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1. Introduction. For an integer ν > 1, we denote by P (ν) and ω(ν)
the greatest prime factor of ν and the number of distinct prime divisors of
ν, respectively. Further we put P (1) = 1 and ω(1) = 0. Let n, d, k, b, y be
positive integers such that b is square free, d > 1, k ≥ 3 and P (b) ≤ k. We
consider the equation

n(n+ d) . . . (n+ (k − 1)d) = by2 in n, d, k, b, y with P (b) ≤ k.(1)

For an account of results on (1), we refer to [8] and [9]. Shorey and Tijdeman
[10] proved that (1) with gcd(n, d) = 1 implies that k is bounded by an
effectively computable number depending only on ω(d). Further Shorey [8,
p. 489] showed that the assumption gcd(n, d) = 1 can be relaxed to d -n
in the preceding result. On the other hand, we observe that (1) may have
infinitely many solutions in the case d |n. Next Saradha and Shorey [7]
showed that (1) with b = 1 and k ≥ 4 is not possible whenever ω(d) = 1.
It has also been shown in [7] that (1) with P (b) < k, d -n, ω(d) = 1 and
k ≥ 10 does not hold. In this paper, we prove

Theorem 1. Let 4 ≤ k ≤ 9, P (b) < k and ω(d) = 1 such that d -n.
Then (1) does not hold unless n = 75, d = 23, k = 4, b = 6, y = 4620.

The case k = 3 remains open even when b = 1. Next we consider (1)
with P (b) = k. Saradha and Shorey [7] showed that (1) with P (b) = k,
gcd(n, d) = 1 and ω(d) = 1 implies that k ≤ 29. We prove

Theorem 2. Let 7 ≤ k ≤ 29 and P (b) = k. Assume that ω(d) = 1 and
d -n. Then (1) does not hold.

As stated above, the assumption d -n is necessary in the above theorems.
The case k = 5 in Theorem 2 remains unresolved. The proofs of Theorems
1 and 2 depend on the theory of linear forms in logarithms. This is a new
element in the proof. By combining the results stated above, we have
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Theorem 3. Let k 6= 3, 5. Then (1) with ω(d) = 1 and d -n implies that
n = 75, d = 23, k = 4, b = 6, y = 4620.

Fermat (see [4, p. 21]) stated that there are no four squares in an
arithmetic progression and Euler (see [3, p. 635]) proved that (1) with
gcd(n, d) = 1, k = 4, b = 1 is not possible. Further Obláth [5] showed
that (1) with gcd(n, d) = 1, k = 5, b = 1 does not hold. We obtain the
following extension of the result of Obláth.

Theorem 4. Equation (1) with gcd(n, d) = 1, k = 5, P (b) < k does not
hold.

We compute using SIMATH the Mordell group of an elliptic curve for
the proof of Theorem 4. By (1), we write

n+ id = aix
2
i , P (ai) ≤ k, ai square free for 0 ≤ i < k,(2)

where xi are positive integers. Further we put R = {a0, a1, . . . , ak−1}.
We thank Professor Frits Beukers for his remarks. We also thank the

referee for his comments on an earlier draft of this paper.

2. Lemmas. We start with an estimate of Baker and Wüstholz [2] from
the theory of linear forms in logarithms. The height of an algebraic number
is defined as the maximum of the absolute values of the coefficients of its
minimal polynomial with relatively prime integer coefficients. Let α1, . . . , αn
be algebraic numbers different from 0, 1 and let logα1, . . . , logαn be the
principal logarithms. Let K be the field generated by α1, . . . , αn over Q and
d be the degree of K over Q. Assume that the heights of α1, . . . , αn do not
exceed A1, . . . , An, respectively, where Ai ≥ e for 1 ≤ i ≤ n. Let b1, . . . , bn
be rational integers of absolute values not exceeding B where B ≥ e. We
put

Λ = b1 logα1 + . . .+ bn logαn.

We have

Lemma 1. If Λ 6= 0, then

log |Λ| > −(16nd)2(n+2) logA1 . . . logAn logB.

The next result is due to Baker and Davenport [1].

Lemma 2. Let θ, β, C be real numbers with C > 1. Suppose K > 6. For
any positive integer M , let p and q be integers satisfying

1 ≤ q ≤ KM, |θq − p| < 2(KM)−1.

Then, if
‖qβ‖ ≥ 3K−1,
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there is no solution of
|mθ − n+ β| < C−m

in the range
logK2M

logC
< m < M.

Now we apply Lemmas 1 and 2 to solve certain simultaneous Pell’s equa-
tions as in Baker and Davenport [1].

Lemma 3. Let δ ∈ {−1, 1}. Consider the following set of simultaneous
Pell’s equations:

X2 + 2 = 6Y 2, (X + δ)2 + 2 = 3Z2;(3)

X2 − 6 = 3Y 2, (X + δ)2 − 2 = 2Z2;(4)

X2 − 3 = 6Y 2, (X + 2δ)2 + 1 = 2Z2;(5)

X2 + 2 = 3Y 2, (X + δ)2 + 2 = 2Z2;(6)

X2 + 4 = 2Y 2, (X + 2δ)2 + 6 = 6Z2.(7)

These equations have no solutions in positive integers X,Y,Z other than
X = 2, Y = 1, Z = 1 with δ = −1 for (3), X = 9, Y = 5, Z = 7 with δ = 1
and X = 3, Y = 1, Z = 1 with δ = −1 for (4), X = 3, Y = 1, Z = 1 with
δ = −1 for (5), X = 1, Y = 1, Z = 1 with δ = −1 for (6), X = 2, Y = 2,
Z = 1 and X = 14, Y = 10, Z = 5 with δ = −1 for (7).

Proof. We follow Baker and Davenport [1] for the proof. The compu-
tations required for the proof are carried out using MATHEMATICA. By
factorising the above equations, it is enough to solve the following exponen-
tial equations in non-negative integers m and n:

(1 +
√

3)(2 +
√

3)m + (1−
√

3)(2−
√

3)m − (2 +
√

6)(5 + 2
√

6)n

− (2−
√

6)(5− 2
√

6)n = 2δ,

(2 +
√

2)(3 + 2
√

2)n + (2−
√

2)(3− 2
√

2)n − (3−
√

3)(2 +
√

3)m

− (3 +
√

3)(2−
√

3)m = 2δ,

(1 +
√

2)(3 + 2
√

2)m + (1−
√

2)(3− 2
√

2)m − (3 +
√

6)(5 + 2
√

6)n

− (3−
√

6)(5− 2
√

6)n = 4δ,√
2(3 + 2

√
2)n −

√
2(3− 2

√
2)n − (1 +

√
3)(2 +

√
3)m

− (1−
√

3)(2−
√

3)m = 2δ,

(2 + 2
√

2)(3 + 2
√

2)m + (2− 2
√

2)(3− 2
√

2)m −
√

6(5 + 2
√

6)n

+
√

6(5− 2
√

6)n = −4δ.

We check that m > n. By Lemma 1, we derive that m < 1026. Next we
apply Lemma 2 with M = 1026 and K = 1013 to conclude that m < 90. By
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a computer search we find that all the solutions are given in the statement
of Lemma 3.

For the further proofs it may be convenient to mention some standard
arguments which are used repeatedly, sometimes without further reference.
A square cannot be congruent to 2 modulo 3. If d is odd, it cannot happen
that ai = ai+2 = 1 since it would follow that x2

i+2 − x2
i = 2d, whereas the

difference of two squares can never be 2 modulo 4. If p divides n, we see
from (2) that

(
id
p

)
=
(
ai
p

)
. In particular, if p = 7 and ai ∈ {1, 2, 3, 6}, then

3 divides ai if and only if
(
id
p

)
= −1. Also, if 3 divides n+ id, then neither

ai−1 = ai+1 nor ai+1 = ai+2 is possible.

As stated in Section 1, we have the following result of Euler and we
include the proof for the sake of completeness.

Lemma 4. Equation (1) with k = 4, b = 1 is not possible.

Proof. The proof depends on the result that the equation

(8) x4 − x2y2 + y4 = z2 in positive integers x, y, z with gcd(x, y) = 1

has no solution other than x = y = z = 1 (see Mordell [4, p. 20]). Assume
(1) with k = 4 and b = 1. There is no loss of generality in assuming that
gcd(n, d) = 1. Then we see from (2) that a0 = 3, a1 = 2, a2 = 1, a3 = 6
or a0 = 6, a1 = 1, a2 = 2, a3 = 3 or a0 = a1 = a2 = a3 = 1. The last
possibility is excluded since it implies (8) with z > 1 (see Mordell [4, p. 21]).
Next we exclude the first possibility and the proof for the second is similar.
By using 3(n + d) = 2n + (n + 3d), we observe that x2

1 = x2
0 + x2

3. Since
x0 is odd and x3 is even, we derive that x0 = r2 − s2 and x3 = 2rs where
r > s > 0 are integers such that gcd(r, s) = 1 and r 6≡ s (mod 2). Then
d = 2x2

3 − x2
0 = 10r2s2 − r4 − s4 and x2

2 = 3x2
0 + 2d = r4 + s4 + 14r2s2.

Next we write x = r + s, y = r − s and we observe that x > y > 0 with
gcd(x, y) = 1 since gcd(r, s) = 1 such that r 6≡ s (mod 2). Then we obtain
(8) with z = x2 > 1 and this is a contradiction.

There are infinitely many pairs (n, d) of relatively prime integers sat-
isfying (1) with k = 4 (see Tijdeman [11]). On the other hand, we apply
Lemma 3 to show that there is no pair (n, d) of relatively prime integers other
than (75, 23) satisfying (1) with k = 4 whenever d is a power of an odd prime.

Lemma 5. Let d be an odd prime power. Then (1) with gcd(n, d) = 1,
k = 4 implies that n = 75, d = 23, b = 6, y = 4620.

Proof. We observe that R ⊂ {1, 2, 3, 6}. By Lemma 4, we derive that
|R| 6= 1, 4. If |R| = 2, we again use Lemma 4 to observe that exactly three
ai’s are equal to 1 implying that d is even. Thus |R| = 3. Then at least one
ai is divisible by 3. Suppose that 3 divides a0 and a3. Then

(
a1
3

)
=
(
d
3

)
and
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(
a2
3

)
= −

(
d
3

)
. So either a1 = 1, a2 = 2 or a1 = 2, a2 = 1. Thus

a0 = 3, a1 = 2, a2 = 1, a3 = 3 or a0 = 3, a1 = 1, a2 = 2, a3 = 3.

From the first possibility, we observe from (2) that

n = 3x2
0, n+ d = 2x2

1, n+ 2d = x2
2, n+ 3d = 3x2

3.(9)

So d = x2
3−x2

0 implying d = x3 +x0 and x3−x0 = 1 since d is an odd prime
power. Thus d = 2x0 + 1 and we obtain from (9) the following equations:

X2 + 2 = 6Y 2, (X + 1)2 + 2 = 3Z2

with X = 3x0 + 1, Y = x1, Z = x2. This is (3) of Lemma 3 with δ = 1.
Thus by Lemma 3 we conclude that this case is not possible. From the other
possibility we get the following equations:

X2 + 2 = 6Y 2, (X − 1)2 + 2 = 3Z2

with X = 3x0 +2 ≥ 5, Y = x2, Z = x1. This is (3) of Lemma 3 with δ = −1,
which is not possible.

Thus we may suppose that 3 divides exactly one ai. Let 3 | a0. We apply
Legendre symbols as above to get the following two possibilities:

a0 = 3, a1 = 2, a2 = 1, a3 = 1 or a0 = 3, a1 = 2, a2 = 1, a3 = 2.

The first one gives the equations

X2 − 6 = 3Y 2, (X + 1)2 − 2 = 2Z2

with X = x2 − 2, Y = x0, Z = x1. Now we apply Lemma 3 with (4), δ = 1
to conclude that x2 = 11, x0 = 5, x1 = 7. Thus n = 75, d = 23, b = 6 and
y = 4620. The second possibility gives

X2 − 3 = 6Y 2, (X + 2)2 + 1 = 2Z2

with X = 2x1 − 1, Y = x0, Z = x2 contradicting Lemma 3.
We proceed as above to observe that 3 | a1 gives (6) with δ = 1 such that

X = x0 + 1, Y = x1, Z = x2 or X = 3x0 + 1, Y = 3x1, Z = 3x2; 3 | a2 gives
(6) with δ = −1 such that X = x0 + 2, Y = x2, Z = x1 or X = 3x0 + 2,
Y = 3x2, Z = 3x1; 3 | a3 gives (4) with δ = −1, X = x0 + 3, Y = x3, Z = x2
or (5) with δ = −1, X = 2x0 + 3, Y = x3, Z = x1. This is not possible by
Lemma 3.

Lemma 6. Let 11 ≤ k ≤ 29 be prime. Then (1) with gcd(n, d) = 1,
P (b) = k and |R| ≥ k − 1 does not hold.

Proof. Let k = 29. Then |R| ≥ 28. We observe that the primes 29, 23,
19, 17, 13, 11, 7 divide at most 1, 2, 2, 2, 3, 3, 5 distinct ai’s respectively.
Thus there are at least 10 distinct ai’s composed only of primes 2, 3 and 5,
a contradiction.

Thus 11 ≤ k ≤ 23. If k = 17, 19, 23 and |R| = k, we observe that the
number of distinct ai’s composed only of 2, 3, 5 is at least 9. If k = 11, 13
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and |R| = k, we see that the number of distinct ai’s composed of 2, 3 is at
least 5. This is not possible. Therefore |R| = k − 1.

Let k = 23. There are exactly 8 distinct ai’s composed of 2, 3 and 5.
Therefore the primes 23, 19, 17, 13, 11, 7 divide exactly 1, 2, 2, 2, 3, 4
distinct ai’s, respectively, such that none of these ai’s is divisible by more
than one of the above primes. Now we observe that 11 divides a0, a11, a22.
Therefore 7 cannot divide four ai’s. This is a contradiction.

Let k = 19. Now the primes 19, 17, 13, 11, 7, 5 divide 1, 2, 2, 2, 3, 4
distinct ai’s, respectively. Moreover these ai’s are divisible by only one of
the primes given above. Let 17 divide a0, a17. If 5 divides a1, a6, a11, a16, we
observe that 7 cannot divide three ai’s, a contradiction. Thus 5 divides a3,
a8, a13, a18. Then 7 divides a2, a9, a16; 13 divides a1, a14; 11 divides a4, a15.
Thus one of the elements a5, a6, a7, a10, a11, a12 is divisible by 19 and the
others are composed only of 2 and 3. Further we observe that
(
a5

7

)
=
(
a7

7

)
=
(
a12

7

)
= −

(
d

7

)
,

(
a6

7

)
=
(
a10

7

)
=
(
a11

7

)
=
(
d

7

)
.

Let 19 divide a5. Then either a7, a12 ∈ {3, 6} or a6, a10, a11 ∈ {3, 6}, a
contradiction. The possibilities of 19 dividing a6, a7, a10, a11, a12 are excluded
similarly. Hence 17 divides a1, a18. If 5 divides a2, a7, a12, a17, then 7 cannot
divide three ai’s, a contradiction. Therefore 5 divides a0, a5, a10, a15. This is
excluded as in the case 17 dividing a0, a17 and 5 dividing a3, a8, a13, a18.

Let k = 17. The proof depends again as in the cases k = 23 on that there
are exactly 8 distinct ai’s composed only of 2, 3 and 5. We observe that 5
divides a0, a5, a10, a15 or a1, a6, a11, a16. In the former possibility, 7 divides
a2, a9, a16 and 13 divides a1, a14, which is not possible since 11 cannot divide
two ai’s. The latter possibility is excluded similarly.

Let k = 11, 13. There are exactly four distinct ai’s composed only of 2
and 3. First we consider the case k = 13. Then the primes 13, 11, 7, 5 divide
exactly 1, 2, 2, 3 distinct ai’s respectively. Thus 11 divides a0, a11 or a1, a12.
Let 11 divide a0, a11. Then 5 divides a2, a7, a12 and 7 divides a1, a8 or a3,
a10. Let 7 divide a1, a8. Then one of a3, a4, a5, a6, a9, a10 is divisible by 13
and others are composed of 2 and 3. Considering Legendre symbols modulo
7 and using |R| = 12, we see that a4, a6 ∈ {1, 2}. Further, if 13 divides a3,
then a5, a9, a10 ∈ {3, 6}, a contradiction. Similarly we see that 13 cannot
divide any of a5, a9, a10. The other possibility of 7 dividing a3, a10 leads to
a similar contradiction. The case of 11 dividing a1, a12 is excluded similarly.

Let k = 11. Then 5 divides a0, a5, a10. Further 7 divides a1, a8 or a2, a9.
Let 7 divide a1, a8. Then 11 divides one of a2, a3, a4, a6, a7, a9 and the re-
maining ones are divisible by 2 and 3 only. Let 11 divide a6. Then we use Leg-
endre symbols modulo 7 as in the case k = 19 to derive that a4, a7 ∈ {3, 6}
and a2, a3, a9 ∈ {1, 2}. Thus

(
a3
3

)
=
(
a9
3

)
= −

(
d
3

)
. Then a3 = a9 = 1 or
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a3 = a9 = 2. Let a3 = a9 = 1. Then a2 = 2, implying that n is even and so d
is odd. Thus n+3d and n+9d are odd squares, hence congruent to 1 modulo
8. This implies that 4 | 6d, a contradiction. Therefore a3 = a9 = 2. Further(
a3
11

)
= −

(
d
11

)
and

(
a9
11

)
=
(
d
11

)
since 11 divides a6. This is not possible. Let

11 divide a3. Then a2, a9 ∈ {3, 6} or a4, a6, a7 ∈ {3, 6} by using Legendre
symbols modulo 7. This is not possible. The possibilities of 11 dividing a4,
a7, a9 are excluded similarly to 11 | a3. If 11 divides a2, then a3, a9 ∈ {3, 6}
and a4, a6, a7 ∈ {1, 2}. Hence a4 = a6 = 1, a7 = 2 since either a3 or a9
is 6. Now we observe that n + 4d and n + 6d are odd squares. Therefore 8
divides 2d, which is not possible. Hence 7 does not divide a1a8. Similarly we
conclude that 7 does not divide a2a9.

The next result is due to Pocklington [6].

Lemma 7. The equation

r4 + s4 + 10r2s2 = z2(10)

does not have any solution in positive integers r, s, z with gcd(r, s) = 1 and
r 6≡ s (mod 2).

Next we prove Theorem 4 apart from two exceptional cases.

Lemma 8. Equation (1) with gcd(n, d) = 1, k = 5 and P (b) < k implies
that either

n = x2
0, n+d = 3x2

1, n+2d = 2x2
2, n+3d = x2

3, n+4d = 2x2
4(11)

or

n = 2x2
0, n+d = x2

1, n+2d = 2x2
2, n+3d = 3x2

3, n+4d = x2
4.(12)

Proof. Assume (1) with gcd(n, d) = 1, k = 5 and P (b) < k. Let d be
even. Then ai = 1 or 3. If a0 = 3, then a1 = a2 = 1, which is not possible
since 1 =

(
a1
3

)
=
(
d
3

)
and 1 =

(
a2
3

)
=
(2d

3

)
= −

(
d
3

)
. Thus a0 6= 3. Similarly

we observe that none of the ai’s is equal to 3. This contradicts Lemma 4.
Thus d is odd. Let 3 divide d. Then ai = 1 or 2. This is not possible since
there are at least two odd terms. Thus d ≡ ±1 (mod 6). We assume that
d ≡ −1 (mod 6) and we show that (11) holds. Since (12) is the mirror image
of (11), it can be shown similarly that d ≡ 1 (mod 6) implies (12). Thus we
restrict ourselves to the case d ≡ −1 (mod 6).

Now we observe that none of the n + id with 0 ≤ i ≤ 4 is congruent to
5 (mod 6). Therefore n ≡ 4 (mod 6) since d ≡ −1 (mod 6). We exclude all
the possibilities other than (11) and

a0 = 1, a1 = 3, a2 = 2, a3 = 1, a4 = 1,(13)

a0 = 1, a1 = 3, a2 = 2, a3 = 1, a4 = 3,(14)

a0 = 1, a1 = 3, a2 = 2, a3 = 1, a4 = 6.
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The last possibility is excluded by Lemma 4. Next we consider (13). We
observe that x0, x4 are even, x2 is odd and

x2
2 =

(
x0

2

)2

+
(
x4

2

)2

.

Let 4 |x0. Then n + 4d ≡ 4 (mod 8) and n + d ≡ 3 (mod 8), implying that
d ≡ 3 (mod 8). Then 2x2

2 = n+ 2d ≡ 6 (mod 8), which is not possible. Thus
x0/2 is odd and x4/2 is even. Then

x0

2
= r2 − s2,

x4

2
= 2rs, x2 = r2 + s2

where r > s are positive integers such that gcd(r, s) = 1 and r 6≡ s (mod 2).
Now we use the relation 2x2

3 = 2x2
2+x2

4 to conclude that r4+s4+10r2s2 = x2
3,

which is not possible by Lemma 7. Finally, assume (14). Then d = x2
4 − x2

1
= 3x2

1− x2
0, implying that 4x2

1 = x2
0 + x2

4. Also 4x2
2 = x2

0 + 3x2
4. This implies

(10) again as above, which is not possible by Lemma 7.

The possibilities (11) and (12) are ruled out by using the following result.

Lemma 9. If x and y are rational numbers satisfying

y2 = x3 − 3504x− 76160,(15)

then

(x, y) ∈ {(−40, 0), (−28, 0), (68, 0)}.(16)

Proof. Using SIMATH, we find that the rank of Mordell group of the
elliptic curve (15) is 0 and the torsion points are given by (16).

For the next result we introduce the following polynomials:

f1(X) = X6 + 20X5 + 158X4 + 684X3 + 1755X2 + 2700X + 2250,

f2(X) = X6 + 10X5 + 33X4 − 24X3 − 430X2 − 1200X − 1000,

f3(X) = f1(5X) and f4(X) = f2(5X).

We apply the method of Runge to obtain the following result:

Lemma 10. Let 1 ≤ i ≤ 4 and X be a positive integer. If fi(X) is a
square of a positive integer , then X ≤ 85.

Proof. We give a proof for i = 1. The proofs for the other cases are
similar. First we consider f1(X) = Y 2

1 where Y1 is a positive integer. We
observe that

(X3 + 10X2 + 29X + 52)2 > Y 2
1 .

Further

Y 2
1 − (X3 + 10X2 + 29X + 51)2 = 2X3 − 106X2 − 258X − 351 > 0

for X > 55. Thus
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X3 + 10X2 + 29X + 51 < Y1 < X3 + 10X2 + 29X + 52

for X > 55. This is not possible since Y1 is an integer. Hence X ≤ 55.

3. Proof of Theorem 4. Assume (1) with gcd(n, d) = 1, k = 5 and
P (b) < k. Then either (11) or (12) holds by Lemma 8. Assume (11). Then
x2

4+x2
2 = x2

3 where x2, x3 are odd and x4 is even. Then x4 = 2rs, x2 = r2−s2

and x3 = r2+s2 where r > s are positive integers such that gcd(r, s) = 1 and
r 6≡ s (mod 2). Now d = x2

4−x2
2 gives d = 6r2s2−r4−s4 and 3d = x2

3−x2
0 gives

n = x2
0 = 4(r4+s4−4r2s2). Using n+d = 3x2

1 we get 3r4+3s4−10r2s2 = 3x2
1.

Now we obtain an elliptic equation from this relation. Putting X1 = r/s,
Z1 = x1/s

2 we get

Z2
1 = X4

1 −
10
3
X2

1 + 1.(17)

We derive (17) with Z1 = x3/s
2 from (12) in a similar way. Thus (17) is

always valid. Now we multiply both sides of (17) by 4X2
1 to get

v2 = 4u3 − 40
3
u2 + 4u

where u = X2
1 , v = 2Z1X1. By putting u = (x + 40)/36 and v = y/108 we

get
y2 = x3 − 3504x− 76160.

By Lemma 9 we get x = −40,−28, 68, which gives u = 0, 1/3, 3. Hence
X2

1 = 0, 1/3, 3, a contradiction as X1 > 0 is rational.

4. Proofs of Theorems 1 and 2. Let d be a power of 2. We note that
p always denotes an odd prime in [7] and in particular in [7, Theorems 2, 3].
By [7, Theorem 2], we may assume that P (b) = k and then the assertion
of the theorems follows from [7, Theorem 3]. Thus we may suppose that
d = pα where α > 0 is an integer and p > 2 is a prime. Then gcd(n, d) = pβ

with 0 ≤ β < α since d -n. By dividing both the sides of (1) by pβk, we may
assume that gcd(n, d) = 1. This is clear if βk is even. If βk is odd, then we see
that p divides b and the assumption gcd(n, d) = 1 is again clear. By Lemma 5
and Theorem 4, we may also suppose that k ≥ 6. Further we derive from
[7, Corollary 1] that d > 104. Thus d ≥ k − 1 since k ≤ 29. Let |R| ≤ k − 2.
Suppose that there exist µ0 > µ1 > µ2 such that aµ0 = aµ1 = aµ2 . Then

(µ− ν)d = aν(xµ − xν)(xµ + xν)

whenever
(µ, ν) ∈ {(µ0, µ1), (µ0, µ2), (µ1, µ2)}.(18)

In fact the above relation is valid with some (µ, ν) satisfying (18) such that
d | (xµ−xν). Therefore k−1 ≥ µ−ν ≥ xµ+xν > d, which is not possible. Now
the assumption (7.5) of [7, Lemma 10] is satisfied since |R| ≤ k − 2 and we
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apply [7, Lemma 10] with h1 = 1, h2 = pα, c = ε1 = ε2 = χ1 = 1. Therefore
d < 4(k − 1). Consequently, k = 29 and d = 107, 109. Then n < 28(k − 1)2

by (7.8) of [7, Lemma 10]. Now we apply the algorithm of [7, Section 9] to
show that (1) does not hold. The details of the application of this algorithm
in some particular cases are explained in [7, Lemma 15]. Finally we remark
that the arguments from [7] applied above are valid under the assumption
P (b) ≤ k in place of P (b) < k. Hence |R| ≥ k − 1.

4.1. Proof of Theorem 1. Assume that P (b) < k. As mentioned above,
we may suppose that k ≥ 6. Let |R| = k. Consider k = 6. Then 5 divides
a0, a5 and a1, a2, a3, a4 is a permutation of 1, 2, 3, 6. Now the assertion follows
from Lemma 4. The case k = 8 is excluded similarly. Further k 6= 7, 9,
otherwise there are at least five distinct ai’s composed only of 2 and 3. Thus
we may assume that |R| = k − 1. The case k = 9 is excluded as in [7,
Lemma 7, k = 9].

Let k = 8. The cases of 7 dividing a0, a7 and 5 dividing a0, a5 or a1, a6

or a2, a7 are excluded as in [7, Lemma 7, k = 8]. Thus it remains to consider
the following cases.

(a) 7 divides only one ai and 5 divides two distinct ai’s not divisible by 7.
(b) 7 divides a0, a7 and 5 divides only one ai other than a0, a7.

(a) Let 5 divide a0, a5. Suppose 7 | a6. Then a1, a2, a3, a4 are composed
of 2 and 3. This is not possible by Lemma 5 with n replaced by n+ d. Thus
7 - a6. Similarly 7 - a7. Let 7 divide a1. Then a2, a3, a4, a6, a7 ∈ {1, 2, 3, 6}.
Now

(
a2
7

)
=
(
a3
7

)
=
(
d
7

)
,
(
a4
7

)
=
(
a6
7

)
=
(
a7
7

)
= −

(
d
7

)
. So either a2, a3 ∈

{3, 6} or a4, a6, a7 ∈ {3, 6}. This is not possible. Let 7 divide a2. Then
a1, a3, a4, a6, a7 ∈ {1, 2, 3, 6}. Using Legendre symbols modulo 7 we observe
that a1, a7 ∈ {3, 6} and a3, a4, a6 ∈ {1, 2}. Further we see that

(
a1
5

)
=
(
a4
5

)
=(

a6
5

)
=
(
d
5

)
,
(
a3
5

)
=
(
a7
5

)
= −

(
d
5

)
. Therefore a1, a4, a6 ∈ {1, 6}, a3, a7 ∈

{2, 3} or a1, a4, a6 ∈ {2, 3}, a3, a7 ∈ {1, 6}. Thus we conclude a1 = 6, a3 = 2,
a4 = 1, a6 = 1, a7 = 3 or a1 = 3, a3 = 1, a4 = 2, a6 = 2, a7 = 6. Since d is
odd, we observe that the relations a4 = a6 = 1 and a6 = 2, a7 = 6 do not
hold. Therefore both the possibilities are ruled out. We exclude similarly by
using Lemma 5 and congruences as above the cases when 5 divides a0, a5
and 7 divides a4; 5 divides a1, a6; 5 divides a2, a7 and 7 divides a0a1a3a5a6.
It remains to consider only the cases where 5 divides a0, a5 and 7 divides a3;
5 divides a2, a7 and 7 divides a4. Let 5 divide a0, a5 and 7 divide a3. Then
we derive as above that either a1 = 1, a2 = 2, a4 = 6, a6 = 1, a7 = 3
or a1 = 2, a2 = 1, a4 = 3, a6 = 2, a7 = 6. The latter possibility is excluded
since a1 = a6 = 2 is not possible by d odd. The former one gives x2

6−x2
1 = 5d

by (2). Thus

d = 2x1 + 5 or d =
2x1 + 1

5
.
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Also
(n+ 2d)(n+ 4d)(n+ 7d) = (6x2x4x7)2 =: Y 2

1 ,

hence we get the following two equations:

x6
1 + 20x5

1 + 158x4
1 + 684x3

1 + 1755x2
1 + 2700x1 + 2250 = Y 2

1 ,

x6
1 + 4x5

1 +
158
25

x4
1 +

684
125

x3
1 +

351
125

x2
1 +

108
125

x1 +
18
125

= Y 2
1 .

The left hand side of the first one is f1(x1) of Lemma 10, and that of the
second one becomes f1(5x1) on multiplication by 1252. Thus in both the
cases Lemma 10 implies x1 ≤ 85. Now we observe that

(2
p

)
=
(3
p

)
=
(5
p

)
=(7

p

)
=
(
n
p

)
= 1 since a5 = 5, a3 = 7. Therefore p ≥ 311, implying x1 ≥ 150,

a contradiction. The case of 5 dividing a2, a7 and 7 | a4 is ruled out similarly
using Lemma 10 with i = 2. We shall apply Lemma 10 again in the proof
of Theorem 2. It is remarkable that 1 is the repeated term among ai’s in all
these instances and this is crucial for applying Lemma 10.

(b) By looking modulo 7, we find that either 5 | a2 or 5 | a5. These pos-
sibilities are excluded by applying Lemma 5 to products (n + 3d)(n + 4d)
× (n+ 5d)(n+ 6d) and (n+ d)(n+ 2d)(n+ 3d)(n+ 4d), respectively.

Let k = 7. Then |R| = 6 and 5 divides two distinct ai’s. Thus 5 divides
a0, a5 or a1, a6. These cases are excluded by Lemma 5.

Let k = 6. Then |R| = 5. The possibility of 5 dividing a0, a5 is excluded
by Lemma 5. Thus 5 divides exactly one ai. Now we may assume that 5
divides a2 or a3 by Lemma 5. Let 5 | a2. By using Legendre symbols modulo 5,
we observe that either a0, a4, a5 ∈ {1, 6}, a1, a3 ∈ {2, 3} or a0, a4, a5 ∈ {2, 3},
a1, a3 ∈ {1, 6}. Assume the first possibility. Then a5 = 6, implying neither
a1 nor a3 is equal to 3. This is not possible. Similarly we see from the second
possibility that a1 = a3 = 1, contradicting |R| = 5. The case of 5 dividing
a3 is excluded similarly.

4.2. Proof of Theorem 2. Assume that P (b) = k. By Lemma 6, it re-
mains to consider only the case k = 7. Then |R| ≥ 6. We observe that at
least one ai is divisible by 5. We divide the proof into the following two
parts:

(a) 5 divides exactly two elements.
(b) 5 divides only one element.

(a) Let 5 divide a0, a5. Then we derive from Lemma 5 that 7 does not
divide a0, a5, a6. By applying Legendre symbols modulo 7 and 5 as in the
proof of the case k = 8, 5 | a0, a5, 7 | a2 of Theorem 1, the possibilities of 7
dividing a1, a2, a4 are excluded and 7 dividing a3 gives

a1 = a6 = 1, a2 = 2, a4 = 6.(19)
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Further we conclude as above that 5 - a1a6 unless 7 divides a3 and

a0 = a5 = 1, a2 = 6, a4 = 2.(20)

(b) We observe that |R| = 6 such that 7 and 5 do not divide the
same ai. Let 7 divide a0. Then we derive from Lemma 5 that 5 cannot
divide a1, a2, a5, a6. The remaining cases 5 | a3 and 5 | a4 are excluded by
considering Legendre symbols modulo 7 and 5. Thus 7 does not divide a0.
Let 7 divide a1. By considering Legendre symbols modulo 7 and 5 we get

a0 = 2, a2 = 6, a4 = 1, a5 = 3, a6 = 2.

By (2), we have

n(n+ 2d)(n+ 4d)(n+ 6d) = 6(2x0x2x4x6)2.

We observe that n and x4 are even. We divide both sides by 24 to obtain

n

2

(
n

2
+ d

)(
n

2
+ 2d

)(
n

2
+ 3d

)
= 6
(
x0x2

x4

2
x6

)2

and gcd(n/2, d) = 1. By Lemma 5 we get n/2 = 75 and d = 23, implying
x2

0 = 75, which is not possible. Similarly we show that none of the other ai
is divisible by 7 unless

a0 = a5 = 1, a1 = 2, a3 = 6, a6 = 3(21)

in the case 7 | a2, 5 | a4 and

a0 = 3, a1 = a6 = 1, a3 = 6, a5 = 2(22)

in the case 7 | a4, 5 | a2. Further we observe that a2 = 7, a4 = 5 and a2 = 5,
a4 = 7 in (21) and (22), respectively.

It remains to show that the relations (19)–(22) are not valid. First we
consider (19). From (2) we get

n+ d = x2
1, n+ 2d = 2x2

2, n+ 4d = 6x2
4, n+ 6d = x2

6.

So 5d = x2
6 − x2

1, implying either x6 − x1 = 1, x6 + x1 = 5d or x6 − x1 = 5,
x6 + x1 = d. In the first case 5d = 2x1 + 1, which gives the following
equations:

X2 + 4 = 2Y 2, (X + 2)2 + 6 = 6Z2

with X = 5x1 + 1, Y = 5x2 and Z = 5x4. In the latter case d = 2x1 + 5
and we get the same pair of Pell’s equations with X = x1 + 1, Y = x2 and
Z = x4. This is not possible by Lemma 3. The case (20) is excluded similarly
again by Lemma 3. Next, we consider (21). By (2), we have

n = x2
0, n+ d = 2x2

1, n+ 2d = 7x2
2, n+ 3d = 6x2

3,

n+ 4d = 5x2
4, n+ 5d = x2

5, n+ 6d = 3x2
6,
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which implies that(
n

p

)
=
(

2
p

)
=
(

3
p

)
=
(

5
p

)
=
(

7
p

)
= 1,(23)

where d = pα with positive integer α. Further either 5d = 2x0 + 1 or d =
2x0 + 5. We also observe that

(n+ d)(n+ 3d)(n+ 6d) = (6x1x3x6)2.

Putting the expressions for n and d in terms of x0, we get

f1(X) = Y 2 with X = x0, Y = 6x1x3x6(24)

if d = 2x0 + 5, or

f1(X) = Y 2 with X = 5x0, Y = 750x1x3x6(25)

if 5d = 2x0 + 1. We observe that (22) is the mirror image of (21), and
therefore, it implies similarly

f2(X) = Y 2 with X = x1, Y = 6x0x3x5(26)

and
f2(X) = Y 2 with X = 5x1, Y = 750x0x3x5.(27)

We recall that (24) and (25), together with (23), are excluded by Lemma 10
with i = 1 in the proof of the case (a) of k = 8 in Theorem 1. Further (26)
and (27) are excluded similarly by applying Lemma 10 with i = 2.
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