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Kummer theory of abelian varieties and reductions
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Tom Weston (Berkeley, CA)

Let A be an abelian variety over a number field F . We write redv :
A(F )→ A(kv) for the reduction map at a place v of F with residue field kv.
W. Gajda has posed the following question.

Question. Let Σ be a subgroup of A(F ). Suppose that x is a point of
A(F ) such that redvx lies in redvΣ for almost all places v of F . Does it then
follow that x lies in Σ?

In this paper we use methods of Kummer theory to provide the following
partial answer to this question.

Theorem. Let A be an abelian variety over a number field F and as-
sume that EndFA is commutative. Let Σ be a subgroup of A(F ) and suppose
that x ∈ A(F ) is such that redvx ∈ redvΣ for almost all places v of F . Then
x ∈ Σ + A(F )tors.

It does not appear that the torsion ambiguity can be eliminated with
our present approach, and it is not clear to the author how to modify the
arguments for the non-commutative case. We note that our theorem applies
in particular to products of non-isogenous elliptic curves.

Gajda’s question has its origins in the support problem of P. Erdős: if x
and y are positive integers such that for any n ≥ 1 the set of primes dividing
xn−1 is the same as the set of primes dividing yn−1, then must x equal y?
Corrales-Rodrigáñez and Schoof gave an affirmative answer to this question
in [3] and also answered the corresponding question for elliptic curves; this
was generalized by Banaszak, Gajda and Krasoń in [1] to certain abelian
varieties with complex or real multiplication and EndFA a commutative
maximal order. Recently Larsen [7] has given a proof of the support problem
for arbitrary abelian varieties; see also [6] for results of Kowalski on a closely
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related question. In this context the support problem takes the following
form.

Question. Let x, y ∈ A(F ) be non-torsion points. Suppose that the
order of redvx divides the order of redvy for almost all places v of F . Does
it follow that x and y satisfy an EndFA-linear relation in A(F )?

If we take Σ = EndFA · y, the support problem implies a weak form of
our main theorem in the case when Σ is a cyclic EndFA-module. The more
precise question of Gajda we consider is one possible modification of the
support problem for abelian varieties to a non-cyclic setting. The approach
we use here is quite different from that of [3] and [1], relying more on the
study of the Mordell–Weil group of A as a module for EndFA and less on
Galois cohomology.

We now give an overview of our argument in the simplest case. Assume
that A is simple, that O := EndFA is integrally closed (so that it is a
Dedekind domain), and that A(F ) is a free O-module. With Σ ⊆ A(F ) and
x ∈ A(F ) as in the theorem, it suffices to prove that x ∈ Σ ⊗ Z(p) for every
prime p (with Z(p) the localization of Z away from p). Fix, then, a prime p
and suppose that x 6∈ Σ ⊗ Z(p). The first step, which is purely algebraic, is
to show that under this assumption one can choose an O-basis y1, . . . , yr of
A(F ) such that ψ1(x) 6∈ ψ1(Σ) + paO for some a > 0; here ψ1 : A(F )→ O
is the projection onto the y1-coordinate.

The next step is to choose an appropriate place v of F . We work instead
over the extensions F (A[pn]) of F . Using Kummer theory and the Chebo-
tarev density theorem, we show that there is a b > 0 such that for any
sufficiently large n there is a place w of F (A[pn]) with redwy2, . . . , redwyr ∈
pnA(kw), while redwy1 6∈ pbiA(kw) for any i; here pO = pe11 . . . p

eg
g is the ideal

factorization of p in O.
Fix n ≥ a+b and choose such a place w. By hypothesis we have redwx =

redwy for some y ∈ Σ. If we expand in terms of our chosen basis of A(F ),
the choice of w implies that

(ψ1(x)− ψ1(y)) redwy1 ∈ pnA(kw).

On the other hand, using the properties of ψ1 and of w, one can show directly
that

(ψ1(x)− ψ1(y)) redwy1 6∈ pa+bA(kw).

As n ≥ a+b, we have a contradiction, so that we must have had x ∈ Σ⊗Z(p).
This completes our sketch of the argument in this case.

We now review the contents of this paper in more detail. We begin in
Section 1.1 with a review of Kummer theory and in Section 1.2 we adapt
the methods of Bashmakov–Ribet as in [9] to prove that the cokernel of
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the p-adic Kummer map is bounded. In Section 1.3 we discuss the relation
between Kummer theory and reduction maps.

In the sketch above we assumed that O was an integrally closed domain
and that A(F ) was free over O. The algebra required to eliminate these
assumptions is developed in Section 2. These results are combined with
Kummer theory to produce places w as above in Section 3.1, and the proof
of our main theorem is given in Section 3.2.

The author wishes to thank Ken Ribet for suggesting this problem, Mark
Dickinson for helpful conversations, and the referee for several corrections.

1. Kummer theory

1.1. Review of Kummer theory. Let A be an abelian variety over a
number field F ; set O = EndFA. For α ∈ O we set Fα = F (A[α]) and
Gα = Gal(Fα/F ). The Kummer map

κα : A(F )/α→ HomGα(Gal(F/Fα), A[α])

is defined as the composition

A(F )/α ↪→ H1(F,A[α]) res−→ H1(Fα, A[α])Gα

with the first map a coboundary map for the Gal(F/F )-cohomology of the
Kummer sequence

0→ A[α]→ A(F ) α−→ A(F )→ 0

and the second map restriction to Fα. (Concretely, for x ∈ A(F ), κα(x) is
the homomorphism sending γ ∈ Gal(F/Fα) to γ

(
x
α

)
− x

α ∈ A[α] where x
α is

some fixed αth root of x in A(F ).)
If Γ is an O-submodule of A(F ) and α ∈ O, we write Fα

( 1
αΓ
)

for
the extension of Fα generated by all αth roots of elements of Γ ; alter-
nately, Fα

( 1
αΓ
)

is the fixed field of the intersection of the kernels of the
homomorphisms κα(Γ ). The Galois group gα(Γ ) := Gal

(
Fα
( 1
αΓ
)
/Fα

)
is an

O[Gα]-module and κα restricts to an O-linear map

Γ/α→ HomGα(gα(Γ ), A[α]).

We write the O[Gα]-dual of this map as

λΓα : gα(Γ ) ↪→ HomO(Γ,A[α]).

1.2. p-adic Kummer theory. Fix a rational prime p; set Op = O⊗Zp and
Kp = O ⊗Qp. The Tate module TpA := lim←−A[pn] (resp. Tate space VpA :=
TpA⊗ZpQp) is naturally an Op[Gp∞ ]-module (resp. Kp[Gp∞]-module) where
Gp∞ = Gal(F (A[p∞])/F ). It follows from [8, Section 19, Corollary 2] that
there is a decomposition

Kp =
∏

MniKi(1.1)
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where MniKi is the central simple algebra of ni×ni-matrices over the divi-
sion ring Ki. Corresponding to (1.1) is a decomposition VpA =

⊕
ViA

ni of
VpA into Ki[Gp∞ ]-modules. By [5, Theorem 4], we have

EndQp[Gp∞ ] ViA = Ki(1.2)

for each i; in particular, each ViA is an irreducible Ki[Gp∞ ]-module. We
record a second immediate consequence of (1.2) in the next lemma.

Lemma 1.1. Let Γ be an O-module. Then the evaluation map

Γ ⊗O Ki → HomKi[Gp∞ ](HomO(Γ, ViA), ViA)

is an isomorphism.

Fix an O-submodule Γ of A(F ). The inverse limit gp∞(Γ ) of the gpn(Γ )
is naturally an Op[Gp∞ ]-module endowed with an injection

λΓp∞ : gp∞(Γ ) ↪→ HomO(Γ, TpA).

More generally, since Op/pn ∼= O/pn for all n, for any O-module Γ ⊆ A(F )⊗
Zp we can still define gpn(Γ ) and λΓpn for n ≤ ∞. In any case, there is a
Kp[Gp∞ ]-module decomposition

gp∞(Γ )⊗Zp Qp =
⊕

gi(Γ )ni(1.3)

(with ni as in (1.1)) into Ki[Gp∞ ]-modules, and there are natural injections

λΓi : gi(Γ ) ↪→ HomO(Γ, ViA).

The decomposition (1.3) is functorial in the sense that there is a natural
surjection gi(Γ )� gi(Γ ′) for any O-submodule Γ ′ of Γ .

The main result of Kummer theory we need is the following. The proof
is a straightforward adaptation of the methods of Bashmakov and Ribet.

Proposition 1.2. Fix a rational prime p and let Γ be an O-submodule
of A(F ). Then the cokernel of λΓpn is bounded independent of n.

Proof. First consider the cyclic case Γ = O · x for x ∈ A(F ). If Γ ∼= O,
then Z · x is Zariski dense in A; the proposition thus follows from [2, Theo-
rem 2] in this case. More generally, let A′ denote the largest abelian subva-
riety of A, defined over F , in which Z · x is Zariski dense; set O′ = EndFA′.
Using the Poincaré reducibility theorem (see [8, Section 19, Theorem 1]),
one easily checks that

HomO(Γ, VpA) ∼= HomO′(Γ, VpA
′),

so that the general cyclic case follows from [2, Theorem 2] applied to A′. In
fact, one has cokerλO·xp∞ = cokerλO·x

′
p∞ whenever x, x′ ∈ A(F ) are sufficiently

p-adically congruent, so that the same arguments apply for arbitrary x ∈
A(F )⊗ Zp.
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For general Γ it suffices to show that each of the injections λΓi is an iso-
morphism. Suppose, then, that some λΓi is not surjective. As HomO(Γ, ViA)
is a direct sum of copies of the irreducible Ki[Gp∞ ]-module ViA (and thus
in particular is a semisimple Ki[Gp∞]-module), it follows that there exists a
Ki[Gp∞ ]-surjection

ϕ : HomO(Γ, ViA)� ViA

annihilating gi(Γ ). By Lemma 1.1 the map ϕ is given by evaluation at some
x ∈ Γ ⊗O Ki; using the injection Ki ↪→ Kp and scaling ϕ if necessary, we
may in fact assume that x ∈ Γ ⊗ Zp. There is then a commutative diagram

gi(Γ ) � � λΓi //

����

HomO(Γ, ViA)

��
ϕ

��
gi(O · x) � � λO·xi // ViA

The clockwise composition is zero by construction, so that we must have
λO·xi = 0 as well. By the cyclic case considered above this implies that x
maps to zero in Γ ⊗OKi. But then ϕ, which is evaluation at x, is also zero.
This contradicts the surjectivity of ϕ and thus proves the proposition.

1.3. Reductions and Frobenius elements. We write kw for the residue
field of a finite extension F ′ of F at a place w, and redw : A(F ′) → A(kw)
for the reduction map.

Lemma 1.3. Fix α ∈ O and x ∈ A(F ). Let w be a finite place of Fα,
relatively prime to α, at which A has good reduction. Then redwx lies in
αA(kw) if and only if λO·xα (Frobw) = 0, where Frobw ∈ Gal

(
Fα
(
x
α

)
/Fα

)
is

the Frobenius element at w.

Proof. Fix an αth root x
α of x in A(F ) and a place w′ of Fα

(
x
α

)
over w.

If λO·xα (Frobw) = 0, then w′ is completely split over w so that kw′ = kw.
In particular, redw′ xα ∈ A(kw′) lies in A(kw); thus redwx ∈ αA(kw) as
claimed.

Conversely, if there is y ∈ A(kw) with αy = redwx, then y − redw′ xα lies
in A[α]. Since y and A[α] are both in A(kw) we conclude that redw′ xα is in
A(kw) as well. In particular, we have

Frobw
(
redw′ xα

)
− redw′ xα = 0.(1.4)

On the other hand, Frobw
(
x
α

)
− x

α already lies in A[α], which injects into
A(kw′); (1.4) thus forces

Frobw
(
x
α

)
− x

α = 0 in A(F ).

This says exactly that λO·xα (Frobw) = 0, as claimed.
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We assume now that O is commutative. Suppose that a is an ideal of O
such that βa ⊆ αO for some α, β ∈ O. Multiplication by β then yields a
map A[α]→ A[a].

Lemma 1.4. Let α, β, a be as above and fix x ∈ A(F ). Let w be a fi-
nite place of Fα, relatively prime to α, at which A has good reduction. If
β · λO·xα (Frobw) 6= 0, then redwx 6∈ aA(kw).

Proof. We prove the contrapositive. Suppose that redwx ∈ aA(kw). Then

β redwx ∈ βaA(kw) ⊆ αA(kw),

so that there is y ∈ A(kw) with β redwx = αy. On the other hand, fixing an
αth root x

α of x in A(F ) and a place w′ of Fα
(
x
α

)
lying above w, we also

have β redwx = αβ redw′ xα . Therefore

y − β redw′ xα ∈ A[α].

From here the argument proceeds as in the second half of the proof of
Lemma 1.3 above to show that β · λO·xα (Frobw) = 0.

We remark that the converse of Lemma 1.4 holds in the case when αO =
aa′ with a, a′ relatively prime and β ∈ a′ ∩ (1− a).

2. Modules over commutative, reduced, finite, flat Z-algebras

2.1. Projections. LetO be a commutative, reduced, finite, flat Z-algebra.
The normalization Õ of O decomposes as a product

∏h
j=1 Õj of Dedekind

domains. (See [4, Section 11.2], for example, for a discussion of the normal-
ization of a reduced ring.) We say that a Z-linear map t : O → Z is full if
it is non-trivial on O ∩ Õj for each j. Note that such a map always exists;
indeed, this is clear for Õ (simply take the sum of the trace maps Õj → Z),
and multiplying a full map for Õ by [Õ : O] yields a full map O → Z.

Lemma 2.1. Fix a full map t : O → Z. Then the map

HomO(N,O)→ HomZ(N,Z), f 7→ t ◦ f(2.1)

has finite cokernel for any finitely generated O-module N .

Proof. Since O has finite index in Õ, it suffices to prove the result after
replacing O by Õ and N by N ⊗O Õ. We may therefore assume that O
decomposes as a product

∏Oi of Dedekind domains. There is then a corre-
sponding decomposition N =

⊕
Ni, and by the definition of a full map it

suffices to prove the lemma for each factor Ni; that is, we may assume that
O is a Dedekind domain.

In this case every finitely generated O-module has a free submodule of
finite index; this allows one to reduce to the case when N is free, and then
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to the case when N is free of rank one. (2.1) is then a map

O = HomO(O,O)→ HomZ(O,Z)(2.2)

between two free Z-modules of the same rank, so that it suffices to prove that
it is injective. For this, note that (2.2) is O-linear; thus its kernel is an ideal
of O. However, every non-zero ideal of O has finite index and HomZ(O,Z)
is torsion-free; therefore (2.2) must be either zero or injective. As t itself lies
in the image, it is obviously non-zero.

We now fix a finitely generated O-module N and a Z-submodule M of
N containing the Z-torsion submodule Ntors of N .

Lemma 2.2. Fix x ∈ N and suppose that p is a rational prime such
that x 6∈ M ⊗ Z(p). Then there is an O-linear map ψ : N → O such that
ψ(x) 6∈ ψ(M) + pnO for sufficiently large n.

Proof. Choose a Z-basis y1, . . . , yr ∈ N of N/Ntors such that there are
integers d1, . . . , dr with

M = 〈d1y1, . . . , dryr〉 ⊕Ntors.

(Of course, some of the di may be zero.) Writing x = a1y1 + . . .+ aryr + t
with ai ∈ Z and t ∈ Ntors, the fact that x 6∈ M ⊗ Z(p) implies that there is
some index i such that

ordp ai < ordp di.(2.3)

Let ψ0 : N → Z be #Ntors times projection onto yi; this is a well defined
map, and it follows from (2.3) that ψ0(x) 6∈ ψ0(M) + pnZ for sufficiently
large n. (In fact, n > ordp(ai ·#Ntors) suffices.)

Fix a full map t : O → Z. By Lemma 2.1, we can find a non-zero
integer b such that bψ0 is in the image of (2.1). Thus there is an O-linear
map ψ : N → O with bψ0 = t ◦ ψ. Since t(pnO) ⊆ pnZ, we conclude that
ψ(x) 6∈ ψ(M) + pnO for sufficiently large n, as desired.

2.2. Pre-bases. We continue with M ⊆ N as before. Fix y ∈ N not
in Ntors and let ϕ : O � O · y be the O-linear surjection sending 1 to y.
We define η0(y) to be the least positive integer m such that there exists an
O-linear map ψ : O · y → O with the composition

O · y ψ−→ O ϕ−→ O · y
multiplication by m. (Let Kj denote the fraction field of Õj; since O⊗Q
=
∏
Kj , to see that any maps ψ as above exist it suffices to prove the

corresponding fact after replacing O by
∏
Kj . In this context the map ϕ

identifies with the quotient map
∏

Kj →
∏

j∈J
Kj
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for some non-empty subset J of {1, . . . , h}, so that the existence of ψ is
obvious.)

We say that y1, . . . , yr ∈ N are an O-pre-basis of N if:

• yi 6∈ Ntors for all i;
• (O · y1)⊕ . . .⊕ (O · yr) injects into N with finite cokernel.

(Note that we do not require that the corresponding map Or → N is injec-
tive.) Let η′(y1, . . . , yr) be the order of this cokernel and define

η(y1, . . . , yr) = η′(y1, . . . , yr) · η0(y1) . . . η0(yr).

It then follows from the definition of η0(yi) that there are O-linear maps

ψy1,...,yr
i : N → O

for i = 1, . . . , r such that

η(y1, . . . , yr)y = ψy1,...,yr
1 (y)y1 + . . .+ ψy1,...,yr

r (y)yr(2.4)

for all y ∈ N . We usually just write η and ψi if the pre-basis y1, . . . , yr is
clear from context. A standard inductive procedure shows that pre-bases
always exist.

Proposition 2.3. Fix x ∈ N and suppose that p is a rational prime
such that x 6∈ M ⊗ Z(p). Then there is an O-pre-basis y1, . . . , yr of N such
that ψ1(x) 6∈ ψ1(M) + pnO for sufficiently large n.

Proof. By Lemma 2.2, we may choose an O-linear map ψ : N → O such
that ψ(x) 6∈ ψ(M)+pnO for sufficiently large n. Let K ′ denote the image of
ψ ⊗ Q; we have K ′ =

∏
j∈J Kj for some non-empty subset J of {1, . . . , h}.

In particular, K ′ is a projective
∏
Kj-module, so that there exists a map

ϕ0 : K ′ → N ⊗ Q such that (ψ ⊗ Q) ◦ ϕ0 is the identity on K ′. Scaling ϕ0

by an integer we obtain an O-linear map ϕ : Õ′ → N such that ψ ◦ ϕ is
multiplication by some non-zero integer; here Õ′ = ∏j∈J Õj .

Set y1 = ϕ(1) and choose an O-pre-basis y2, . . . , yr for kerψ. Then
y1, . . . , yr is an O-pre-basis of N and ψ1 = mψ for some non-zero inte-
ger m. It thus follows from the definition of ψ that ψ1(x) 6∈ ψ1(M) + pnO
for sufficiently large n, as desired.

2.3. Ideals. We continue with O as above. Fix a rational prime p and
write the Z-exponent of Õ/O as cpd with d ≥ 0 and c relatively prime to p.
Let

pÕ = p̃e11 . . . p̃
eg
g

be the factorization of pÕ into prime ideals of Õ; for each i ∈ {1, . . . , g} we
let µp(i) denote the unique j ∈ {1, . . . , h} such that p̃i is the pullback of a
prime ideal on Õj. For y ∈ N we define Ip(y) ⊆ {1, . . . , g} to be the set of
indices i such that the image of y in N ⊗O Õp̃i

is non-torsion. In fact, since
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every proper ideal of each Õj has finite index, we have

Ip(y) = {i; rankZ((O ∩ Õµp(i)) · y) > 0}.(2.5)

For i = 1, . . . , g and any n, we define ideals of O by

pi,n = p̃eini ∩ O.
The reader is invited to focus on the case d = 0, when pi,n = pni,1 and the
analysis below is quite a bit simpler. In the general case, we have cpdp̃eini ⊆
pi,n; since the p̃i are relatively prime, it follows that

cg−1pd(g−1)O ⊆ pi,n +
∏

j 6=i
pj,n(2.6)

for all n. Furthermore, pnÕ ∩ O ⊆ pn−dO for n ≥ d, so that

pnO ⊆ p1,n ∩ . . . ∩ pg,n ⊆ pn−dO,(2.7)

cgpn+dgO ⊆ p1,n . . . pg,n ⊆ pn−dO(2.8)

for any n ≥ d.

Lemma 2.4. Let N be a finitely generated O-module. Fix α ∈ O and
x ∈ N . Suppose that there is an index i and non-negative integers a, b such
that :

(1) α 6∈ pi,a;
(2) x 6∈ pi,bN ;
(3) N [pa+d] ⊆ pbN .

Then αx 6∈ pa+b+dN .

Proof. We first replace O by lim←−O/pi,n, N by lim←−N/pi,n, and Õ by
lim←−Õ/p̃

n
i . Let p̃ denote the maximal ideal of Õ, so that p̃ei = pÕ, and set

pn = p̃ein ∩ O. With this notation we have α 6∈ pa and x 6∈ pbN , and it
suffices to prove that αx 6∈ pa+b+dN . Note that α 6∈ p̃eia, so that there is
some β ∈ Õ with αβ = pa.

Set C = Õ/O and Ñ = N ⊗O Õ; C is killed by pd and there is an exact
sequence

TorO1 (N,C)→ N
ι→ Ñ → N ⊗O C → 0.(2.9)

Suppose now that αx ∈ pa+b+dN . Applying ι and multiplying by β, we find
that paι(x) ∈ pa+b+dÑ . By (2.9) we have pdÑ ⊆ ι(N), so that this implies
that pax− pa+bn ∈ ker ι for some n ∈ N . Again by (2.9) this kernel is killed
by pd; we conclude that

pa+dx ∈ pa+b+dN.

Thus
x ∈ pbN +N [pa+d] ⊆ pbN ⊆ pbN.

Since x 6∈ pbN by hypothesis, this yields the desired contradiction.
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3. Reductions of Mordell–Weil groups

3.1. Galois elements. Let A be an abelian variety over a number field F .
By [8, Section 19, Corollary 2] the ring O := EndF is a reduced, finite,
flat Z-algebra. We further assume that it is commutative; we fix a rational
prime p, and we continue with the notations of Section 2 for this ring O
and prime p. By (2.6) we may fix ai,n ∈ pi,n and bi,n ∈

∏
j 6=i pj,n such that

ai,n + bi,n = cg−1pd(g−1). By (2.8) the following map is well defined:

ϕn : A[pn−d]→ A[p1,n]⊕ . . .⊕ A[pg,n], t 7→ (b1,nt, . . . , bg,nt).

Lemma 3.1. The cokernel of ϕn is bounded independent of n.

Proof. Since pn ∈ pi,n we can define a map

ψn : A[p1,n]⊕ . . .⊕ A[pg,n]→ A[pn−d], (t1, . . . , tg) 7→ pd(t1 + . . .+ tg).

As cg−1pd(g−1)−bi,n ∈ pi,n, the map ϕn◦ψn is just multiplication by cg−1pdg.
The lemma follows from this.

For an O-submodule Γ of A(F ), we now write

λΓpi,n+d
: gpn(Γ )→ HomO(Γ,A[pi,n+d])

for the composition of λΓpn with ϕn+d and projection to A[pi,n+d]. In the
next lemma we use the natural map gpn(Γ ) → gpm(Γ ) (corresponding to
multiplication by pn−m from HomO(Γ,A[pi,n+d]) to HomO(Γ,A[pi,m+d])) to
regard λΓpi,m+d

as a map from gpn(Γ ) for n ≥ m.

Lemma 3.2. Let y1, . . . , yr be an O-pre-basis of A(F ). Then there is an
integer b such that for all sufficiently large n there is a σn ∈ gpn(A(F )) with

λ
O·yj
pn (σn) = 0 for j = 2, . . . , r; λO·y1

pi,b (σn) 6= 0 for all i ∈ Ip(y1).

Proof. The cokernel of the natural map

π : HomO(A(F ), A[pn])→
r⊕

j=1

HomO(O · yj , A[pn])

is bounded independent of n by the definition of a pre-basis. Combined with
Proposition 1.2, this implies that the cokernel of

π ◦ λA(F )
pn : gpn(A(F ))→

r⊕

j=1

HomO(O · yj , A[pn])

is bounded independent of n. Finally, by Lemma 3.1 we conclude that the
cokernel of the map

(3.1) gpn(A(F ))→
( ⊕

i∈Ip(y1)

HomO(O · y1, A[pi,n+d])
)
⊕
( r⊕

j=2

HomO(O · yj , A[pn])
)

is bounded independent of n.
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By the definition of the set Ip(yi), for each i ∈ Ip(y1) there is some
m > 0 such that pn+d−m HomO(O · y1, A[pi,n+d]) 6= 0 for sufficiently large n.
(That is, these groups grow with n.) Since the cokernel of (3.1) is bounded,
it follows that there is an integer b such that for sufficiently large n there is
σn ∈ gpn(A(F )) with

σn|HomO(O·yj ,A[pn]) = 0 for j = 2, . . . , r;

pn+d−bσn|HomO(O·y1,A[pi,n+d]) 6= 0 for all i ∈ Ip(y1).

By the remarks preceding the lemma, this σn is the required element of
gpn(A(F )).

Lemma 3.3. Let y1, . . . , yr be an O-pre-basis of A(F ). Then there is an
integer b such that for all sufficiently large n there are infinitely many places
w of Fpn with

redwyj ∈ pnA(kw) for j = 2, . . . , r; redwy1 6∈ pi,bA(kw) for i ∈ Ip(y1).

Proof. Let n be sufficiently large and fix σn as in Lemma 3.2. If w is a
place of Fpn with Frobw = σn in gpn(A(F )), then w satisfies the conditions
of the lemma by Lemmas 1.3 and 1.4. Since the Chebotarev density theorem
guarantees the existence of infinitely many such w, the lemma follows.

3.2. Reduction of subgroups. We are now in a position to prove our main
result.

Proposition 3.4. Let A be an abelian variety over a number field F ;
assume that O = EndFA is commutative. Fix a rational prime p and let Σ
be a subgroup of A(F ) containing A(F )tors. Suppose that x ∈ A(F ) is such
that

redvx ∈ redvΣ(3.2)

for almost all places v of F . Then x lies in Σ ⊗ Z(p).

Proof. Suppose that x 6∈ Σ⊗Z(p). By Proposition 2.3 we can then choose
an O-pre-basis y1, . . . , yr of A(F ) such that there is an integer a with

ψ1(x) 6∈ ψ1(Σ) + paO.(3.3)

Let b be the integer determined by y1, . . . , yr in Lemma 3.3 and fix
n > a + b + 2d. Let w be a place of Fpn as in Lemma 3.3; by (3.2) we
may further assume that there is a y ∈ Σ with redwx = redwy. Multiplying
by η, by (2.4) we have

ψ1(x) redwy1 + . . .+ ψr(x) redwyr = ψ1(y) redwy1 + . . .+ ψr(y) redwyr.

Thus

(ψ1(x)− ψ1(y)) redwy1 ∈ pnA(kw)(3.4)

by the definition of w.
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Set α = ψ1(x) − ψ1(y); by (3.3) and (2.7), α 6∈ pi,a+d for some i. Fix
such an i. Since α ∈ imψ1, by (2.5) we have i ∈ Ip(y1); thus we also have
redwy1 6∈ pi,bA(kw) by the definition of w. Since A(kw)[pa+2d] ⊆ pbA(kw)
(as A[pn] ⊆ A(kw) and a+ b+ 2d < n), we may therefore apply Lemma 2.4
to conclude that α redw y1 6∈ pa+b+2dA(kw). Since a + b + 2d < n, this
contradicts (3.4), and thus proves the proposition.

Corollary 3.5. Let A be an abelian variety over a number field F and
assume that EndFA is commutative. Let Σ be a subgroup of A(F ) containing
A(F )tors and suppose that x ∈ A(F ) is such that redvx ∈ redvΣ for almost
all places v of Σ. Then x ∈ Σ.

Proof. This is immediate from Proposition 3.4 applied for all primes p.
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