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A note on the existence of certain infinite families
of imaginary quadratic fields

by

Iwao Kimura (Toyama)

1. Introduction. In this paper, we give a lower bound of the number
of certain families of imaginary quadratic fields whose absolute value of
discriminants are less than a given number (the main result is the corollary
below). We briefly review the investigations concerned with this kind of
problems.

Let Z be the ring of rational integers, and Q the field of rational numbers.
For any rational prime l, we denote by Zl the ring of l-adic integers. If k
is an algebraic number field of finite degree over Q, we denote by h(k) the
class number of k and by D(k) the discriminant of k. We let ]S denote the
cardinality of any set S. Let (·/·) be the Legendre–Kronecker symbol.

Denote by Q− the set of all imaginary quadratic fields and by Q+ the
set of all real quadratic fields. For any real number X > 0, let Q−(X) =
{k ∈ Q−; −X < D(k)} and Q+(X) = {k ∈ Q+; D(k) < X}. Note that
Q−(X) and Q+(X) are finite sets.

Hartung [13] proved that {k ∈ Q−; 3 -h(k)} is an infinite set, and re-
marked that his method (an application of Kronecker’s class number rela-
tion) can be applied to the same statement in which 3 is replaced by any
odd prime l. The case of l = 3 is also implied in Davenport–Heilbronn’s
investigation [10, 11] of mean 3-class numbers of quadratic fields.

Kohnen and Ono [20] obtained a lower bound of ]{k ∈ Q−(X); l -h(k)}
where l ≥ 5 is any prime. This is a quantitative refinement of Hartung’s
result. Ono [26] and Byeon [3] also obtained a similar estimate for real
quadratic fields for primes l ≥ 5.

Cohen and Lenstra [8] conjectured the “density”

lim
X→∞

]{k ∈ Q−(X); l -h(k)}
]Q−(X)

=
∏

n≥1

(1− l−n),
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lim
X→∞

]{k ∈ Q+(X); l -h(k)}
]Q+(X)

=
∏

n≥2

(1− l−n).

The results cited above are far from these conjectured values.
For any number field k of finite degree over Q and any rational prime l,

λl(k), µl(k) denote the Iwasawa λ and µ invariants of the basic Zl-extension
over k. It is known (Iwasawa [18]) that if l -h(k) and l does not split at all
in k, then λl(k) = µl(k) = 0.

Horie and Horie–Ônishi [14, 17, 15] proved that there exist infinitely
many k ∈ Q− which satisfy l -h(k) and certain ramification conditions (e.g.
(D(k)/l) 6= 1) if l is sufficiently large prime. The method they used involves
an l-adic Galois representation arising from Jacobians of certain modular
curves and trace formulae for Hecke operators acting on certain spaces of
cusp forms. They deduced, by means of Iwasawa’s theorem cited above,
that {k ∈ Q−; λl(k) = µl(k) = 0} is an infinite set (for any abelian number
field k and any rational prime l, it is known by Ferrero–Washington that
µl(k) = 0). Naito [23, 24] extended some parts of their results to the case
of relative class numbers of CM-fields, and deduced similar statements for
relative λ and µ invariants.

Nakagawa–Horie [25] refined Davenport–Heilbronn’s arguments and ob-
tained estimates of

lim inf
X→∞

]{k ∈ Q−(X); 3 -h(k), (D(k)/3) 6= 1}
]Q−(X)

and

lim inf
X→∞

]{k ∈ Q+(X); 3 -h(k), (D(k)/3) 6= 1}
]Q+(X)

.

By Iwasawa’s theorem, these values are lower bounds of

lim inf
X→∞

]{k ∈ Q−(X); λ3(k) = µ3(k) = 0}
]Q−(X)

and

(1) lim inf
X→∞

]{k ∈ Q+(X); λ3(k) = µ3(k) = 0}
]Q+(X)

.

It is a longstanding conjecture (so-called Greenberg’s conjecture [12]) that
λl(k) = 0 for any rational prime l if k is totally real. The real quadratic
case of Nakagawa–Horie’s investigation provides some evidence for the con-
jecture. Taya [29] improved their result and showed that the value of (1) is
≥ 17/24. Nakagawa–Horie’s result is also extended to a more general situa-
tion of quadratic extensions over a fixed number field case by Horie and the
author [16], and to the fixed function field case by the author [19], using the
theory of zeta functions associated to a certain prehomogeneous vector space
(the space of binary cubic forms) developed by Datskovsky and Wright [9].
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Belabas and Fouvry [1] refined Davenport and Heilbronn’s investigations
and estimated ]{k ∈ Q+(X); 3 -h(k) and D(k) is a rational prime}.

Byeon [4] extended the investigation of Kohnen–Ono so that it covers
the cases treated by Horie [14]. He obtained

]{k ∈ Q−(X); λl(k) = µl(k) = 0} �l,ε

√
X/logX

for any odd prime l ≥ 5 and any real number ε > 0 (the subscript on �
means that the implied constant depends on the stated variables). Ono [26]
and Byeon [3, 5] also discussed the case of real quadratic fields and obtained
similar lower bounds. Their method relies on the fact that the coefficients
of θ3(z), where θ(z) =

∑
n∈Z q

n2
, are closely related to class numbers of

quadratic forms, and on Sturm’s theorem [28] on congruences of modular
forms.

In this paper, we give a quantitative version of the investigation of Horie–
Ônishi [17] and Horie [15] (the main result is the corollary below). We use
Eisenstein series of half integral weight constructed by Cohen [6] and Sturm’s
theorem. We note that Bruinier (Theorem 7 in [2]) gave a similar result.

Acknowledgements. The author thanks the anonymous referee for his
careful reading of the manuscript.

2. Results

Theorem. Let l > 3 be an odd prime. Let S0, S+, S− be mutually
disjoint finite sets of rational primes. Take an integer b > 0 which satis-
fies the following conditions: −b is a fundamental discriminant , (−b/q) =
0, 1,−1 according as q ∈ S0, S+, S− respectively (where (·/·) is the Legendre–
Kronecker symbol). Let P = 4

∏
q∈S0∪S+∪S− q. For any prime p which satis-

fies p2 ≡ 1 (modP ) and (−b/p) 6≡ p (mod l), let κ = 1
2pP

2∏
q|pP (1 + q−1).

Then there exists a natural number mp < κ which satisfies the following
conditions: the class number of the imaginary quadratic field Q(

√−mp) is
not divisible by l, every prime q ∈ S0 ramifies, every prime q ∈ S+ splits
and every prime q ∈ S− is inert , in Q(

√−mp), respectively.

Corollary. Let l > 3 be an odd prime, and ε > 0 be an arbitrary
real number. Let S0, S+, S− and P be as in the Theorem. Then, for any
sufficiently large X > 0, we have

]{k ∈ Q−(X); l -h(k) and (∗) holds} �l,ε,P

√
X/logX,

where

(∗) every prime q ∈ S0 ramifies, every prime q ∈ S+ splits and every
prime q ∈ S− is inert in k (the implied constants depend on the vari-
ables in the subscript).
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Remark. An application of this kind of result is, as mentioned above, to
give an estimate of ]{k ∈ Q−(X); λl(k) = µl(k) = 0}. We give another one.
B. Mazur [21] proved that if there exist imaginary quadratic fields k such
that 5 -h(k) and (D(k)/11) 6= 1, then the 5 primary part W(X0(11), k){5}
of the Tate–Shafarevich group of a modular curve X0(11) of level 11 over k
is 0. It thus follows from our corollary that

]{k ∈ Q−(X); W(X0(11), k){5} = {0}} �
√
X/logX.

3. Proofs. Let g(z) =
∑∞

n=0 a(n)qn be any formal power series of an
indeterminate q with rational integer coefficients. For any rational prime p,
we define (Upg)(z), (Vpg)(z) by

(Upg)(z) =
∞∑

n=0

a(pn)qn, (Vpg)(z) =
∞∑

n=0

a(n)qpn.

We define the order ordl(g) of g at rational prime l by

ordl(g) = min{n | a(n) 6≡ 0 (mod l)}.
Let h(z) =

∑∞
n=0 b(n)qn be another formal power series with rational integer

coefficients, and m be any rational integer. We define g(z) ≡ h(z) (modm)
if and only if a(n) ≡ b(n) (modm) for all n ≥ 0.

For any half integer k ∈ 1
2Z and natural number N (if k 6∈ Z we as-

sume that 4 |N), let Mk(N,χ) denote the space of modular forms of weight
k, Nebentypus character χ, with respect to a congruence subgroup Γ0(N)
(cf. Shimura [27]). If χ is the trivial character, we write Mk(N) instead of
Mk(N, 1). Let g(z) ∈Mk(N,χ) have Fourier expansion g(z) =

∑∞
n=0 a(n)qn.

It is known that (Upg)(z), (Vpg)(z) ∈Mk(Np, χ(p/·)).
Sturm [28] proved that if g(z) ∈ Mk(N,χ) has rational integer coeffi-

cients and

ordl(g) > κ(N, k) =
k

12
[Γ0(1) : Γ0(N)] =

k

12
N
∏

q|N
(1 + q−1),

then g(z) ≡ 0 (mod l). He proved this fact when k is an integer (a detailed
proof can be found in Murty [22]), but Kohnen–Ono [20] pointed out that
it is easy to verify this fact when k is a half integer.

Let H(n) denote the Hurwitz–Kronecker class number of integral binary
quadratic forms of discriminant −n (−n ≡ 0, 1 (mod 4)). If −n = Df 2 where
D is a negative fundamental discriminant, then H(n) is related to the class
number h(D) of the imaginary quadratic field Q(

√
D) by the well-known

formula

H(n) =
h(D)
w(D)

∑

d|f
µ(d)

(
D

d

)
σ1

(
f

d

)
.
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Here w(D) is half the number of roots of unity in Q(
√
D), µ(·) is the Möbius

function, (·/·) is the Kronecker–Legendre symbol, and σ1(·) is the sum of
positive divisors (cf. Cohen [7, Chapter 5.3]).

Let c, d ∈ Z with d ≥ 1. Suppose that −c is a quadratic non-residue
modulo d (i.e., the equation x2 ≡ −c (modd) has no solutions). Then we
define a function Hc,d(z) by

Hc,d(z) =
∑

n≡c (mod d)

H(n)qn (q = e2π
√−1z).

It is known that Hc,d(z) ∈ M3/2(A) where A = 4d2 (A can be taken to be
d2 if d is even) by Cohen [6].

We define f(z) = 6Hb,P (z) where b, P are the same as in the Theorem.
The coefficients of f(z) are rational integers since H(0) = −1/12 does not
appear in f(z).

Lemma. Let p be a rational prime satisfying p2 ≡ 1 (modP ), p 6≡
(−b/p) (mod l). Then

(Upf)(z) 6≡ (Vpf)(z) (mod l).

Proof. We see, by definition,

(Upf)(z) = 6
∑

pn≡b (modP )

H(pn)qn ∈M3/2(4P 2p),

(Vpf)(z) = 6
∑

n≡b (modP )

H(n)qpn ∈M3/2(4P 2p).

The bpth coefficients of (Upf)(z) and (Vpf)(z) are respectively H(bp2) =
(1 + p− (−b/p))H(b) and H(b). Note that H(bp2) appears in (Upf)(z) be-
cause bp2 ≡ b (modP ). By our assumptions, these two coefficients are not
congruent modulo l.

Proof of the Theorem. By the Lemma and Sturm’s theorem stated above,
there exists a natural number np < κ(4P 2p, 3/2) = 1

2P
2p
∏
q|pP (1+q−1) such

that the npth coefficient of (Upf)(z)−(Vpf)(z) is not congruent to 0 (mod l),
i.e.,

H(pnp) 6≡ H
(
np
p

)
(mod l).

If p -np, we read that the npth coefficient H(np/p) of (Vpf)(z) is 0. Thus

H(pnp) 6≡ 0 (mod l).

Since pnp ≡ b (modP ), we also see that
(−pnp

q

)
=
(−b
q

)
= 0, 1,−1 according as q ∈ S0, S+, S−.
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On the other hand, if np = pn′p for some natural number n′p, then

H(pnp) = H(p2n′p) =
(

1 + p−
(−n′p

p

))
H(n′p) 6≡ H(n′p) (mod l),

and H(n′p) 6≡ 0 (mod l) follows. Further we have n′p = pnp/p
2 ≡ pnp (modP )

since p2 ≡ 1 (modP ). This shows that
(−n′p

q

)
=
(−pnp

q

)
=
(−b
q

)
= 0, 1,−1 according as q ∈ S0, S+, S−.

Taking mp = pnp or n′p according as p -np or not, we can prove the Theo-
rem.

Proof of the Corollary. It is easy to see that the conditions on p stated
in the Theorem are equivalent to the condition that p belongs to some
arithmetic progression modulo P . Let p1 < p2 < . . . be the primes contained
in one of such arithmetic progressions modulo P , taken in increasing order.
Then, if i < j < k and Di,Dj,Dk are the discriminants of the imaginary
quadratic fields Q(

√−mpi),Q(
√−mpj ),Q(

√−mpk), then at least two of
them are different by the Theorem.

Moreover, clearly Di ≥ −piκ(4P 2pi, 3/2). The result now follows by
Dirichlet’s theorem on arithmetic progressions.
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