 2^r . Assume also that $w_{\mathbf{K}} = w_{\mathbf{K}_{2^r}}$. Then $h_{\mathbf{K}_{2^r}}^-$ divides $h_{\mathbf{K}}^-$ and $h_{\mathbf{K}}^-/h_{\mathbf{K}_{2^r}}^- = (h_{\mathbf{K}/\mathbf{K}_{2^r}}^-)^2$ is a perfect square.

Proof. Let χ be any character of order *n* associated with **K**/**L**. Then

$$h_{\mathbf{K}}^{-}/h_{\mathbf{K}_{2^{r}}}^{-} = N_{\mathbb{Q}(\zeta_{n})/\mathbb{Q}}\left(\frac{1}{4}L(0,\chi)\right)$$

(Proposition 4). Let τ be the non-trivial element in $G(\mathbf{L}/\mathbb{Q})$. Then for any ideal \mathcal{I} of \mathbf{L} we have $\chi(\tau(\mathcal{I})) = \chi(\mathcal{I})^k$ where $k^2 \equiv 1 \pmod{n}$, which yields $\chi \circ \tau = \chi^k$. Let σ_k denote the automorphism of $\mathbb{Q}(\zeta_n)$ which sends ζ_n to ζ_n^k . Then $\sigma_k(L(0,\chi)) = L(0,\chi^k) = L(0,\chi \circ \tau) = L(0,\chi)$ and $L(0,\chi)$ lies

in the fixed subfield **F** of $\mathbb{Q}(\zeta_n)$ by σ_k . Therefore, we have $h_{\mathbf{K}}^-/h_{\mathbf{K}_{2^r}}^- = N_{\mathbb{Q}(\zeta_n)/\mathbb{Q}}(\frac{1}{4}L(0,\chi)) = (N_{\mathbf{F}/\mathbb{Q}}(\frac{1}{4}L(0,\chi)))^2$, which completes the proof. \blacksquare

3. The case $\mathbf{G} \simeq C_2 \times Q_{4p}$

LEMMA 6 (due to S. Louboutin). Let \mathbf{N}_1 and \mathbf{N}_2 be two distinct CMfields with the same maximal totally real subfield. Set $\mathbf{N} = \mathbf{N}_1 \mathbf{N}_2$. Assume that $Q_{\mathbf{N}_1} = 1$ and that 4 does not divide $w_{\mathbf{N}_1}$. Then $h_{\mathbf{N}_1}^- h_{\mathbf{N}_2}^-$ divides $2h_{\mathbf{N}}^-$. In particular, if $G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times Q_{4p}$ then $h_{\mathbf{N}_1}^- h_{\mathbf{N}_2}^-$ divides $2h_{\mathbf{N}}^-$.

Proof. We have $h_{\mathbf{N}}^- = \eta_{\mathbf{N}} h_{\mathbf{N}_1}^- h_{\mathbf{N}_2}^-$, where $\eta_{\mathbf{N}} = Q_{\mathbf{N}} w_{\mathbf{N}} / (Q_{\mathbf{N}_1} w_{\mathbf{N}_1} Q_{\mathbf{N}_2} w_{\mathbf{N}_2}) = Q_{\mathbf{N}} w_{\mathbf{N}} / (Q_{\mathbf{N}_2} w_{\mathbf{N}_1} w_{\mathbf{N}_2})$ and $w_{\mathbf{N}_1} w_{\mathbf{N}_2}$ divides $2w_{\mathbf{N}}$ (see [LO2, Proof of Prop. 2, point (b)]). We must prove that $2\eta_{\mathbf{N}}$ is a positive rational integer. Clearly, we may assume that $w_{\mathbf{N}} = \frac{1}{2} w_{\mathbf{N}_1} w_{\mathbf{N}_2}$ and $Q_{\mathbf{N}_2} = 2$. Now, we must prove that $Q_{\mathbf{N}} = 2$. Since $Q_{\mathbf{N}_2} = 2$, we have $W_{\mathbf{N}_2} = \langle \varepsilon_2 / \overline{\varepsilon}_2 \rangle$ for some $\varepsilon_2 \in U_{\mathbf{N}_2}$, and since $Q_{\mathbf{N}_1} = 1$ we have $W_{\mathbf{N}_2}^2 = \langle \varepsilon_1 / \overline{\varepsilon}_1 \rangle$ for some $\varepsilon_1 \in U_{\mathbf{N}_1}$. Now, $\phi : (\varepsilon, \varepsilon') \in W_{\mathbf{N}_1}^2 \times W_{\mathbf{N}_2} \to \varepsilon \varepsilon' \in W_{\mathbf{N}}$ is injective (for $W_{\mathbf{N}_1}^2 \cap W_{\mathbf{N}_2} \subset W_{\mathbf{N}_1 \cap \mathbf{N}_2} = W_{\mathbf{N}_1^+}^+ = \{\pm 1\}$ and $-1 \notin W_{\mathbf{N}_1}^2$) and $\# \operatorname{Im} \phi = \frac{1}{2} w_{\mathbf{N}_1} w_{\mathbf{N}_2} = w_{\mathbf{N}}$. Thus, ϕ is surjective and $W_{\mathbf{N}} \subseteq U_{\mathbf{N}}^{1-c}$. Hence, $Q_{\mathbf{N}} = 2$. If $G(\mathbf{N}/\mathbb{Q}) \simeq Q_{4p} \times C_2$, then we may assume that \mathbf{N}_1 is dicyclic. We have $Q_{\mathbf{N}_1} = Q_{\mathbf{M}_1} = 1$ and $4 \nmid w_{\mathbf{N}_1} = w_{\mathbf{M}_1}$, where \mathbf{M}_1 is a cyclic quartic extension of \mathbb{Q} .

PROPOSITION 7. Let **N** be a normal CM-field of degree 8p with Galois group $G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times Q_{4p}$. If $p \equiv 3 \pmod{4}$, then 2^{p-2} divides $h_{\mathbf{N}}^-$ which is therefore even. If $p \equiv 1 \pmod{4}$, then $h_{\mathbf{N}}^- > 1$.

Proof. We may assume that \mathbf{N}_1 is a dicyclic CM-field of degree 4p. Then 2^{p-1} divides $h_{\mathbf{N}_1}^-$ if $p \equiv 3 \pmod{4}$ (see [LOO, Thm. 6]) and $h_{\mathbf{N}_1}^- \geq 4$ in any case (see [LP]). Therefore, using Lemma 6, we get the desired results.

4. The case $\mathbf{G} \simeq C_2 \times D_{4p}$. Using the determination of all the dihedral CM-fields of degree 4p with relative class number one and the determination of some imaginary abelian octic fields with class number one, we determine all the normal CM-fields \mathbf{N} of degree 8p with Galois group $G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times D_{4p}$ which have class number one. We use the following lemma whose proof is left to the reader (use Hilbert class fields):

LEMMA 8. Let \mathbf{N}_1 and \mathbf{N}_2 be two distinct CM-fields with the same maximal totally real subfield. Set $\mathbf{N} = \mathbf{N}_1 \mathbf{N}_2$ and assume that $h_{\mathbf{N}} = 1$. If neither $h_{\mathbf{N}_1}$ nor $h_{\mathbf{N}_2}$ is one, then $h_{\mathbf{N}_1}^- = h_{\mathbf{N}_2}^- = 1$.

THEOREM 9. There is only one normal CM-field of degree 8p with Galois group $G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times D_{4p}$ of class number one: the one given in Theorem 1(1).

Proof. Recall that $\mathbf{N} = \mathbf{N}_1 \mathbf{N}_2$ is a compositum of two dihedral CMfields \mathbf{N}_1 and \mathbf{N}_2 of degree 4p which are cyclic over the same real quadratic number field **L** and that **N** is a cyclic extension of degree p of an elementary imaginary abelian octic field \mathbf{N}_8 containing **L** (see Lattice I and Table 2). We let \mathcal{N}_8 denote the finite set of all the elementary imaginary abelian octic fields N_8 which are equal to their own genus field and have relative class number one. There are 17 such $N_8 \in \mathcal{N}_8$: the 14 last fields in [Lou2, Table 2] and the following three: $\mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-3}), \mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-11})$ and $\mathbb{Q}(\sqrt{-1},\sqrt{-2},\sqrt{5})$ (see [CK]). Since $h_{\mathbf{N}} = 1$, the genus field of \mathbf{N}_8 is included in N. Since N_8 is the maximal abelian subfield of N, N_8 is its own genus field and $h_{\mathbf{N}_8}^- = 1$ (use Proposition 3(1)). Hence, $\mathbf{N}_8 \in \mathcal{N}_8$. Moreover, according to Lemma 8 and noticing that no two of the 18 dihedral CM-fields of degree 4p with relative class number one are cyclic extensions of the same real quadratic field (see [Lef, Th. 4.1]), we may assume that N_1 is one of the 10 dihedral CM-fields of degree 4p with class number one. Hence, p=3or 5. Now, only 5 out of these 10 dihedral CM-fields N_1 are such that the imaginary biquadratic bicyclic subfield \mathbf{M}_1 of \mathbf{N}_1 is a subfield of one of the 17 fields $\mathbf{N}_8 \in \mathcal{N}_8$. These five dihedral CM-fields are of degree 12 and are the ones of indices $i_{\mathbf{N}_1} = 1, 2, 3, 4$ and 6 in [Lef, Table 1, p. 85]. We have only the following 16 possible choices for the pair (N_1, N_8) :

$i_{\mathbf{N}_1}$	\mathbf{M}_1	$d_{\mathbf{L}}$	\mathbf{N}_8	\mathbf{M}_2	$h^{\mathbf{M}_2}$	$h^{\mathbf{N}}$
1	(-3, -15)	5	(-3, -4, 5)	(-4, -20)	1	3^{2}
1	(-3, -15)	5	(-3, -7, 5)	(-7, -35)	1	6^{2}
1	(-3, -15)	5	(-3, -8, 5)	(-8, -40)	1	3^{2}
2	(-3, -4)	12	(-3, -4, 5)	(-15, -20)	2	3^{2}
2	(-3, -4)	12	(-3, -4, -7)	(-7, -84)	2	18^{2}
2	(-3, -4)	12	(-3, -4, -11)	(-11, -33)	2	9^{2}
2	(-3, -4)	12	(-3, -4, -19)	(-19, -57)	2	18^{2}
2	(-3, -4)	12	(-1, -2, -3)	(-24, -8)	2	6^{2}
3	(-3, -7)	21	(-3, -7, 5)	(-15, -35)	2	3^{2}
3	(-3, -7)	21	(-3, -7, -4)	(-4, -84)	2	1
3	(-3, -7)	21	(-3, -7, -8)	(-8, -168)	2	3^{2}
4	(-3, -8)	24	(-3, -8, 5)	(-15, -40)	2	11^{2}
4	(-3, -8)	24	(-3, -7, -8)	(-7, -42)	2	20^{2}
4	(-3, -8)	24	(-1, -2, -3)	(-4, -24)	2	2^{2}
6	(-3, -19)	57	(-3, -19, -4)	(-4, -57)	2	3^{2}
6	(-3, -19)	57	(-3, -19, -11)	(-11, -627)	2	24^{2}

Table 3

To compute $h_{\mathbf{N}}^-$, we use Theorem 5. Note that according to (1) we have $h_{\mathbf{N}}^- = (h_{\mathbf{N}_1}^-/h_{\mathbf{M}_1}^-)(h_{\mathbf{N}_2}^-/h_{\mathbf{M}_2}^-) = h_{\mathbf{N}_2}^-/h_{\mathbf{M}_2}^-$. According to Table 3, Theorem 9 is proved.

Y.-H. Park

5. The cases $\mathbf{G} \simeq C_p \rtimes D_8$, $C_4 \times D_{2p}$ or $C_p \times D_8$. We use of the same plan as in [LP].

5.1. Lower bounds for relative class numbers

THEOREM 10 (see the proof of [LP, Thm. 6]). Let **K** be a CM-field of degree 2n which is cyclic of degree 2m over an abelian real field **L**. Let f_+ denote the norm of the conductor of the extension \mathbf{K}^+/\mathbf{L} . Set $\varepsilon_{\mathbf{K}} =$ $\max{\{\varepsilon'_{\mathbf{K}}, \varepsilon''_{\mathbf{K}}\}}$ where $\varepsilon'_{\mathbf{K}} = \frac{2}{5}\exp(-2\pi n/d_{\mathbf{K}}^{1/(2n)}), \varepsilon''_{\mathbf{K}} = 1 - (2\pi ne^{1/n}/d_{\mathbf{K}}^{1/(2n)}).$ Let \mathbf{M}/\mathbf{L} be the only quadratic subextension of \mathbf{K}/\mathbf{L} . Assume that $\zeta_{\mathbf{M}}(s) \leq 0$ for 0 < s < 1. Then for some constant $\mu_{\mathbf{L}}$ depending on \mathbf{L} only, we have

$$h_{\mathbf{K}}^{-} \geq \varepsilon_{\mathbf{K}} \frac{2Q_{\mathbf{K}}w_{\mathbf{K}}\sqrt{d_{\mathbf{K}}/d_{\mathbf{K}^{+}}}}{e(2\pi)^{n}(\operatorname{Res}_{s=1}(\zeta_{\mathbf{L}}))^{m}\left(\frac{1}{2}\log f_{+}+2\mu_{\mathbf{L}}\right)^{m-1}\log d_{\mathbf{K}}}.$$

To compute the numerical approximations of $\operatorname{Res}_{s=1}(\zeta_{\mathbf{L}})$ and $\mu_{\mathbf{L}}$ we use [Lou3].

THEOREM 11. (1) ([CK]) Let $\mathbf{N}_8 = \mathbf{L}_4 \mathbf{L}_2$ be an imaginary abelian octic field with Galois group $G(\mathbf{N}_8/\mathbb{Q}) \simeq C_4 \times C_2$, where \mathbf{L}_4 is an imaginary cyclic quartic of conductor f_4 and \mathbf{L}_2 is a real quadratic of conductor f_2 . Then $h_{\mathbf{N}_8}^- = 1$ if and only if $(f_4, f_2) \in \{(5, 8), (5, 13), (5, 17), (13, 5), (13, 8), (16, 5)\}$. For these six fields \mathbf{N}_8 we have $\zeta_{\mathbf{N}_8^+}(s) \leq 0$ for 0 < s < 1.

(2) ([LO1]) There are exactly 19 dihedral octic CM-fields \mathbf{N}_8 with relative class number one: the narrow Hilbert 2-class fields of the 19 real quadratic field \mathbf{L} which appear in Table 6. For these 19 fields \mathbf{N}_8 we have $\zeta_{\mathbf{N}_8^+}(s) \leq 0$ for 0 < s < 1.

(3) ([LO1]) There are 38 non-normal quartic CM-fields **M** with relative class number one (they are pairwise isomorphic and their normal closures are the previous 19 dihedral octic CM-fields with relative class number one). For these 38 fields **M** we have $\zeta_{\mathbf{M}}(s) \leq 0$ for 0 < s < 1.

COROLLARY 12. Let $p \geq 3$ be a given odd prime. We can compute an explicit bound on the discriminants of the normal CM-fields of degree 8p with Galois groups $\mathbf{G} \simeq C_p \rtimes D_8$, $C_4 \times D_{2p}$, or $C_p \times D_8$ and relative class number one. More precisely:

(1) Assume that $\mathbf{G} \simeq C_4 \times D_{2p}$ or $C_p \times D_8$ (Lattice II). Then $h_{\mathbf{N}_8}^- = 1$. For each of these 25 (= 6 + 19) CM-fields \mathbf{N}_8 of relative class number one we can compute a bound $B_p(\mathbf{L})$ on the norm f_+ of the conductor of the extension \mathbf{N}^+/\mathbf{L} such that $h_{\mathbf{N}}^- = 1$ implies $f_+ \leq B_p(\mathbf{L})$.

(2) Assume that $\mathbf{G} \simeq C_p \rtimes D_8$ (Lattice I). Then $h_{\mathbf{N}}^- = 1$ if and only if $h_{\mathbf{N}_1}^- = 1$. Now, $h_{\mathbf{N}_1}^- = 1$ implies $h_{\mathbf{M}_1}^- = 1$. For each of these 38 non-normal quartic CM-fields \mathbf{M}_1 of relative class number one we can compute a bound $B_p(\mathbf{L})$ on the norm f_+ of the conductor of the extension $\mathbf{N}_1^+/\mathbf{L}$ such that $h_{\mathbf{N}_1}^- = 1$ implies $f_+ \leq B_p(\mathbf{L})$.

Proof. First, assume that $\mathbf{G} \simeq C_4 \times D_{2p}$ or $C_p \times D_8$ (Lattice II). Then \mathbf{N}/\mathbf{L} is a cyclic extension of degree 4p. For s real we have

$$(\zeta_{\mathbf{N}}/\zeta_{\mathbf{N}_8^+})(s) = \prod_{\{\chi,\overline{\chi}\},\,\chi^2 \neq 1} |L(s,\chi)|^2 \ge 0$$

(where χ ranges over the 4p-2 non-quadratic characters associated with the extension \mathbf{N}/\mathbf{L}), and we conclude that $\zeta_{\mathbf{N}_8^+}(s) \leq 0$ for 0 < s < 1 implies $\zeta_{\mathbf{N}}(s) \leq 0$ for 0 < s < 1. Now, assume that $h_{\mathbf{N}}^- = 1$. Since $h_{\mathbf{N}_8}^-$ divides $h_{\mathbf{N}}^-$ (Proposition 3), we have $h_{\mathbf{N}_8}^- = 1$ and $\zeta_{\mathbf{N}_8^+}(s) \leq 0$ for 0 < s < 1(Theorem 11(1), (2)). On applying Theorem 10 with $\mathbf{K} = \mathbf{N}$ and 2m = 4p, for each of the finitely many \mathbf{N}_8 with $h_{\mathbf{N}_8}^- = 1$ we obtain a good lower bound of $B_p(\mathbf{L})$. (See Tables 4, 6, and 7.)

Second, assume that $\mathbf{G} \simeq C_p \rtimes D_8$ (Lattice I). Then \mathbf{M}_1 is a nonnormal quartic CM-field, hence $Q_{\mathbf{M}_1} = 1$ (see [Lou1, Lemma 1]), $Q_{\mathbf{N}_1} = Q_{\mathbf{M}_1} = 1$, by Proposition 3(1), and $h_{\mathbf{N}}^- = (Q_{\mathbf{N}}/2)(h_{\mathbf{N}_1}^-/Q_{\mathbf{N}_1})^2$ (see [LO2, Prop. 2]). Hence, $h_{\mathbf{N}}^- = 1$ implies $h_{\mathbf{N}_1}^- = 1$ (and $Q_{\mathbf{N}} = 2$) and $h_{\mathbf{M}_1}^- = 1$ (Proposition 3(1)). Conversely, $h_{\mathbf{N}_1}^- = 1$ implies $h_{\mathbf{N}}^- = 1$ (and $Q_{\mathbf{N}} = 2$). Since \mathbf{N}_1/\mathbf{L} is cyclic of degree 2p, as for the previous point we also obtain a good lower bound of $B_p(\mathbf{L})$. (See Table 9.)

If we followed the same line of reasoning as in [Lef], we could determine all the normal CM-fields of degree 8p, $p \geq 3$ any odd prime, with Galois group $\mathbf{G} \simeq C_p \rtimes D_8$, $C_4 \times D_{2p}$ or $C_p \times D_8$ with relative class number one. Instead of determining all the normal CM-fields of degree 8p we determine the fields of degree 24 and 40 in the following three sections. We will prove:

THEOREM 13. The only normal CM-fields of degree 24 with Galois group $G(\mathbf{N}/\mathbb{Q}) \simeq C_3 \rtimes D_8$, $C_4 \times D_6$, or $C_3 \times D_8$ of relative class number one are the two fields given in Theorem 1(2), (3). If \mathbf{N} is a normal CM-field of degree 40 with Galois group $G(\mathbf{N}/\mathbb{Q}) \simeq C_5 \rtimes D_8$, $C_4 \times D_{10}$, or $C_5 \times D_8$, then $h_{\mathbf{N}}^- > 1$.

5.2. The cases $\mathbf{G} \simeq C_4 \times D_6$ and $\mathbf{G} \simeq C_4 \times D_{10}$ (Lattice II)

PROPOSITION 14. Let **N** be a normal CM-field of degree 8p with $G(\mathbf{N}/\mathbb{Q}) \simeq C_4 \times D_{2p}$. Assume that $h_{\mathbf{N}}^-$ is odd. If a rational prime q is ramified in \mathbf{N}_8/\mathbf{L} , then q divides $f_{\mathbf{N}_{2p}/\mathbf{L}}$.

Proof. Suppose q splits in \mathbf{L}/\mathbb{Q} . Then $t_{\mathbf{N}_8/\mathbf{N}_8^+} \geq 2$ and $2 | h_{\mathbf{N}_8}^- | h_{\mathbf{N}}^-$ by Proposition 3(1), (3), which is a contradiction. Hence, q does not split in \mathbf{L}/\mathbb{Q} . Let $\mathcal{Q}_{\mathbf{L}}$ denote the prime ideal of \mathbf{L} above q. According to Proposition 3(4), $\mathcal{Q}_{\mathbf{L}}$ is not inert in $\mathbf{N}_{2p}/\mathbf{L}$. Suppose $\mathcal{Q}_{\mathbf{L}}$ were not ramified in $\mathbf{N}_{2p}/\mathbf{L}$. Then $\mathcal{Q}_{\mathbf{L}}$ would split in $\mathbf{N}_{2p}/\mathbf{L}$. Since $\mathcal{Q}_{\mathbf{L}}$ is ramified in \mathbf{N}_8/\mathbf{L} and since \mathbf{N}/\mathbf{L} is cyclic, the p prime ideals $\mathcal{Q}_1, \ldots, \mathcal{Q}_p$ of \mathbf{N}_{2p} above $\mathcal{Q}_{\mathbf{L}}$ would be ramified in the cyclic quartic extension $\mathbf{N}/\mathbf{N}_{2p}$, hence the prime ideals of \mathbf{N}^+ above \mathcal{Q}_i would be ramified in the quadratic extension \mathbf{N}/\mathbf{N}^+ , we would have $t_{\mathbf{N}/\mathbf{N}^+} \ge p$ and 2^{p-1} would divide $h_{\mathbf{N}}^-$ (by Proposition 3(2)). A contradiction. Hence, $\mathcal{Q}_{\mathbf{L}}$ is ramified in $\mathbf{N}_{2p}/\mathbf{L}$ and q divides $f_{\mathbf{N}_{2p}/\mathbf{L}}$.

First, assume that $G(\mathbf{N}/\mathbb{Q}) \simeq C_4 \times D_6$ and $h_{\mathbf{N}} = 1$. Then $h_{\mathbf{N}_8} = 1$ and \mathbf{N}_8 is known (Theorem 11(1)). In fact, we can get rid of two of the six possible fields \mathbf{N}_8 and we can decide which one of the three real quadratic subfields of a given \mathbf{N}_8 must be equal to \mathbf{L} :

LEMMA 15. If $h_{\mathbf{N}} = 1$ then $(f_4, f_2, d_{\mathbf{L}}) \in \{(16, 5, 5), (5, 8, 8), (5, 13, 13), (5, 17, 17)\}.$

Proof. If a rational prime q divides $f_{\mathbf{N}_8/\mathbf{L}}$, then $q \in \{2, 5, 13\}$ and $q \mid f_{\mathbf{N}_6/\mathbf{L}}$ by Proposition 14. Note that if q is ramified in \mathbf{L}/\mathbb{Q} , then q is totally ramified in \mathbf{N}_6/\mathbb{Q} and q = 3. This implies that q is inert in \mathbf{L}/\mathbb{Q} and $3 \mid (q+1)$ by Proposition 3(4), which yields the desired result.

For the four fields \mathbf{N}_8 we compute $B_3(\mathbf{L})$ such that $h_{\mathbf{N}}^- > 1$ if $f_{\mathbf{N}_6/\mathbf{L}} > B_3(\mathbf{L})$. Let n_f be the number of conductors of \mathbf{N}/\mathbf{L} satisfying $f_{\mathbf{N}_6/\mathbf{L}} \leq B_3(\mathbf{L})$ and N_f the number of conductors of \mathbf{N}/\mathbf{L} satisfying $f_{\mathbf{N}_6/\mathbf{L}} \leq B_3(\mathbf{L})$ and Proposition 14. We refer the reader to Table 4 for the result of our computation. Notice that N_f is much small than n_f , which clearly shows how useful Proposition 14 is for alleviating the amount of computation required. Finally, in Table 5 we give the results of our relative class number computations. According to Table 5, there is only one such CM-field with $h_{\mathbf{N}}^- = 1$. Notice that there are two fields \mathbf{N}_6 for which $\mathcal{F}_{\mathbf{N}_6/\mathbf{L}} = (5 \cdot 22)$. In the same way, for the case $G(\mathbf{N}/\mathbb{Q}) \simeq C_4 \times D_{10}$ we computed Table 6 according to which there is no such \mathbf{N} with $h_{\mathbf{N}}^- = 1$.

						- /		
	$d_{\mathbf{L}}$	$h_{\mathbf{L}}$	$\mathrm{R}_{\mathbf{L}} \leq$	$\mu_{\mathbf{L}} \leq$	$f_{{\bf N}_8/{\bf L}}$	$B_3(\mathbf{L})$	n_f	N_{f}
1	5	1	0.431	0.1014	2^{8}	30^{2}	1	1
2	8	1	0.624	0.1409	5^{2}	310^{2}	20	5
3	13	1	0.663	0.2215	5^{2}	230^{2}	21	5
4	17	1	1.017	0.2167	5^2	390^{2}	27	9

Table 4 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_4 \times D_6)$

	$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{6}/\mathbf{L}}$	$h^{\mathbf{N}}$		$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_6/\mathbf{L}}$	$h^{\mathbf{N}}$		$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_{6}/\mathbf{L}}$	$h^{\mathbf{N}}$
1	5	$(2 \cdot 3^2)$	65^{2}	8	13	$(5 \cdot 3^2)$	13^{2}	14	17	$(5 \cdot 19)$	52^{2}
2	8	$(5 \cdot 7)$	4^{2}	9	13	$(5 \cdot 18)$	61^{2}	15	17	$(5 \cdot 23)$	100^{2}
3	8	$(5 \cdot 3^2)$	10^{2}	10	13	$(5 \cdot 22)$	90^{2}	16	17	$(5 \cdot 29)$	261^{2}
4	8	$(5 \cdot 11)$	9^{2}		13	$(5 \cdot 22)$	90^{2}	17	17	$(5 \cdot 41)$	369^{2}
5	8	$(5 \cdot 31)$	81^{2}	11	13	$(5 \cdot 43)$	205^{2}	18	17	$(5 \cdot 43)$	541^{2}
6	8	$(5 \cdot 53)$	241^{2}	12	17	$(5 \cdot 3^2)$	25^{2}	19	17	$(5 \cdot 67)$	976^{2}
7	13	$(5 \cdot 2)$	1	13	17	$(5 \cdot 13)$	52^{2}	20	17	$(5 \cdot 71)$	1476^{2}

Table 5 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_4 \times D_6)$

	$200000 (3(17/2) - 04 \times D10)$												
	$d_{\mathbf{L}}$	$h_{\mathbf{L}}$	$\mathrm{R}_{\mathbf{L}} \leq$	$\mu_{\mathbf{L}} \leq$	$f_{\mathbf{N}_8}$	$B_5(\mathbf{L})$	n_f	N_{f}	$\mathcal{F}_{\mathbf{N}_{10}/\mathbf{L}}$	$h^{\mathbf{K}}$			
1	40	2	1.151	0.3719	5	110^{2}	1	0	_	_			
2	65	2	1.378	0.4718	5	105^{2}	1	1	95	145305^2			
3	85	2	0.959	0.6116	5	55^{2}	0	0	_	_			

Table 6 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_4 \times D_{10})$

5.3. The cases $\mathbf{G} \simeq C_3 \times D_8$ and $\mathbf{G} \simeq C_5 \times D_8$ (Lattice II). In these cases we use the following proposition similar to Proposition 14:

PROPOSITION 16. Let **N** be a normal CM-field of degree 8p with $G(\mathbf{K}/\mathbb{Q})$ $\simeq C_p \times D_8$. Assume that $h_{\mathbf{N}}^- = 1$. If a rational prime q is inert in \mathbf{L}/\mathbb{Q} , then q does not divide $f_{\mathbf{N}_{2p}/\mathbf{L}}$, the norm of the conductor $\mathcal{F}_{\mathbf{N}_{2p}/\mathbf{L}}$ of $\mathbf{N}_{2p}/\mathbf{L}$.

Proof. If $h_{\mathbf{N}}^- = 1$, then $h_{\mathbf{N}_8}^- = 1$ and \mathbf{N}_8 is the narrow Hilbert 2-class field of some real quadratic field \mathbf{L} in Theorem 11(2). If q is ramified in $\mathbf{N}_{2p}/\mathbf{L}$, then, since q splits completely in \mathbf{N}_8/\mathbf{L} and is ramified in \mathbf{N}/\mathbf{N}^+ , we have $p \mid h_{\mathbf{N}}^-$ by Proposition 3(2).

We obtain Table 7 in the same way as Table 4. In Table 7, to provide the reader with an excerpt of our relative class number computations, for each of the 19 dihedral octic CM-fields \mathbf{N}_8 of relative class number one, we give the value of the relative class number of the \mathbf{N} with $G(\mathbf{N}/\mathbb{Q}) \simeq C_3 \times D_8$ and containing \mathbf{N}_8 of least $f_{\mathbf{N}_6/\mathbf{L}}$. Table 8 provides the same data for the case $G(\mathbf{N}/\mathbb{Q}) \simeq C_5 \times D_8$. According to these results there is no \mathbf{N} of relative class number one with $\mathbf{G} \simeq C_3 \times D_8$ and $\mathbf{G} \simeq C_5 \times D_8$. In Tables 7 and 8, \mathcal{P}_q denotes the prime ideal of \mathbf{L} above a prime q ramified in \mathbf{L}/\mathbb{Q} .

	$d_{\mathbf{L}}$	$h_{\mathbf{L}}$	$R_{\mathbf{L}} \leq$	$\mu_{\mathbf{L}} \leq$	$B_3(\mathbf{L})$	n_f	N_f	$\mathcal{F}_{\mathbf{N}_6/\mathbf{L}}$	$h^{\mathbf{N}}$
1	136	2	1.458	0.6285	127000	45	16	(9)	4^{2}
2	205	2	1.051	0.8512	22300	20	11	(7)	4^{2}
3	221	2	0.728	1.0622	6300	15	7	$\hat{\mathcal{P}}_{13}$	1
4	305	2	1.578	0.9137	49700	33	13	$(\bar{7})$	7^{2}
5	377	2	1.266	1.1927	19300	22	10	(19)	91^{2}
6	545	2	1.418	1.2455	15600	19	$\overline{7}$	(13)	52^{2}
$\overline{7}$	584	2	0.939	1.4452	3700	9	3	(13)	64^{2}
8	712	2	1.210	1.4269	6300	12	8	(9)	52^{2}
9	745	2	2.500	0.9936	56300	31	14	(9)	67^{2}
10	1345	6	3.004	1.0595	40000	27	10	(7)	97^{2}
11	1537	2	2.626	1.2130	21800	20	13	(7)	52^{2}
12	1864	2	1.979	1.3345	6100	11	$\overline{7}$	(7)	109^{2}
13	1945	2	2.657	1.3607	16100	17	6	(9)	157^{2}
14	2041	2	3.362	1.1322	30200	31	15	(7)	172^{2}
15	2248	2	1.680	1.5128	2800	7	6	(7)	112^{2}
16	2329	2	2.926	1.3022	16500	18	6	(9)	196^{2}
17	2353	2	2.612	1.3896	11500	20	15	\mathcal{P}_{13}	52^{2}
18	4369	2	3.573	1.3589	11500	15	8	(7)	217^{2}
19	7081	2	3.737	1.4961	6400	16	11	(7)	724^{2}

Table 7 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_3 \times D_8)$

			. ,	- ,	- /
$d_{\mathbf{L}}$	$B_5(\mathbf{L})$	n_f	N_f	$\mathcal{F}_{\mathbf{N}_{10}/\mathbf{L}}$	$h^{\mathbf{N}}$
136	9500	6	3	(11)	71^{2}
205	2400	4	3	\mathcal{P}_{41}	11^{2}
221	900	2	2	(11)	181^{2}
305	4500	5	3	\mathcal{P}_{61}	121^{2}
377	2200	4	3	(11)	1361^2
545	1800	4	2	\mathcal{P}_5^3	1991^{2}
584	600	1	1	(11)	3001^{2}
712	900	2	0	(61)	4250131^2
745	5000	5	3	\mathcal{P}_5^3	4366^{2}
1345	3800	5	4	(11)	18481^2
1537	2400	4	2	(31)	2620621^2
1864	900	2	2	(11)	26081^2
1945	1900	4	3	(11)	39581^2
2041	3000	4	2	(25)	1522576^2
2248	500	2	2	(11)	83171^2
2329	1900	4	3	(25)	2573371^2
2353	1400	4	2	\mathcal{P}_{181}	122305^2
4369	1400	3	1	(25)	8527696^2
7081	900	2	1	(25)	29035651^2

Table 8 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_5 \times D_8)$

5.4 .	The cases	$\mathbf{G}\simeq$	$C_3 \rtimes L$	\mathcal{D}_8 and	${f G}\simeq$	$C_5 \rtimes I$	D_8 (Lattice	I).	Assume	that
--------------	-----------	--------------------	-----------------	---------------------	---------------	-----------------	---------	---------	-----	--------	------

 $G(\mathbf{N}/\mathbb{Q}) \simeq C_3 \rtimes D_8$ and $h_{\mathbf{N}} = 1$.

For each of the 38 non-normal quartic CM-fields \mathbf{M}_1 of relative class number one we have computed an upper bound $B_3(\mathbf{L})$ such that $f_{\mathbf{N}_1^+/\mathbf{L}} > B_3(\mathbf{L})$ implies $h_{\mathbf{N}_1}^- > 1$. For each possible \mathbf{N}_1 , we have computed $h_{\mathbf{N}_1}^-/h_{\mathbf{M}_1}^-$ for the non-normal CM-field \mathbf{N}_1 which is cyclic of degree 3 over a non-normal CM-field \mathbf{M}_1 by using (2). Finally, our computation shows that in all the cases considered we have $h_{\mathbf{N}_1}^- > 1$, which implies $h_{\mathbf{N}}^- > 1$. In Table 9, we also give the value of $h_{\mathbf{N}}^-$ for least $f_{\mathbf{N}_1^+/\mathbf{L}}$ and we let n_f denote the number of conductors of \mathbf{N}/\mathbf{L} satisfying $f_{\mathbf{N}_1^+/\mathbf{L}} \leq B_3(\mathbf{L})$.

For the case $G(\mathbf{N}/\mathbb{Q}) \simeq C_5 \rtimes D_8$ we obtain Table 10 in the same way. In Table 10, we give all possible 12 non-normal CM-fields **N** with $\mathbf{G} \simeq C_5 \rtimes D_8$ and $f_{\mathbf{N}_{+}^+/\mathbf{L}} \leq B_5(\mathbf{L})$.

According to these results there is no **N** of relative class number one with $\mathbf{G} \simeq C_3 \rtimes D_8$ or $\mathbf{G} \simeq C_5 \rtimes D_8$. In Tables 9 and 10, \mathcal{P}_q denotes a prime ideal of **L** above a split prime q. Note that there are two possible prime ideals \mathcal{P}_q . If we choose the other, then we get exactly the other isomorphic non-normal CM-fields \mathbf{N}_2 .

				-,	•	
	$d_{\mathbf{L}}$	$f_{\mathbf{M}_1/\mathbf{L}}$	$B_3(\mathbf{L})$	n_f	$\mathcal{F}_{\mathbf{N}_1/\mathbf{L}}$	$h^{\mathbf{N}}=(h^{\mathbf{N}_1})^2$
1	8	17	120^{2}	10	$(29)\mathcal{P}_{17}$	208^{2}
2	8	73	40^{2}	2	$(29)\mathcal{P}_{73}$	148^{2}
3	8	89	30^{2}	1	$(29)\mathcal{P}_{89}$	124^{2}
4	8	233	20^{2}	0	_	_
5	8	281	20^{2}	0	_	_
6	5	41	50^{2}	5	$(18)\mathcal{P}_{41}$	57^{2}
7	5	61	40^{2}	3	$(18)\mathcal{P}_{61}$	84^{2}
8	5	109	30^{2}	1	$(18)\mathcal{P}_{109}$	63^{2}
9	5	149	20^{2}	1	$(18)\mathcal{P}_{149}$	100^{2}
10	5	269	20^{2}	1	$(18)\mathcal{P}_{269}$	211^{2}
11	5	389	10^{2}	0	_	_
12	13	17	90^{2}	8	$(10)\mathcal{P}_{17}$	12^{2}
13	13	29	60^{2}	5	$(10)\mathcal{P}_{29}$	27^{2}
14	13	157	20^{2}	3	$(10)\mathcal{P}_{157}$	196^{2}
15	13	181	20^{2}	3	$(10)\mathcal{P}_{181}$	228^{2}
16	17	137	30^{2}	1	$(11)\mathcal{P}_{137}$	324^{2}
17	17	257	20^{2}	1	$(11)\mathcal{P}_{257}$	444^2
18	29	53	20^{2}	2	$(9)\mathcal{P}_{53}$	52^{2}
19	73	97	30^{2}	1	$(5)\mathcal{P}_{97}$	292^{2}
20	17	8	670^{2}	47	$(11)\mathcal{P}_2^3$	4^{2}
21	73	8	550^{2}	35	$(5)\mathcal{P}_2^3$	16^{2}
22	89	8	330^{2}	5	$(29)\mathcal{P}_2^3$	400^{2}
23	233	8	150^{2}	14	$(17)\mathcal{P}_2^3$	516^{2}
24	281	8	190^{2}	7	$(9)\mathcal{P}_2^3$	208^{2}
25	41	5	860^{2}	43	$(17)\mathcal{P}_5$	19^{2}
26	61	5	360^{2}	34	$(22)\mathcal{P}_5$	57^{2}
27	109	5	280^{2}	27	$(11)\mathcal{P}_5$	36^{2}
28	149	5	110^{2}	16	$(18)\mathcal{P}_5$	133^{2}
29	269	5	70^{2}	3	$(2)\mathcal{P}_5$	4^{2}
30	389	5	70^{2}	4	$(2)\mathcal{P}_5$	4^{2}
31	17	13	190^{2}	13	$(11)\mathcal{P}_{13}$	16^{2}
32	29	13	60^{2}	6	$(9)\mathcal{P}_{13}$	12^{2}
33	157	13	30^{2}	4	$(10)\mathcal{P}_{13}$	43^{2}
34	181	13	30^{2}	3	$(17)\mathcal{P}_{13}$	516^{2}
35	137	17	50^{2}	3	$(9)\mathcal{P}_{17}$	268^2
36	257	17	30^{2}	1	\mathcal{P}_{17}	4^{2}
37	53	29	20^{2}	3	$(10)\mathcal{P}_{29}$	84^{2}
38	97	73	30^{2}	2	$(23)\mathcal{P}_{73}$	756^{2}

Table 9 $(G(\mathbf{N}/\mathbb{Q}) \simeq V_{24} = C_3 \rtimes D_8)$

_				-/	10	0 0)	
	$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_1/\mathbf{L}}$	$h^{\mathbf{N}}=(h^{\mathbf{N}_1})^2$		$d_{\mathbf{L}}$	$\mathcal{F}_{\mathbf{N}_1/\mathbf{L}}$	$h^{\mathbf{N}}=(h^{\mathbf{N}_1})^2$
1	17	$(79) \cdot \mathcal{P}_2^3$	73205^{2}	7	89	$(5^2) \cdot \mathcal{P}_2^3$	86525^2
2	41	$(109) \cdot \mathcal{P}_5$	3688955^2	8	89	$(59) \cdot \mathcal{P}_2^3$	2732816^2
3	41	$(179) \cdot \mathcal{P}_5$	5263280^2	9	109	$(79) \cdot \mathcal{P}_5$	2044655^2
4	41	$(199) \cdot \mathcal{P}_5$	9782005^2	10	181	$(19) \cdot \mathcal{P}_{13}$	194011^2
5	61	$(59) \cdot \mathcal{P}_5$	101680^2	11	257	$(19) \cdot \mathcal{P}_{17}$	1030480^2
6	73	$(5^2) \cdot \mathcal{P}_2^3$	9136^{2}	12	389	$(29) \cdot \mathcal{P}_5$	228005^2

Table 10 $(G(\mathbf{N}/\mathbb{Q}) \simeq V_{40} = C_5 \rtimes D_8)$

6. The case $\mathbf{G} \simeq C_2 \times F_{5,4}$. Let \mathbf{N} be a normal CM-field of degree 40 with Galois group $\mathbf{G} = G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times F_{5,4} = C_2 \times \langle a, b : a^5 = b^4 = 1, b^{-1}ab = a^2 \rangle \simeq \langle \sigma, \tau : \sigma^{10} = \tau^4 = 1, \tau^{-1}\sigma\tau = \sigma^7 \rangle$. Note that \mathbf{N}^+ is a normal real field with Galois group $G(\mathbf{N}^+/\mathbb{Q}) \simeq F_{5,4}$. Moreover, $D(\mathbf{G}) = \langle \sigma^2 \rangle$ and $Z(\mathbf{G}) = \langle \sigma^5 \rangle$. Hence, σ^5 is the complex conjugation in \mathbf{G} . Let \mathbf{N}_8 be the fixed subfield of the 5-Sylow normal subgroup $D(\mathbf{G})$ of \mathbf{G} . Then \mathbf{N}_8 is an imaginary abelian octic field whose maximal totally real subfield \mathbf{N}_8^+ is cyclic quartic, and we let \mathbf{L} denote the quadratic subfield of \mathbf{N}_8^+ and $\mathbf{L}_{\rm im}$ be any one of the two imaginary quadratic subfield of \mathbf{N}_8 . Notice that $w_{\mathbf{N}} = w_{\mathbf{N}_8}$. We have the following lattice of subfields:

PROPOSITION 17. Let \mathbf{K}/\mathbf{M} be a cyclic quintic extension of a real cyclic quartic field \mathbf{M} . Let χ be a character of order 5 associated with \mathbf{K}/\mathbf{M} . Fix a generator b of $G(\mathbf{M}/\mathbb{Q})$.

(1) **K** is a normal number field with Galois group $G(\mathbf{K}/\mathbb{Q}) \simeq F_{5,4}$ if and only if $\mathcal{F}_{\mathbf{K}/\mathbf{M}}$ is invariant under the action of $G(\mathbf{M}/\mathbb{Q})$ and for some $u \in \{2,3\}$ we have $\chi(b(\mathcal{P})) = \chi(\mathcal{P})^u$ for all prime ideals \mathcal{P} of **M**.

(2) Let **K** be a normal real field of degree 20 with $G(\mathbf{K}/\mathbb{Q}) \simeq F_{5,4}$. Let \mathcal{P}_q , e_q and f_q denote a prime ideal of **M** above a rational prime q, its ramification index, and its inertial degree, respectively.

(a) If q does not split completely in \mathbf{M}/\mathbb{Q} , then \mathcal{P}_q is not inert in \mathbf{K}/\mathbf{M} . Moreover, if \mathcal{P}_q is ramified in both \mathbf{M}/\mathbb{Q} and \mathbf{K}/\mathbf{M} then q = 5. (b) Let \mathcal{I}_5 denote the ideal of **M** such that $(5) = \mathcal{I}_5^{e_5}$. Then

$$\mathcal{F}_{\mathbf{K}/\mathbf{M}} = \mathcal{I}_5^e \Big(\prod q \Big)$$

where $\prod q$ is a finite product of distinct rational primes q's such that

$$\begin{cases} q \equiv 1 \pmod{5} & \text{if } f_q = 1, \\ q \equiv \pm 1 \pmod{5} & \text{if } f_q = 2, \\ q \not\equiv 1 \pmod{p} & \text{if } f_q = 4, \end{cases}$$

and either e = 0 or

$$\begin{cases} e = 2 & \text{if } e_5 = 1, \\ e \in \{2, 3\} & \text{if } e_5 = 2, \\ e \in \{2, 3, 4, 6\} & \text{if } e_5 = 4. \end{cases}$$

Proof. (1) We first prove the necessity. Let $\Phi_{\mathbf{K}/\mathbf{M}}$ denote the Artin map associated with \mathbf{K}/\mathbf{M} . Note that

$$\chi(b(\mathcal{P})) = \chi(\mathcal{P})^u \iff \varPhi_{\mathbf{K}/\mathbf{M}}(b(\mathcal{P})) = b^{-1} \varPhi_{\mathbf{K}/\mathbf{M}}(\mathcal{P}) b = \varPhi_{\mathbf{K}/\mathbf{M}}(\mathcal{P})^u$$

This shows that if $\mathcal{F}_{\mathbf{K}/\mathbf{M}}$ is invariant under b, so is the kernel Ker $(\Phi_{\mathbf{K}/\mathbf{M}})$, which yields the normality of \mathbf{K} (see [Cohn, Thm. 8.2.5]). Therefore, considering the Galois group $G(\mathbf{K}/\mathbb{Q})$, we get the desired result. The sufficiency is easily checked.

(2) First, if q does not split completely in \mathbf{M}/\mathbb{Q} then there exists some $i_0 \in \{1, 2, 3\}$ such that $b^{i_0}(\mathcal{P}_q) = \mathcal{P}_q$. Hence, $\chi(b^{i_0}(\mathcal{P}_q)) = \chi(\mathcal{P}_q)^{u^{i_0}} = \chi(\mathcal{P}_q)$, which gives $\chi(\mathcal{P}_q) = 1$, and the first claim of (a) is proved. The last claim of (a) follows from ramification theory.

Second, assume that $q \neq 5$ and \mathcal{P}_q divides $\mathcal{F}_{\mathbf{K}/\mathbf{M}}$. Then, since $\mathcal{F}_{\mathbf{K}/\mathbf{M}}$ is invariant under action of $G(\mathbf{M}/\mathbb{Q})$, (q) divides $\mathcal{F}_{\mathbf{K}/\mathbf{M}}$. By the method of [LPL, Lemma 5] we get $\nu_q(\mathcal{F}_{\mathbf{K}/\mathbf{M}}) = 1$, where ν_q denotes the q-adic valuation. Note that there exists a primitive modular character of order 5 on $(A_{\mathbf{M}}/(q))^*$ which is trivial on Im \mathbb{Z} , the image of \mathbb{Z} . Hence, the order of $(A_{\mathbf{M}}/(q))^*/\text{Im }\mathbb{Z}$ must be divisible by 5.

Third, assume that 5 is ramified in \mathbf{K}/\mathbf{M} . It is easily checked that e > 1. Assume that $e \ge 3$ for $e_5 = 1$, $e \ge 4$ for $e_5 = 2$, and $e \ge 7$ for $e_5 = 4$. Let $\alpha \equiv 1 \pmod{\mathcal{P}_5^{e-1}}$. Then there exists $\beta \in \mathcal{P}_5^{e-1-e_5}$ such that $\alpha = 1+5\beta$. By using $\nu_5(C_k^5) = 1 - \nu_5(k)$ for $1 \le k \le 5$, we obtain $\alpha \equiv (1+\beta)^5 \pmod{\mathcal{P}_5^e}$, which contradicts the existence of a primitive modular character of order 5 on $(A_{\mathbf{M}}/\mathcal{P}_5^e)^*$. Finally, by the same trick of [LPL, Lemma 5] we get $e \ne 5$ for $e_5 = 4$, which complete the proof of (b).

THEOREM 18. Let χ denote any primitive character of order 10 associated with $\mathbf{N}/\mathbf{N}_8^+$ and let W_{χ} denote the Artin root number associated with χ . Then $W_{\chi} = \pm 1$ and $L(0, \chi) \in 16\mathbb{Z}$. Moreover, $h_{\mathbf{N}_8}^-$ divides $h_{\mathbf{N}}^-$, and $h_{\mathbf{N}}^{-}/h_{\mathbf{N}_{8}}^{-} = (h_{\mathbf{N}/\mathbf{N}_{8}}^{-})^{4}$ is the 4th power of the rational integer:

$$h_{\mathbf{N}/\mathbf{N}_8}^- = \frac{1}{16}L(0,\chi).$$

Proof. The proof is similar to that of Theorem 5. Let σ_u denote a generator of the Galois group $G(\mathbb{Q}(\zeta_{10})/\mathbb{Q})$ such that $\sigma_u(\zeta_{10}) = \zeta_{10}^u$, where $\zeta_{10} = e^{2\pi i/10}$. Then, since for any ideal \mathcal{I} , $\sigma_u(\chi(\mathcal{I})) = \chi(\mathcal{I})^u = \chi(b(\mathcal{I}))$ for a generator $b \in G(\mathbf{N}_8^+/\mathbb{Q})$, we conclude that the algebraic number $L(0,\chi)$ which is invariant under the action of $G(\mathbb{Q}(\zeta_{10})/\mathbb{Q})$ is rational.

To compute numerical approximations of $L(0,\chi)$ by using the technique developed in [Lou5] and [Lou6], we have to be able to compute the coefficients $a_n(\chi) := \sum_{N_{\mathbf{N}_8^+/\mathbb{Q}}(\mathcal{I})=n} \chi(\mathcal{I})$. For convenience, let us set some notations. Let \mathcal{P}_q and f_q denote a prime ideal in \mathbf{N}_8^+ above a rational prime qand its inertial degree, respectively. We have:

PROPOSITION 19. Let χ_+ and χ_- denote the characters associated with the cyclic extensions $\mathbf{N}^+/\mathbf{N}_8^+$ and $\mathbf{N}_8/\mathbf{N}_8^+$, respectively, such that $\chi = \chi_+\chi_-$ is a character of order 10 associated with $\mathbf{N}/\mathbf{N}_8^+$. If either q divides $f_{\mathbf{N}/\mathbf{N}_8^+}$ or f_q does not divide k, then $a_{q^k}(\chi) = 0$. Otherwise, set $\varepsilon_q = \chi_-(\mathcal{P}_q) = \pm 1$ and $\eta_q = \chi_+(\mathcal{P}_q) = \zeta_5^n$, for some $n \in \mathbb{Z}$. Then

$$a_{q^k}(\chi) = \begin{cases} \varepsilon_q^k & \text{if } e_q = 4 \text{ and } f_q = 1, \\ \varepsilon_q^{k/2} & \text{if } e_q = 2 \text{ and } f_q = 2, \\ \varepsilon_q^k(k+1) & \text{if } e_q = 2 \text{ and } f_q = 1, \\ 1 & \text{if } e_q = 1 \text{ and } f_q = 4, \\ k/2+1 & \text{if } e_q = 1 \text{ and } f_q = 2. \end{cases}$$

 $If e_q = f_q = 1, \ then \\ a_{q^k}(\chi) = \begin{cases} \frac{(k+1)(k+2)(k+3)}{6} \varepsilon_q^k & \text{if } \eta_q = 1, \\ \varepsilon_q^k & \text{if } k \equiv 0 \pmod{5} \text{ and if } \eta_q \neq 1, \\ -\varepsilon_q^k & \text{if } k \equiv 1 \pmod{5} \text{ and if } \eta_q \neq 1, \\ 0 & \text{otherwise.} \end{cases}$

Proof. Assume that $e_q = f_q = 1$. Then

$$a_{q^k}(\chi) = \varepsilon_q^k \sum_{\substack{r+s+t+u=k\\r,s,t,u \ge 0}} \eta_q^{r+2s+3t+4u}$$

If $\eta_q \neq 1$ then since $\sum_{r+s+t+u=k} \eta_q^{r+2s+3t+4u}$ is the coefficient of x^k in $(1-x)/(1-x^5) = (1-x)(\sum_{a\geq 0} x^{5a})$, we have the desired result. The others are immediate from the definition of $a_{q^k}(\chi)$ and ramification theory.

Now, assume that $h_{\mathbf{N}} = 1$. Then $h_{\mathbf{N}_8} = 1$, and there are 18 such \mathbf{N}_8 's (see [CK]). An easy computation shows that $\zeta_{\mathbf{N}_8}(s) \leq 0$ in the range 0 < s < 1

for these 18 fields \mathbf{N}_8 . Therefore, by using Theorem 10, for each of these 18 fields \mathbf{N}_8 we can compute an upper bound $B(\mathbf{N}_8^+)$ such that $h_{\mathbf{N}}^- > 1$ if $f_{\mathbf{N}^+/\mathbf{N}_8^+} > B(\mathbf{N}_8^+)$. In Table 11, we let $f_{\mathbf{N}_8^+}$ and f_2 denote the conductor of \mathbf{N}_8^+ and that of an imaginary quadratic subfield of \mathbf{N}_8 , respectively. In the factorization $f_{\mathbf{N}_8^+}$, we mark the conductor of a character of order 4 with the bold face. Let n_f denote the number of possible conductors of $\mathbf{N}^+/\mathbf{N}_8^+$ satisfying $f_{\mathbf{N}^+/\mathbf{N}_8^+} \leq B(\mathbf{N}_8^+)$ and let N_f denote the number of possible conductors of $\mathbf{N}/\mathbf{N}_8^+$ satisfying $f_{\mathbf{N}^+/\mathbf{N}_8^+} \leq B(\mathbf{N}_8^+)$ and being filtered by using either Proposition 3(2) or Propositions 3(3) and 17(2)(a). In Table 12, we list the relative class numbers $h_{\mathbf{N}}^- = (h_{\mathbf{N}/\mathbf{N}_8}^-)^4$ of the six CM-fields \mathbf{K} which are obtained in the last column of Table 11. We should point out that in Tables 11 and 12, we used PARI-GP to construct primitive characters of order 5 on the ray class group $Cl_{\mathbf{N}_8^+}(\mathcal{F}_{\mathbf{N}^+/\mathbf{N}_8^+})$. According to our computations, the normal CM-field of degree 40 given in Theorem 2 is the only normal CM-field of degree 40 with $G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times F_{5,4}$ and relative class number one.

	$f_{\mathbf{N}_8^+}$	f_2	$h_{\mathbf{N}_8^+}$	$Q_{\mathbf{N}}$	$w_{\mathbf{N}}$	$\mathrm{Reg}_{\mathbf{N}_8^+} \leq$	$\mu_{\mathbf{N}_8^+} \leq$	$B(\mathbf{N}_8^+)$	n_f	N_{f}
1	$5 \cdot 3$	3	1	2	30	0.2780	0.5089	23^{4}	2	2
2	$5 \cdot 4$	4	1	2	20	0.3315	0.6025	22^{4}	3	1
3	$5 \cdot 7$	$\overline{7}$	1	2	10	0.3441	0.9326	17^{4}	3	2
4	$5 \cdot 8$	8	1	2	10	0.4028	0.9337	17^{4}	2	0
5	$13 \cdot 4$	4	1	2	4	0.3811	1.5474	12^{4}	0	0
6	$13 \cdot 7$	$\overline{7}$	1	2	2	0.3238	2.1847	9^{4}	0	0
$\overline{7}$	$16 \cdot 3$	3	1	2	6	0.6586	1.0155	19^{4}	0	0
8	16	4	1	1	4	0.4317	0.5604	31^{4}	1	0
9	$16 \cdot 11$	11	1	2	2	0.4205	2.8114	9^{4}	0	0
10	$16 \cdot 5$	20	2	1	2	0.6950	1.3391	17^{4}	2	0
11	$37 \cdot 4$	4	1	2	4	1.4646	1.8139	10^{4}	0	0
12	$29 \cdot 8$	8	1	2	2	0.7201	2.5180	6^{4}	0	0
13	$16 \cdot 5$	4	2	1	4	0.6950	1.3391	15^{4}	2	0
14	16	3	1	1	6	0.4317	0.5604	15^{4}	0	0
15	$16 \cdot 3 \cdot 11$	11	2	1	2	0.9479	2.4740	7^4	0	0
16	$17 \cdot 7 \cdot 3$	3	2	1	6	3.6084	1.9785	13^{4}	0	0
17	$17 \cdot 7 \cdot 11$	11	2	1	2	3.7957	3.0471	7^4	0	0
18	$61 \cdot 7$	$\overline{7}$	5	2	2	2.2448	2.4298	6^{4}	2	1

Table 11 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times F_{5,4})$

Table 12 $(G(\mathbf{N}/\mathbb{Q}) \simeq C_2 \times F_{5,4}, \text{ all } W_{\mathbf{N}} = 1)$

	$f_{\mathbf{N}_8^+}$	f_2	$\mathcal{F}_{\mathbf{N}^+/\mathbf{N}_8^+}$	$h^{{\bf N}/{\bf N}_8}$		$f_{\mathbf{N}_8^+}$	f_2	$\mathcal{F}_{\mathbf{K}^+/\mathbf{N}_8^+}$	$h^{\mathbf{N}/\mathbf{N}_8}$
1	$5 \cdot 3$	3	(10)	2	4	$5\cdot7$	7	$(2) \cdot \mathcal{P}_{5}^{2}$	1
2	$5 \cdot 3$	3	$(7) \cdot \mathcal{P}_5^2$	5	5	$5 \cdot 7$	7	(15)	12
3	$5 \cdot 4$	4	\mathcal{P}_5^6	3	6	$61 \cdot 7$	7	(1)	4

Acknowledgments. The author gratefully appreciates many helpful suggestions by S. Louboutin during the preparation of the paper.

References

- [CK] K.-Y. Chang and S.-H. Kwon, Class numbers of imaginary abelian number fields, Proc. Amer. Math. Soc. 128 (2000), 2517–2528.
- [Cohn] H. Cohn, Introduction to the Construction of Class Fields, Cambridge Univ. Press, Cambridge, 1985.
- [Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, Ann. Inst. Fourier (Grenoble) 50 (2000), 67–103.
- [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux 11 (1999), 387–406.
- [Lou1] S. Louboutin, On the class number one problem for non-normal quartic CMfields, Tôhoku Math. J. 46 (1994), 1–12.
- [Lou2] —, Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith. 74 (1996), 121–140.
- [Lou3] —, Upper bounds on $|L(1,\chi)|$ and applications, Canad. J. Math. 50 (1998), 794–815.
- [Lou4] —, The class number one problem for the dihedral and dicyclic CM-fields, Colloq. Math. 80 (1999), 259–265.
- [Lou5] —, Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp. 69 (2000), 371–393.
- [Lou6] —, Computation of $L(0, \chi)$ and of relative class numbers of CM-fields, Nagoya Math. J. 161 (2001), 171–191.
- [LO1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47–62.
- [LO2] —, —, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc. 76 (1998), 523–548.
- [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657–3678.
- [LP] S. Louboutin and Y.-H. Park, Class number problems for dicyclic CM-fields, Publ. Math. Debrecen 57/3-4 (2000), 283–295.
- [LPL] S. Louboutin, Y.-H. Park and Y. Lefeuvre, Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith. 89 (1999), 201–215.
- [Mar] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 1–80.
- [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1997.

 CIST

Korea University

136-701 Seoul, South Korea

E-mail: youngho@semi.korea.ac.kr

Received on 8.9.2000 and in revised form on 17.1.2001