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1. Introduction and statement of the main result. Let J = Z4 ∪(
1
2 + Z

)4
denote the Hurwitz ring of integral quaternions. In the first part

[4] of the paper we developed the following two asymptotic formulas, gen-
eralizing a result of H. Müller and W. G. Nowak [6] on the distribution of
squares of Gaussian integers.

As X →∞,

(i) #{q2 | q ∈ J ∧ q2 ∈ [−X,X]4}

= cX2 − 2π
3
X3/2 +O(X96/73(logX)461/146),

where c = 7.674124 . . . ,

(ii) #{q2 | q ∈ J ∧ |Re(q2)|, |Im(q2)| ≤ X}

= 2πX2 − 2π
3
X3/2 +O(X7/6(logX)19/4),

where Re(a) = a0 is the real part and Im(a) := (a1, a2, a3) is the imaginary
(or vector) part of the quaternion a = (a0, a1, a2, a3), and |·| is the Euclidean
norm.

A natural variation of the two distribution questions investigated in [4]
arises from introducing the quaternions as hypercomplex numbers. Define
H = C + Cj, where j is the “hyper-imaginary” unit, and define addition
and multiplication formally with respect to j2 = −1 and jz = z̄j for z ∈ C.
Then H equals the division ring of Hamilton’s quaternions, and the subring
Z 1+i+j+ij

2 + Zi+ Z[i]j equals the Hurwitz ring J.
If q ∈ H then let us call CP(q) := α the complex part and HCP(q) := β

the hypercomplex part of the quaternion q = α+ βj (α, β ∈ C).
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The topic of the present paper is to derive an asymptotic formula for the
number of quaternions q2 with q ∈ J and |CP(q2)|, |HCP(q2)| ≤ X, where
X is a large positive parameter. Now, the main result of the present paper
is the following theorem.

Theorem 1. For positive real X let

A(X) := #{q2 | q ∈ J ∧ |CP(q2)|, |HCP(q2)| ≤ X}.
Then as X →∞,

A(X) = C1X
2 + C2X

3/2 +O(X96/73(logX)461/146),

where C1 = 6.393466 . . . is a numerical constant , and

C2 := π

(√
17
√

2 + 23− 8
6

)
= −0.597588 . . .

Remark. The main term C1X
2 equals the volume of the non-convex,

four-dimensional domain {q ∈ H | |CP(q2)|, |HCP(q2)| ≤ X}. As in [4],
the second main term C2X

3/2 occurs because of the exceptional role of the
imaginary space ImH := Ri+ Cj.

2. Preparation for the proof. For X > 0, define the four-dimensional
body

K(X) := {(a0, a1, a2, a3) ∈ R4 | 4a2
0(a2

2 + a2
3) ≤ X2∧

(a2
0 − a2

1 − (a2
2 + a2

3))2 + 4a2
0a

2
1 ≤ X2}.

By adding the two inequalities we observe that

(a0, a1, a2, a3) ∈ K(X)

⇔ (a2
0 + a2

1 + a2
2 + a2

3)2 ≤ X2 + 4a2
0(a2

2 + a2
3) ≤ 2X2,

so that K(X) is contained in the four-dimensional ball with radius 4
√

2
√
X

and center in the origin. In particular, K(X) is compact and K(X) ⊂
[− 4
√

2
√
X, 4
√

2
√
X]4. It is plain that K(X) is not convex. Further, we ob-

tain K(X) by “blowing up” the basic domain K(1) with factor
√
X, i.e.

K(X) =
√
X ·K(1).

Recall that (having identified H with R4) for q = (a0, a1, a2, a3) ∈ H,

q2 = (a2
0 − a2

1 − a2
2 − a2

3, 2a0a1, 2a0a2, 2a0a3),

whence |CP(q2)|, |HCP(q2)| ≤ X iff q ∈ K(X). Referring to [4] we have

q2 = p2 iff q = p or q = −p
for all q, p ∈ H \ ImH = R4 \ ({0} × R3). Consequently, with J = Z4

∪ (1/2 + Z)4,

#{q2 | q ∈ J \ ImH ∧ |CP(q2)|, |HCP(q2)| ≤ X}
= #(K(X) ∩ J ∩ (]0,∞[× R3)).
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For q, p ∈ ImH={0} ×R3 we have q2 =p2 iff |q|= |p|. Further, HCP(q2)=0
and CP(q2) = −|q|2 for every q ∈ ImH, whence

#{q2 | q ∈ J ∩ ImH ∧ |CP(q2)|, |HCP(q2)| ≤ X} ≤ X + 1.

Thus we have

A(X) = #(K(X) ∩ J ∩ (]0,∞[× R3)) +O(X).

By symmetry we can write

(2.1) A(X) = #(K0(X) ∩ J) + 2 ·#(K+(X) ∩ J) +O(X),

where
K0(X) := K(X) ∩ (]0,∞[× {0} × R× R),

K+(X) := K(X) ∩ (]0,∞[× ]0,∞[× R× R).

Thus our problem is to count all integral lattice points in the three-
dimensional domain K0(X) (note that K0(X) ∩ J = K0(X) ∩ Z4) and all
integral and half odd integral lattice points in the four-dimensional domain
K+(X).

3. Counting the lattice points in K0(X). For abbreviation through-
out the paper, define constants

c1 :=

√√
2− 1
2

, c2 :=

√
1
2
, c3 := 4

√
1
2
, c4 :=

√√
2 + 1
2

,

so that 0 < c1 < c2 < c3 < 1 < c4 <
4
√

2.
For X > 0 and a 6= 0 define circular rings

D(X; a) := {(x, y) ∈ R2 | −X + a2 ≤ x2 + y2 ≤ min{X2/(4a2),X + a2}},
so that D(X; a) is a circular disk iff |a| ≤

√
X and D(X; a) = ∅ iff |a| >

c4
√
X. Since

#(K0(X) ∩ J)
= #{(a0, a2, a3)∈N×Z×Z | a2

2 +a2
3 ≤X2/(4a2

0)∧|a2
0 − (a2

2 + a2
3)| ≤X},

we can write

(3.1) #(K0(X) ∩ J) =
∑

0<a≤c4
√
X

#(D(X; a) ∩ Z2).

Referring to Huxley’s deep result concerning the circle problem (cf. [2], The-
orem 18.3.2), we note that uniformly in % ∈ [0, 1], as T →∞,

(3.2) #{(x, y) ∈ (%+ Z)2 | x2 + y2 ≤ T} = πT +O(T 23/73(log T )315/146).

As a consequence, since r2(n)� nε, we also have

(3.3) #{(x, y) ∈ (%+ Z)2 | x2 + y2 < T} = πT +O(T 23/73(log T )315/146)

for % = 0 and % = 1/2.
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Now, applying (3.2) and (3.3) to (3.1) we can write

1
π
·#(K0(X) ∩ J) =

∑

0<a≤c1
√
X

(X + a2) +
∑

c1
√
X<a≤c4

√
X

X2

4a2

−
∑

√
X<a≤c4

√
X

(a2 −X) +O(X119/146+ε).

By making use of a rough version of the Euler summation formula, i.e.

∑

α<k≤β
f(k) =

β�

α

f(t) dt+O( max
α≤t≤β

|f(t)|) for monotonic f : [α, β]→ R,

we obtain

(3.4) #(K0(X) ∩ J) = C3X
3/2 +O(X),

where C3 = (4c4 − 2)π/3 = 2.507762 . . .

4. Uniform estimates of certain rounding error sums. Let the
rounding error function ψ be defined by

ψ(z) = z − [z]− 1/2 (z ∈ R)

throughout the paper. ([ ] are the Gauss brackets.)
Note that for every z, ψ(z+a) = ψ(z) if a ∈ Z, and ψ(z+a) = ψ(z+1/2)

if a ∈ 1/2 + Z.
Further, define functions α, β, and σ depending on our parameter

X →∞ by

α(X;u) :=
√
X − u2 (0 ≤ u ≤

√
X), β(X;u) :=

X

2u
(u > 0),

and

σ(X;u) :=

√√
2X − u2 − X2

4u2 (c1
√
X ≤ u ≤ c4

√
X),

so that

α(X;u) =
√
X a

(
u√
X

)
, β(X;u) =

√
X b

(
u√
X

)
,

σ(X;u) =
√
Xs

(
u√
X

)
,

with

a(t) :=
√

1− t2 (0 ≤ t ≤ 1), b(t) :=
1
2t

(t > 0),

and

s(t) :=

√√
2− t2 − 1

4t2
(c1 ≤ t ≤ c4).
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Clearly, the graph of a is a quarter of a circle, and the graph of b is a
branch of a hyperbola. Obviously, a(t) ≤ b(t) (0 < t ≤ 1) and a(t) = b(t) iff
t = c2.

Concerning the graph of s we note that s(c1) = s(c4) = 0, and max{s(t) |
c1 ≤ t ≤ c4} = s(c2) =

√
2 c1. The tangents at the endpoints (c1, 0) and

(c4, 0) are vertical. For the second derivative we have s′′(t) < −4 on c1 <
t < c4, so that s is strictly concave.

Further, we always have b(t) ≥ s(t) (with equality iff t = c3), and a(t) =
s(t) iff t = c2c4 ∈ ]c2, c3[, a(t) < s(t) when c2c4 < t ≤ 1, and a(t) > s(t)
when c1 ≤ t < c2c4.

For the proof of Theorem 1 we will need estimates of ψ-sums involving
the functions α, β, and σ. To obtain these estimates the Discrete Hardy–
Littlewood Method is required. (See Huxley [2] for a profound presentation
of the method and its various applications to important problems of geom-
etry and analytic number theory.)

Notation. For abbreviation, for f : [a, b]→ R and % ∈ R define
∑(%)

a≤n≤b
f(n) :=

∑

a≤n≤b
n∈%+Z

f(n).

Lemma 1. As X →∞,
∑(%)

a≤n≤b
ψ(τ + α(X;n))� X23/73(logX)315/146

uniformly in 0 ≤ a ≤ b ≤
√
X and uniformly in %, τ ∈ R.

Proof. This has been proved in [5]. Note that it is not possible to adapt
the proof of Lemma 2 in the first part [4] of the paper because a′′′(0) = 0.

Lemma 2. As X →∞,
∑(%)

a≤n≤b
ψ(τ + β(X;n))� X23/73(logX)461/146

uniformly in 0 < a ≤ b ≤ 2
√
X and uniformly in %, τ ∈ R.

Proof. Apply [2], Theorem 18.2.3, with T =X and F (x)=1/(2x+2%/M)
+Mτ/X to every part of a dyadic division of the sum.

Lemma 3. Let τ ∈ {0, 1/2}. Then as X →∞,
∑(τ)

a≤n≤b
ψ(τ + σ(X;n))� X23/73(logX)315/146

uniformly in c1
√
X ≤ a ≤ b ≤ c4

√
X.
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Proof. Since it is not possible to apply [2], Theorem 18.2.2 or 18.2.3,
because s′′′(t0) = 0 for t0 = 0.8129 . . . , we are going to prove the result in
a rather indirect way. Let us first consider the domain H := {(x, y) ∈ R2 |
c1 ≤ x ≤ c4 ∧ |y| ≤ s(x)}, which is obviously convex. The boundary of H,
which equals the union of the graphs of s and −s, is sufficiently smooth and
its radius of curvature is bounded away from zero and infinity, so that the
domain H satisfies the assumptions of Huxley [2], Theorem 18.3.2. Then the
radius r of curvature attains its maximum rmax = 2c4 at the point (c1, 0)
and its minimum rmin ≈ 1/7 near the point (2/3,±s(2/3)), whence always
0.1 < r < 2.2.

Now we consider a family of circular disks of equal size given by

D(u) := {(x, y) ∈ R2 | (x− w(u))2 + y2 ≤ 9} (c1 ≤ u ≤ c4)

with w(u) := u−
√

9− s(u)2, so that c1 − 3 ≤ w(u) ≤ c4 − 3 < 0 and w(u)
is increasing in u. In this connection the number 9 is a “house number” that
guarantees that the fixed radius of the circles is always greater than any
radius r of curvature of the boundary ∂H of the domain H.

Obviously, for every (u, y) ∈ ∂H we have

∂D(u) ∩ ∂H = {(u, y), (u,−y)} = {(u, s(u)), (u,−s(u))}

and D(u) ∩ [u,∞[ × R ⊂ H, i.e. the whole circular arc on the right of the
line x = u is always lying within the domain H.

By a straightforward adaptation of the proof of Huxley’s main theo-
rem [2], Theorem 18.3.2, we have for τ ∈ {0, 1/2} and as X →∞,

(4.1) #((
√
X · (D(u) ∩H)) ∩ (τ + Z)2)

= X · area(D(u)∩H) +O(X23/73(logX)315/146) uniformly in u ∈ [c1, c4].

Now let

Ψ1(X, τ ;u) :=
∑(τ)

c1
√
X≤n≤u

√
X

ψ(τ + σ(X;n)) (c1 ≤ u ≤ c4),

so that it suffices to prove, as X →∞,

(4.2) Ψ1(X, τ ;u)� X23/73(logX)315/146 uniformly in u ∈ [c1, c4].

Further, for c1 ≤ u ≤ c4, let

Ψ2(X, τ ;u) :=
∑(τ)

u
√
X<n≤(w(u)+3)

√
X

ψ(τ +
√

9X − (n− w(u)
√
X)2),

so that, with % = τ − w(u)
√
X, as X →∞ and uniformly in u ∈ [c1, c4],
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Ψ2(X, τ ;u) =
∑(%)

√
(9−s(u)2)X<n≤

√
9X

ψ(τ + α(9X;n))(4.3)

� X23/73(logX)315/146,

by applying Lemma 1 (with 9X instead of X).
Now, we count the lattice points in

√
X ·(D(u)∩H) once again by writing

#((
√
X · (D(u) ∩H)) ∩ (τ + Z)2)

= − 2Ψ1(X, τ ;u)− 2Ψ2(X, τ ;u) + 2
∑(τ)

c1
√
X<n≤u

√
X

σ(X;n)

+ 2
∑(τ)

u
√
X<n≤(w(u)+3)

√
X

√
9X − (n− w(u)

√
X)2.

Hence, by applying the Euler summation formula (cf. [3], Theorem 1.3) to
the last two sums we obtain

(4.4)
1
2
·#((

√
X · (D(u) ∩H)) ∩ (τ + Z)2)

= − Ψ1(X, τ ;u)− Ψ2(X, τ ;u)

+X

u�

c1

s(t) dt+X

3�

√
9−s(u)2

√
9− t2 dt

+
u
√
X�

c1
√
X

s′
(

t√
X

)
ψ(t− τ) dt

−
√

9X�
√

(9−s(u)2)X

t√
9X − t2

ψ(t− τ + w(u)
√
X) dt.

Obviously,

(4.5)
u�

c1

s(t) dt+
3�

√
9−s(u)2

√
9− t2 dt =

1
2

area(D(u)∩H) (c1 ≤ u ≤ c4).

Concerning the first ψ-integral we note that (as X ≥ 16)

|s′(t/
√
X)| ≤ 2X1/4 (c1

√
X + 1 ≤ t ≤ c4

√
X − 1)

and σ(X; t) ≤ 3X1/4 when c1
√
X ≤ t ≤ c1

√
X+1 or c4

√
X−1 ≤ t ≤ c4

√
X.

Consequently, by applying the second mean value theorem to a large
integration interval of length �

√
X together with the estimate | � b

a
ψ(t) dt| ≤

1/8, and by applying the triangle inequality together with the estimate
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|ψ(·)| ≤ 1/2 to the remaining (one or two) short intervals of length ≤ 1, we
obtain (as X ≥ 16)

(4.6)
∣∣∣
u
√
X�

c1
√
X

s′(t/
√
X)ψ(t− τ) dt

∣∣∣ ≤ 4X1/4 (c1 ≤ u ≤ c4).

By a similar argument we obtain for every % ∈ R (as X ≥ 1/9)

(4.7)
∣∣∣∣

√
9X�

a

t√
9X − t2

ψ(t− %) dt
∣∣∣∣ ≤ (9X)1/4 (0 ≤ a ≤

√
9X).

Now we insert (4.5)–(4.7) into (4.4) and compare the result with (4.1); then
(4.2) follows from (4.3).

5. Proof of Theorem 1. In order to calculate #(K+(X)∩J) we define
circular rings E(X;u, v) for X →∞ and (u, v) ∈ ]0,∞[2 by

E(X;u, v) := {(x, y) ∈ R2 | x2 + y2 ≤ X2/(4u2)∧
(u2 − v2 − (x2 + y2))2 + 4u2v2 ≤ X2},

so that

#(K+(X) ∩ J) =
∑

u∈ 1
2N

∑(u)

v>0

#(E(X;u, v) ∩ (u+ Z)2).

Naturally, the double sum is finite, because (as we will see below)

(5.1) #{(u, v) ∈ N2 ∪ (1/2 + N0)2 | E(X;u, v) 6= ∅} ≤ 3X (X > 0).

In order to visualize the sets E(X;u, v) we introduce functions F , G, and
H depending on our parameter X by

G(X;u, v) := u2 − v2 −
√
X2 − 4u2v2 (u, v > 0 ∧ uv ≤ X/2),

H(X;u, v) := u2 − v2 +
√
X2 − 4u2v2 (u, v > 0 ∧ uv ≤ X/2),

and

F (X;u) :=
X2

4u2 (u > 0).

Then for u, v > 0,

E(X;u, v) = {(x, y) ∈ R2 | G(X;u, v) ≤ x2 + y2

≤ min{F (X;u),H(X;u, v)}}
when uv ≤ X/2, and E(X;u, v) = ∅ otherwise. Further, for uv ≤ X/2
we also have E(X;u, v) = ∅ when u < v and u2 + v2 > X (since then
H(X;u, v)<0), and also when u>c4

√
X (since then G(X;u, v)>F (X;u)).

In particular, this yields (5.1).
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Consequently, by (3.2) and (3.3) (and with area ∅ = 0) we have

#(K+(X) ∩ J) =
∑

0<u≤c4
√
X

u∈ 1
2Z

∑(u)

0<v≤η(X;u)

areaE(X;u, v)

+O(X96/73(logX)315/146),

with

η(X;u) :=

{
α(X;u) if 0 < u ≤ c2

√
X,

β(X;u) if u ≥ c2
√
X.

The O-term results from combining (5.1) with

(5.2) min{F (X;u),H(X;u, v)} � X (0 < u ≤ c4

√
X, 0 < v ≤ η(X;u)),

which is true as we will see below.
Now we distinguish the several cases when G > 0, G ≤ 0, H < F , G ≤

F ≤ H, and F < G, and note that for 0 < u ≤ c4
√
X and 0 < v ≤ η(X;u),

G(X;u, v) ≤ 0 ⇔ u2 + v2 ≤ X ⇔ v ≤ α(X;u),

H(X;u, v) ≤ F (X;u)

⇔ (u ≤ c1
√
X) ∨ (c1

√
X ≤ u ≤ c3

√
X ∧ v ≥ σ(X;u)),

which immediately implies (5.2), and

0 ≤ G(X;u, v) ≤ F (X;u)

⇔ (c2
√
X ≤ u ≤ c3

√
X ∧ α(X;u) ≤ v ≤ β(X;u))

∨ (c3
√
X ≤ u ≤

√
X ∧ α(X;u) ≤ v ≤ σ(X;u))

∨ (u ≥
√
X ∧ v ≤ σ(X;u)).

Thus we derive, as X →∞,

(5.3) #(K+(X) ∩ J) = π
3∑

i=1

Si(X)− π
6∑

i=4

Si(X) + πS7(X)

+O(X96/73(logX)315/146),

where the terms Si(X) (i = 1, 2, . . . , 7) are double sums of the form

(5.4) Si(X) :=
∑∗

yi<u≤zi

∑(u)

γi(u)<v≤δi(u)

fi(u, v),

with the summation limits yi, zi, γi(u), δi(u) and the functions fi given by
the following table:
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i yi zi γi(u) δi(u) fi(u, v)

1 0 c1
√
X 0 α(X;u) H(X;u, v)

2 c1
√
X c2

√
X σ(X;u) α(X;u) H(X;u, v)

3 c2
√
X c3

√
X σ(X;u) β(X;u) H(X;u, v)

4 c2
√
X c3

√
X α(X;u) β(X;u) G(X;u, v)

5 c3
√
X

√
X α(X;u) σ(X;u) G(X;u, v)

6
√
X c4

√
X 0 σ(X;u) G(X;u, v)

7 c1
√
X c4

√
X 0 σ(X;u) F (X;u)

Moreover, the star symbol on the outer sum of (5.4) means that u runs
through 1

2Z, i.e. we define for abbreviation
∑∗

y<u≤z
f(u) :=

∑

y<u≤z
u∈ 1

2Z

f(u) for f : [y, z]→ R.

Let us first investigate S7 which is only formally a double sum and ac-
tually is given by

S7(X) =
∑∗

c1
√
X<u≤c4

√
X

F (X;u)(σ(X;u) + ψ(u))

−
∑∗

c1
√
X<u≤c4

√
X

ψ(u+ σ(X;u))F (X;u).

The second sum, which is a weighted ψ-sum, is � X96/73(logX)315/146 by
applying Lemma 3 together with Abelian summation. By the Euler summa-
tion formula, the first sum equals

2
c4
√
X�

c1
√
X

F (X;u)σ(X;u) du− 1
2

c4
√
X�

c1
√
X

F (X;u) du

− 1
2
ψ(c1
√
X)F (X; c1

√
X) +

1
2
ψ(c4
√
X)F (X; c4

√
X)

− 1
2

c4
√
X�

c1
√
X

(
d

du
F (X;u)

)
ψ(u) du

+
c4
√
X�

c1
√
X

(
d

du
(F (X;u)σ(X;u))

)(
ψ(u) + ψ

(
u+

1
2

))
du.

The ψ-terms and the first ψ-integral are trivially� X. With the help of the
second mean value theorem and with regard to (4.6), we obtain
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c4
√
X�

c1
√
X

(
d

du
(F (X;u)σ(X;u))

)
(ψ(u) + ψ(u+ 1/2)) du� X5/4,

and hence we finally arrive at

(5.5) S7(X) = C4X
2 − C5X

3/2 +O(X96/73(logX)315/146),

where

C5 :=
1
2

c4�

c1

F (1;u) du =
c1√

8
,

and (with electronic support)

C4 := 2
c4�

c1

F (1;u)s(u) du = 0.325322 . . .

In order to settle the other six terms Si(X) (i = 1, . . . , 6) we apply the
Euler summation formula once to the inner sum and twice to the outer sum
of (5.4), which yields

(5.6) Si(X) = Vi(X) +Ri(X) +Qi(X) + Pi(X) + Ti(X) (i = 1, . . . , 6),

where for i = 1, . . . , 6 and y := yi, z := zi, γ(u) := γi(u), δ(u) := δi(u), and
f(u, v) := fi(u, v),

Vi(X) := 2
z�

y

δ(u)�

γ(u)

f(u, v) dv du,

Ri(X) := (ψ(y) + ψ(y + 1/2))
δ(y)�

γ(y)

f(y, v) dv

− (ψ(z) + ψ(z + 1/2))
δ(z)�

γ(z)

f(z, v) dv,

Qi(X) :=
∑∗

y<u≤z
ψ(γ(u) + u)f(u, γ(u))−

∑∗

y<u≤z
ψ(δ(u) + u)f(u, δ(u)),

Pi(X) :=
∑∗

y<u≤z

δ(u)�

γ(u)

∂f

∂v
(u, v)ψ(v + u) dv,

Ti(X) :=
z�

y

(
∂

∂u

δ(u)�

γ(u)

f(u, v) dv
)

(ψ(u) + ψ(u+ 1/2)) du.

Obviously, the terms Vi(X) (i = 1, . . . , 6) contribute to the main term in



92 G. Kuba

Theorem 1. We compute

(5.7)
3∑

i=1

Vi(X)−
6∑

i=4

Vi(X)

= 2X2
(( c1�

0

a(u)�

0

+
c2�

c1

a(u)�

s(u)

+
c3�

c2

b(u)�

s(u)

)
H(1;u, v) dv du

−
( c3�

c2

b(u)�

a(u)

+
1�

c3

s(u)�

a(u)

+
c4�

1

s(u)�

0

)
G(1;u, v) dv du

)
= C6X

2,

where (with electronic support) C6 := 0.692229 . . . , so that π(C4 + C6) =
C1/2.

As we sum up the terms Ri(X) we are lucky that all but one of the
twelve summands are annihilated, which is small wonder due to an obvious
geometric argument, and compute

(5.8)
3∑

i=1

Ri(X)−
6∑

i=4

Ri(X) = −1
2

√
X�

0

H(X; 0, v) dv = −1
3
X3/2,

which contributes to the second main term in Theorem 1 so that C3−2πC5−
2π/3 = C2.

In order to estimate the terms Qi(X) we note that f(u, 0) = u2±X and

f(u, α(X;u)) = 2u2 −X ± |2u2 −X|, f(u, β(X;u)) = u2 − X2

4u2 ,

f(u, σ(X;u)) =
X2

4u2 + 2u2 −
√

2X ± |2u2 −
√

2X|.

Obviously, f(u, 0) is increasing in u and � X. Further, in all cases where
f(u, α(X;u)), f(u, β(X;u)), or f(u, σ(X;u)) appear, the first and the sec-
ond function is increasing (or constant) in u and � X, whereas the third is
always a sum of two functions which are monotonic in u and � X. Conse-
quently, by applying Abelian summation together with Lemmas 1, 2, and 3,
respectively, we obtain

(5.9)
3∑

i=1

Qi(X)−
6∑

i=4

Qi(X)� X96/73(logX)461/146 (X →∞).

Now, in order to finish the proof it remains to estimate the terms Pi(X)
and Ti(X).

Concerning the terms Pi(X) we note that ∂f
∂v (u, v) = −2v ± 4κ(X;u, v)

with κ(X;u, v) := u2v/
√
X2−4u2v2. Obviously, κ(X;u, v) is increasing in v.

Further, κ(X;u, v) ≤ X3/4 when 0 ≤ v ≤ X/(2u)− 1, and
√
X2 − 4u2v2 ≤
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3X3/4 when X/(2u) − 1 ≤ v ≤ X/(2u), provided that X ≥ 5 and 0 < u ≤
c4
√
X. Hence, by applying the same trick as in the derivation of (4.6), we

obtain for i = 1, . . . , 6,
δi(u)�

γi(u)

κ(X;u, v)ψ(v + u) dv � X3/4 uniformly in yi < u ≤ zi.

Consequently, since v �
√
X, whence � δ(u)

γ(u) vψ(v + u) dv �
√
X, the trivial

estimation yields

(5.10)
3∑

i=1

Pi(X)−
6∑

i=4

Pi(X)� X5/4 (X →∞).

Concerning the terms Ti(X), for y < u < z we have

(5.11)
∂

∂u

δ(u)�

γ(u)

f(u, v) dv

=
δ(u)�

γ(u)

∂f(u, v)
∂u

dv − γ′(u)f(u, γ(u)) + δ′(u)f(u, δ(u)).

We compute
� ∂f(u, v)

∂u
dv = 2uv ± λ(X;u, v) + C,

with

λ(X;u, v) :=
X2

4u2 arcsin
(

2uv
X

)
− v

2u

√
X2 − 4u2v2.

We note that λ(X;u, 0) = 0 and

λ(X;u, β(X;u)) =
π

8
X2/u2 ≤ X (c2

√
X ≤ u ≤ c3

√
X).

Further we have 0 ≤ λ(X;u, σ(X;u)) ≤ X (c1
√
X ≤ u ≤ c4

√
X), with

λ(X;u, σ(X;u)) increasing on c1
√
X ≤ u ≤ c3

√
X and decreasing on

c3
√
X ≤ u ≤ c4

√
X, and finally we are lucky that 0 ≤ λ(X;u, α(X;u)) ≤

X (0 < u ≤
√
X), with λ(X;u, α(X;u)) increasing on 0 < u ≤ c2

√
X and

decreasing on c2
√
X ≤ u ≤

√
X.

Hence, by applying the second mean value theorem, we get

(5.12)
zi�

yi

δi(u)�

γi(u)

∂fi(u, v)
∂u

(ψ(u) + ψ(u+ 1/2)) dv du� X (i = 1, . . . , 6).

Concerning the boundary terms in (5.11) recall that f(u, α(X;u)) and
f(u, β(X;u)) are always increasing in u and� X, and that f(u, σ(X;u)) is
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always a sum of two functions which are monotonic in u and� X. Further,
|∂β(X;u)/∂u| ≤ 1 for c2

√
X ≤ u ≤ c3

√
X, and, by applying (4.7),

zi�

yi

∂α(X;u)
∂u

ψ(u+ %) du� X1/4 (% ∈ {0, 1/2})

for i = 1, 2, 4, 5 (actually, the integral is � 1 for i = 1, 2, 4), and, by (4.6),
zi�

yi

∂σ(X;u)
∂u

ψ(u+ %) du� X1/4 (% ∈ {0, 1/2})

for i = 2, 3, 5, 6 (actually, the integral is � 1 for i = 3, 5).
Consequently, by the second mean value theorem, for 1 ≤ i ≤ 6,

(5.13)
zi�

yi

δi(u)�

γi(u)

(−γ′i(u)fi(u, γi(u)) + δ′i(u)fi(u, δi(u)))ψ(u+ %) du

� X5/4 (% ∈ {0, 1/2}).
Thus, via (5.11) and combining (5.12) and (5.13), we obtain

(5.14)
3∑

i=1

Ti(X)−
6∑

i=4

Ti(X)� X5/4 (X →∞).

Now collect (5.7)–(5.10), and (5.14), then insert (5.5) and (5.6) into
(5.3), and finally insert (5.3) and (3.4) into (2.1). This concludes the proof
of Theorem 1. Additionally, from the execution of the proof it is clear that
C1X

2 equals the volume of the domain K(X).

Final remark. In the meantime Huxley has announced a further im-
provement concerning the circle problem. Hence one may expect that the
upper bound X96/73(logX)461/146 in Theorem 1 (and also in Theorems
1 and 2 of the first part [4] of the present paper) can be sharpened to
X547/416(logX)26947/8320. A further improvement independent of the circle
problem seems unrealistic. For instance, an application of the Poisson sum-
mation formula to the non-convex body K(X) would lead to an error term
no better than O(X10/7).
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