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1. Introduction. Let q = e2πiτ and

G(q) =
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 · · · .

In 1995, inspired by page 366 of Ramanujan’s Lost Notebook [8], H. H. Chan
[5] derived several new relations satisfied by G(q). For example, he showed
that

G3(q) = G(q3)
1 − G(q3) + G2(q3)

1 + 2G(q3) + 4G2(q3)
.(1.1)

From (1.1), Chan constructed an algorithm for computing eπ. This iteration
prompted F. G. Garvan to ask if there were any iteration to π which can
be derived from the study of G(q). In this paper, we will show that such an
iteration exists. We will also derive the following series for 1/π:

(1.2)
1

π
=

3
√

3(3 − 2
√

2)

2

∞∑

k=0

Ck

(
k + 1 − 2

3

√
2

)(
−1 +

3

4

√
2

)k

where

(1.3) Ck =
k∑

m=0

{ m∑

j=0

(
m

j

)3 k−m∑

i=0

(
k − m

i

)3}
.

The proof of (1.2) involves the identity

G3(e−2π/
√

6) = −1 +
3

4

√
2.

Remarks. 1. The function G(q) can be expressed as

η3(6τ)η(τ)

η3(3τ)η(2τ)
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where η(τ) is defined by

(1.4) η(τ) = q1/24

∞∏

k=1

(1 − qk), q = e2πiτ .

However, we will not use this fact in this article.

2. The series (1.2) converges slowly to 1/π. For every five terms in the
series, we obtain roughly one additional correct decimal place for the decimal
expansion of 1/π.

2. A triplication formula for G(q) and a new iteration for 1/π.

In [1], C. Adiga, T. Kim, M. S. M. Naika and H. S. Madhusudhan gave a
new proof of (1.1) by first proving the identity

(2.1) 1 − 3
G(q3)

1 + G(q3)
=

(
1 − 9

G3(q)

1 + G3(q)

)1/3

.

This identity allows one to write G(q3) in terms of G(q), namely,

(2.2) G(q3) =
1 − H(q)

2 + H(q)
,

with

H(q) =

(
1 − 8G3(q)

1 + G3(q)

)1/3

.

The above triplication formula for G(q) is analogous to the Borweins–Rama-
nujan triplication formula for the cubic singular modulus defined by

(2.3)
1

α(q)
= 1 +

1

27

(
η(τ)

η(3τ)

)12

,

where q = e2πiτ and η(τ) is defined in (1.4). In the case of α(q), the tripli-
cation formula is given by

(2.4) α(q3) =

(
1 − 3

√
1 − α(q)

1 + 2 3

√
1 − α(q)

)3

.

Two rapidly convergent sequences for π can be constructed from (2.4). These
iterations are given as follows:

The Borweins Iteration [4]. Let t0 = 1/3, s0 = (
√

3 − 1)/2,

sn =
1 − (1 − s3

n−1)
1/3

1 + 2(1 − s3
n−1

)1/3
, tn = (1 + 2sn)2tn−1 − 3n−1((1 + 2sn)2 − 1).

Then t−1
n converges cubically to π.
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Chan’s iteration [7]. Let k0 = 0, s0 = 1/21/3,

sn =
1 − (1 − s3

n−1)
1/3

1 + 2(1 − s3
n−1

)1/3
, kn = (1 + 2sn)2kn−1 + 8 · 3n−2

√
3 sn

1 − s3
n

1 + 2sn
.

Then k−1
n converges cubically to π.

Since the above iterations are constructed from (2.4), it is therefore nat-
ural to construct a new cubic iteration tending to π from (2.2). In the
following two sections, we will establish the following result:

Theorem 2.1. Let k0 = 0 and s0 =
3

√
3
√

2

4
− 1. Set

sn =
(1 + s3

n−1)
1/3 − (1 − 8s3

n−1)
1/3

2(1 + s3
n−1

)1/3 + (1 − 8s3
n−1

)1/3
.

If

kn =
(1 + 2sn + 4s2

n)(1 + sn)2

1 − sn + s2
n

kn−1

+
2 · 3n−1

√
6

sn(1 − 2sn)(8s4
n − 10s3

n + 6s2
n + 11sn + 5)

1 + s3
n

,

then k−1
n converges cubically to π.

Remark. The values of 1/k2, 1/k3 and 1/k4 give π correct to 7, 27 and
86 decimal places, respectively.

3. New identities satisfied by G(q). We first relate G(q) with the
Borweins’ cubic singular modulus α(q) (see (2.3)) and deduce results on
G(q) using Ramanujan–Borweins’ theory of elliptic functions to the cubic
base [3].

Lemma 3.1. Let

ϕ(q) =
∞∑

n=−∞

qn2

, X = G3(q),

a(q) =
∞∑

m,n=−∞

qm2+mn+n2

, z =
ϕ3(−q3)

ϕ(−q)
.

Then

a(q) = z(1 + 4X),(3.1)

α(q) = 27
X

(1 + 4X)3
.(3.2)

Proof. From [2, p. 460, Entry 3(ii)], we find that

a(q2) =
ϕ4(−q) + 3ϕ4(−q3)

4ϕ(−q)ϕ(−q3)
= z

(
1

4

ϕ4(−q)

ϕ4(−q3)
+

3

4

)
.
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Since [2, p. 347]

(3.3)
ϕ4(−q)

ϕ4(−q3)
= 1 − 8X,

we deduce that

(3.4) a(q2) = z(1 − 2X).

On the other hand, we know that [3, p. 4189]

a(q) = 3
ϕ3(−q3)

ϕ(−q)
− 2a(q2).

Hence, by (3.4), we find that

a(q) = z(1 + 4X),

which yields (3.1).
To prove (3.2), we recall the identity [2, p. 345, Entry 1(iv)]

1 +
1

27

(
η(τ)

η(3τ)

)12

=
(1 + 4X)3

27X
.

Using (2.3), we immediately deduce (3.2).

Corollary 3.2. The functions z and X satisfy the following differential

equations:

(3.5) q
dX

dq
= z2(X − 7X2 − 8X3).

Proof. We recall the differential equation satisfied by a := a(q) and
α := α(q) [6, (4.7)]:

(3.6) q
dα

dq
= a2α(1 − α).

Differentiating (3.2) with respect to q and using (3.6) and (3.1), we imme-
diately deduce (3.5).

4. Proof of Theorem 2.1. We begin our proof with the following
transformation formula:

(4.1) (1 + X(e−2π/
√

6t))(1 + X(e−2π
√

t/6)) = 9/8.

This identity can be proved by rearranging the identity [1]

(4.2)

(
1 +

1

X(e−2π/
√

6t)

)
(1 − 8X(e−2π

√
t/6)) = 9.

Differentiating (4.1) with respect to t and using (3.5), we find that

(4.3) tZ(e−2π
√

t/6)X(e−2π
√

t/6)(1 − 8X(e−2π
√

t/6))

= Z(e−2π/
√

6t)X(e−2π/
√

6t)(1 − 8X(e−2π/
√

6t)),
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where
Z(q) = z2.

From (4.2), we have

X(e−2π/
√

6t) =
1

9
(1 + X(e−2π/

√
6t))(1 − 8X(e−2π

√
t/6)),(4.4)

X(e−2π
√

t/6) =
1

9
(1 + X(e−2π

√
t/6))(1 − 8X(e−2π/

√
6t)).(4.5)

Substituting (4.4) and (4.5) into (4.3), we find that

(4.6) tZ(e−2π
√

t/6)(1 + X(e−2π
√

t/6)) = Z(e−2π/
√

6t)(1 + X(e−2π/
√

6t)).

This transformation formula motivates us to set

A(q) = Z(q)(1 + X(q)).

We can then express (4.6) as

(4.7) tA(e−2π
√

t/6) = A(e−2π/
√

6t).

Define

(4.8) κ(t) =
1

πA(e−2π
√

t/6)
− 2

√
t

6

Ã

A2
(e−2π

√
t/6),

where

f̃ := q
df

dq
.

Differentiating both sides of (4.7) with respect to t, we find that

(4.9)

√
t

6

Ã

A
(e−2π

√
t/6) +

√
1

6t

Ã

A
(e−2π/

√
6t) =

1

π
.

Rewriting (4.9) in terms of κ(t) yields

(4.10) κ(t) + tκ(1/t) = 0.

When t = 1, (4.10) implies that

(4.11) κ(1) = 0.

Next, let

(4.12) MN (q) = A(q)/A(qN ).

Setting q = e−2π
√

t/6 and differentiating (4.12) with respect to t, we find
using (4.8) that

(4.13) κ(N2t)

= 2

√
t

6

M̃N

MN
(e−2π

√
t/6)

1

A(e−2π
√

N2t/6)
− MN (e−2π

√
t/6)κ(t).

Note that κ(N2lt) tends to 1/π at the rate of order N as l tends to ∞.
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In order to obtain a cubic iteration tending to 1/π from (4.13), let N = 3.
If y = G(q3) then from [5, (2.9)], we have

(4.14)
ϕ(−q9)

ϕ(−q)
=

1

1 − 2y
.

Using (3.3) and (4.14), we deduce that

Z(q)

Z(q3)
=

ϕ6(−q3)

ϕ2(−q)

ϕ2(−q3)

ϕ6(−q9)
=

ϕ8(−q3)

ϕ8(−q9)

ϕ2(−q9)

ϕ2(−q)

=

(
1 − 8y3

1 − 2y

)2

= (1 + 2y + 4y2)2.

Hence,

(4.15) M3 = (1 + 2y + 4y2)2
1 + X

1 + y3
=

(1 + 2y + 4y2)(1 + y)2

1 − y + y2
,

by (1.1).

Using (3.5) with q replaced by q3, we have

ỹ = A(q3)y(1 − 8y3).

This allows us to differentiate both sides of (4.15) and conclude that

(4.16)
1

M3(q)A(q3)
M̃3(q) =

(1 − 2y)y(8y4 − 10y3 + 6y2 + 11y + 5)

(y + 1)(1 − y + y2)
.

We are now ready to construct our sequence kn. Let sn = G(e−2π
√

32n/6)
and kn = κ(32n). Writing (4.13) in terms of sn and kn, we find that

kn =
(1 + 2sn + 4s2

n)(1 + sn)2

1 − sn + s2
n

kn−1(4.17)

+
2 · 3n−1

√
6

sn(1 − 2sn)(8s4
n − 10s3

n + 6s2
n + 11sn + 5)

1 + s3
n

.

From (4.11), we know that the initial value of kn is k0 = 0. By letting t = 1
in (4.1), we find that the initial value of s0 is

(4.18) s0 = G(e−2π/
√

6) = (3
√

2/4 − 1)1/3.

We can then evaluate sn from sn−1 using (2.2). Substituting sn into (4.17),
we construct the sequence {kn} which converges cubically to 1/π and this
completes the proof of Theorem 2.1.

5. A series for 1/π. Set t = 1 in (4.9). We find that

(5.1)
Ã

A
(e−2π/

√
6) =

√
6

2π
.
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Using the relations (3.1) and (3.2) in the differential equation (1)

α(1 − α)
d2a

dα2
+ (1 − 2α)

da

dα
− 2

9
a = 0,

we deduce that

(5.2) X(8X − 1)(1 + X)
d2z

dX2
+ (24X2 + 14X − 1)

dz

dX
+ 2(1 + 4X)z = 0.

If

z =
∞∑

k=0

ckX
k,

then from (5.2), we know that ak satisfies the recurrence

k2ck − (7k2 − 7k + 2)ck−1 − 8(k − 1)2ck−2 = 0.

The solution of the above recurrence with c0 = 1, c1 = 2 is given by [9,
Table 2] (2)

ck =

k∑

j=0

(
k

j

)3

.

Hence,

z =
∞∑

k=0

k∑

j=0

(
k

j

)3

Xk.

Therefore,

Z = z2 =
∞∑

k=0

CkX
k,

where Ck is given by (1.3), or

(5.3) A =
∞∑

k=0

CkX
k(1 + X).

From (5.3), we deduce that

(5.4)
Ã

A
=

1

A

dA

dX
X̃ = (1 − 8X)

∞∑

k=0

CkX
k(k(1 + X) + X),

by (3.5).

Set q = e−2π/
√

6 in (5.4). From (4.18), we know that

X(e−2π/
√

6) = x1 = −1 + 3
√

2/4.

(1) See [6] for a derivation of this differential equation and its solutions.

(2) According to H. A. Verrill, the solution to the recurrence is due to D. Zagier.
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Hence, we have

(1 − 8x1)
∞∑

k=0

Ckx
k
1(k(1 + x1) + x1) =

√
6

2π
.

Simplifying the above yields (1.2).

6. Concluding remarks. 1. We have seen here that (4.1) plays an
important role for our determination of A(q). In general, if we have a mod-
ular function (i.e. a Hauptmodul) associated to a congruence subgroup Γ
of SL2(Z) with genus zero, we need to determine a “nice” modular form of
weight 2 on Γ in order to derive new series for 1/π. It is therefore possible to
derive new series for 1/π associated with the Rogers–Ramanujan continued
fraction.

2. We can also obtain another cubic iteration tending to 1/π if we use
the alternative formula [1]

(
1 +

1

G3(−e−πt)

)(
1 +

1

G3(−e−π/t)

)
= 9.

We leave this as an exercise for the readers.
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