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On a conjecture of Sarkozy and Szemerédi
by

YoNG-GAO CHEN and JIN-Hul FANG (Nanjing)

Two infinite sequences A, B of non-negative integers are called infinite
additive complements if their sum contains all sufficiently large integers. For
a set T of non-negative integers, let T'(x) be the counting function of 7.
That is, T'(z) = |T'N [0, z]|.

It is easy to see that, for infinite additive complements A, B, we have

lim inf M

T—00 xT

> 1.

In 1994, Sarkozy and Szemerédi [14] proved the following deep result
which was conjectured by Danzer in 1964 ([2], see also [5, p. 10] and
[9, p. 75]).

THEOREM (Sarkozy and Szemerédi, 1994). For infinite additive comple-
ments A, B, if

(0.1) lim sup Al@)B(z) <1,
T—00 x

then

(0.2) A(x)B(x) —x — 00 as x — o0.

Sérkozy and Szemerédi [14] p. 245] posed the following conjecture.

CONJECTURE 0.1. There exist infinite additive complements A, B satis-

fying such that
(0.3) A(x)B(z) — x = O(min{A(z), B(x)}).

In this paper, we disprove this conjecture. In fact, the following stronger
result is proved.
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THEOREM 0.2. For infinite additive complements A, B, if (0.1]) holds,
then, for any given M > 1, we have

A(x)B(x) — 2 > (min{A(z), B(x) )"
for all sufficiently large integers x.

For related results, one may refer to [1], [6], [7], [8], [10], [12] and [13].

1. Preliminary lemmas

LEmMMA 1.1 (Narkiewicz [11]). For infinite additive complements A, B,
if (0.1) holds, then either
B(2z)

. A(22) B . B
A A(z) =1 or lim B(z) =1

LEMMA 1.2. Let S = {s1,82,...} and T = {t1,t2,...} be finite se-
quences of integers, and let r(S,T,n) denote the number of solutions n =
si+tj, si € S, t; €T, and 0(S,T,n) denote the number of solutions
n=t;—s;,s €5,t;€T. Then

> wET D) = Y 6T - ).

r(S,T,n)>1 4(S,Tyn)>1

Proof. Let

Ml - {(ilajlviQan) ©Siys Sin S S) tjptjz S T) 7:1 7& 7:2 or jl ?é j27
sip +tj, = Si, + tj2}a

My = {(i1, j1,92,J2) : 81,81, € S, Ly, tj, €T, i1 # iz or j1 # jo,
ljy — Siy = tj;, — 3i2}'

Then M; = M3 and
|My| = (S8, T,n)(r(S,T,n) — 1)

n

= > ST -1+ > (r(8,T,n) 1),

r(S,T,n)>1 r(S,T,n)>1

M| = 6(S,T,n)(5(S,T,n) — 1)

= > (ST -1+ > (8(8,T,n) —1).

5(S,Tn)>1 5(S,Tn)>1
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It is clear that

(> (T(S,T,n)—l))QZ S ((8,T,n) — 1)

r(S,Tn)>1 r(S,T,n)>1
1 ) 1
>5( X @S T-0P+ Y (ST -1) = ;M|
r(S,T,n)>1 r(S,T,n)>1
_1 _1 2 B
—shl=5( > @S T =12+ Y @S Tm) - 1)
5(S,Tn)>1 5(S,Tn)>1

> > (8(S,Tyn)—1). =

6(S,T,n)>1
REMARK. Similarly,

(= (6(S,T,n)—1))22 S (8T - 1),

0(S,Tn)>1 r(S,T,n)>1
2. Proof of Theorem We will prove the following general theo-
rem.

THEOREM 2.1. Let A and B be infinite additive complements such that
(0.1)) holds. Suppose that h is a function on (0,00) satisfying:

(a) h(xz) = 00 as x — o0;
(b) h(min{A(z), B(z)}) < 2\/z for all sufficiently large integers .

Then
(2.1) A(z)B(x) — x > h(min{A(x), B(z)})
for all sufficiently large integers x.

Firstly we derive Theorem from Theorem Suppose that The-
orem [2.1]is true. Take h(z) = ™. By Lemma m we may assume that

lim A(2r)
200 A(;c)

Then A(z) < 2'/CM+2) for all sufficiently large . Thus
h(min{A(z), B(z)}) < h(A(z)) = A(x)M < M/CMF2) < 2./
for all sufficiently large x. Now Theorem [0.2] follows from Theorem [2.1]

Proof of Theorem . Let fz(n) be the number of solutions of a+b = n,
a€ A,a<z,be Bandb < x. Since A, B are infinite additive complements,
we have

=1

fz(n)>1, np<n<uz.
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Hence

(2.2) A(z)B(x) > = — ny.

By (0.1)) and (2.2), we have

(2.3) tim ADB@
T—00 €T

By Lemma (1.1} we may assume that

(2.4) lim 12((2;)) ~ 1.
By and , we have
B(2x) B(2x)A(2x) 2z A(z)

25)  Jlim ey = i A Bl A(q)

By and ,
(2.6) Alz) <z, B(z) > 2%/*
for all sufficiently large x. Then

min{A(z), B(z)} = A(x)

for all sufficiently large x.
If (2.1) does not hold, then

(2.7) A(z)B(z) — z < h(A(z))

for infinitely many positive integers .

Now we cancel the multiplicities of B (B is a sequence, and some integers
may appear in B many times). Let B’ be the set of all integers of B. Then
B’ can be seen as a strictly increasing sequence. Thus B'(¢+1) < B'(¢) +1
for all integers ¢. By , we have B(z) < oo for all z > 0. This implies
that each integer appears in B at most finitely many times. So B’ is an
infinite set.

Since the sum of A and B contains all sufficiently large integers, it follows
that so does the sum of A and B’. That is, A and B’ are also infinite additive
complements. It is clear that

!/
(2.8) lim sup Al)B(z) < lim sup

T—00 X T—00

Similar to (2.3), we have

A@B@) _ |

A(z)B’
(2.9) lim A@B@)
T—00 T
By (24) and (29), as in (&3,
!/
(2.10) lim 220 _ o

Z—00 B’(x)



A conjecture of Sdrkézy and Szemerédi 51

By (2.4) and (2.10), we find that

(2.11) A(z) <24, Bl'(x) > 2%
for all sufficiently large 2. Then min{A(x), B'(z)} = A(z) for all sufficiently
large x.

Since

A(x)B(z) —x < A(z)B(z) — z
for all integers z, it follows from (2.7 that
(2.12) A(z)B'(z) — z < h(A(x))

for infinitely many positive integers x.
Suppose that 1 < xg < --- are all positive integers with

(2.13) A(ay)B'(zg) — 21, < h(A(zy)).
By the assumption on A,
(2.14) h(A(zy)) < 2/, < 2%
By (2.11) and (2.14),
(2.15) B'(zy) — 2h(A(z)) > xi“ = 23:,1!2 — 00 as k — oo.
Let uy be the largest integer with
B'(ug) < B'(x1) — 2h(A(zy)).

It follows from ([2.15) that uy exists for sufficiently large k and uy — oo as
k — oo. Since h(A(xg)) — oo as k — oo, we know that u < xj for all
sufficiently large integers k. By the definition of ug, we have

B'(ug) + 1> B'(uy + 1) > B'(xy) — 2h(A(zg)).

Thus
(2.16) 2h(A(zy)) < B'(zg) — B'(ug) < 2h(A(zg)) + 1.
By the assumption on h and ,
1/2
2
0< tim ZMAGE) g 20
k—o0 B’(:Uk) k—o0 xZ/‘l
It follows from ([2.16) that
- B'(ug)
2.1 | = 1.
(2.17) S0 B ()

Thus, by (2.10) and (2.17]),

. B (ug) . Bl(ug) .. B'(xy)
lim — N = lim - lim — 1
k—o00 B/(§ﬂfk) k—oo B'(xy) k—oo B’(§xk)

=2
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So %:ck < ug < xp for all sufficiently large integers k. Thus

(2.18) A(Far) < A(ug) < A(z)
for all sufficiently large integers k. By (2.4)) and (2.18) we have
Auk)

=1.

Kmvoo A(zp)
Thus, by and ,
/ !/
Let wy, = 2 — ug. Then, by , we have wy = o(xy). By ,
2h(A(zk)) < B'(zy) — B'(ug) = B'(uy, +wyg) — B'(uy)
< B'(ug) +wg — B'(ug) = wy.

It follows from h(A(xg)) — oo as k — oo that wy — oo as k — oo. It is
clear that is equivalent to
(2.20) 2h(A(zy)) < B'(xk) — B' (2 — wi) < 2h(A(zy)) + 1.

Now we prove that A(xy) = A(wy) for all sufficiently large integers k.

Let fI(n) be the number of solutions of a+b=n,a € A, a <z, b€ B and
b < z. Since A, B’ are infinite additive complements, we have

=1.

(2.21) filn)>1, ny<n<az.
Hence
(2.22) A(z)B'(x) > x — nj,.

By (2.13)), (2.20) and (2.21]), we have

2xg

h(A(zx)) > Alwr) B (wx) — 2k = Y fr,(n) =z
n=0

> > fom+ ) D

n=ng+1 wi<a<lzy ) —wi,<b<z
a€A be B’
zg
> E 1+ g E 1 —my
n=ny+1 wi<a<zp T —wE<b<x)
acA beB’

= (A(zr) — A(wg)) (B'(zx) — B'(zx — wy)) — ng
> 2(A(zr) — A(w))h(A(zy)) — ng.
Thus
0 S A(iL‘k) — A(wk) S
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for all sufficiently large integers k. So A(xy) = A(wy) for all sufficiently
large integers k. Since wy = o(xy), we have 2wy < z for all sufficiently
large integers k. As wyp < 2wy < xp and A(xg) = A(wyg) for all suffi-
ciently large integers k, we get A(xy) = A(2wy) for all sufficiently large
integers k.

Define
D=/{(bya):beB',ac A b<xz—w, b—a>uw},
Dy ={(b,a):be B',ac A, 2w, <b<z —wg, b—a>w},
Dzz{(b,a):bEB',aeA, %wk<b§2wk,b—a>wk}.

Then Dy N Dy =0, D; UDy C D. Hence |D| > |D1| + |Da|.

For (b,a) € D1, we have a < b—wy, < xp — 2wy, < x and b > 2wy. Since
A(zy) = A(wg) for all sufficiently large integers k, we have a < wy, for all
sufficiently large integers k. Thus

Dy ={(b,a):be B, ac A 2w, <b<zp —wg, a < wg}

for all sufficiently large integers k. By (2.9) and (2.22)), noting that A(wy) =
A(zy) = A(2wy,) for all sufficiently large integers k, we have

|D1| = (B'(x1, — wy) — B'(2wy) ) A(wy)
= B'(wy) A(wy) — B'(2wi) A(wy) + (B'(xx — wy) — B'(xx)) Awy)
= B'(xx) A(zx) — B'(2wp) A(2wy) + (B'(wx — wy) — B'(z1)) A(wy)
>z — ng — 2wy + o(wy) — ( "(x1,) — B'(z — wk))A(wk).
From A(zy) = A(wy), ([2.6), and the assumption on h, we deduce
0 < (B'(xx) — B'(xx — wy)) A(wy)
< (2h(A(zk)) + 1) A(wr) = (2h(A(wk)) + 1) A(wy)
< (220/,1/2 + 1)w,1/4 = o(wy).

Hence |D1| > xp — 2wy, + o(wy).
Now we are going to estimate |Ds|. It is clear that

Dy D {(ba):be B, ac A, %wk <b<2w, a< %wk}
Thus
|Do| > A(%wk) (B'(Zwk) — B'(%wk)).

It follows from A(zr) = A(wg) and wy < %wk < 2wy, <z that A(wg) =
A(%wk) = A(2wy,) for all sufficiently large integers k. By (2.4) and (2.9)), we
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have
D12 A (3 o)
Aw)(1+ o(L) (B 2uwp) - B (3uy))
= (14 0l1)) (A B (2u) — Alwn) B ()
= (1+0(1)) (A(2wy) B (2wy) — A(gwk)B (Bwr)) = 3wk + o(wy,).
Thus
(2.23) |D| > |D1| + |Da| > mp — 2wy + 3wy, + o(wy,).

Now we derive a contradiction. Let
S={acA:a<z}, T={beB:b<z}, gn) = Z 1.

Then, for all integers n, b—a=n

f/ (’I’L) = T(Sv T, n)a g(n) < 6(87 T, n)v

Tk

where (S, T, n) and §(S, T, n) are defined as in Lemma By that lemma,

> m-n)=( ¥ T -n)

fo, (n)=1 r(S,Tn)>1
> Y (08T -1)> Y (9(n) - 1)

Noting that wy < b—a < xp — wy, for all (b,a) € D, we get

(2.24) Z 1< ) l=a 2w

)>1 W <N<Tp—wWg

It follows from (12.23)) and (2.24) that
Z(g(n)*l)zz Zl—ID! Yo

g(n)>1 g(n)>1 g(n)>1 g(n)>1

>z — 2wy, + §wk + o(wg) — (xp — 2wyg) = 2wk + o(wy).

Thus
(2.25) S () - 1) = L2 1+ o).
fo,(n)=1

Since

716 T 2xg

d fm+ D () =D+ > fi(n

n=0 n=n{+1 n=xp+1

2z

=D fr,(n) =@ +ny = Alxx) B (xx) — @ + g,
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it follows that
S (fh, () = 1) < A(w) B () — i +
o (m)>1

Thus, by (2.13]), A(xr) = A(wy) and the assumption on h, for all sufficiently
large integers k, we have

> (f1(n) = 1) < Alzw) B (wr) — xx + ng
Fo =t < h(A(zp)) + b = h(A(wg)) + nly < gmmg.

It follows from ([2.25)) that

f@(l +o(1)) < %M—l— no

for all sufficiently large integers k, a contradiction.
This completes the proof of Theorem .

3. Additive complements with more than two sequences. Infinite

sequences Ai,..., A, of non-negative integers are called infinite additive
complements if their sum contains all sufficiently large integers.
It is easy to see that, for infinite additive complements Ay, ..., A,, we
have
A(z)--- A
lim ng ALE) - Ar@)
T—00 x
THEOREM 3.1. For infinite additive complements A1, ..., Ay, if
A(z)--- A
Jimn sup ALE) - Ar(@)
T—00 T

then, for any given M > 1, we have

M) Ap) —a > <mjn{W’.”,W}>M

for all sufficiently large integers x.
Proof. Given ¢ with 1 <i<r,let A= A; and
B=A+ - +A1+Apn++ 4

:{ XT: aj:aj € Aj (1§j§73j7§@')}-

=15
Since Ajp,..., A, are infinite additive complements, so are A and B. It is
clear that (
Ai(x)--- Ap(x)
B(z
(z) < A7)
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Hence

imsup A BE@) oo A A@)

T—00 x T—00 i

This implies that (0.1]) holds. Since A, B are infinite additive complements,

we have
A(z)B
lim inf M > 1.
Tr—00 €T
Thus
A(z)B
(3.1) lim (x)x (@) _
xr o0
By Lemma either
. A(22) B . B(2x) B
xl;ngo A =1 or xl;ngo Bl) =1.
By (3.1)),
A(22)B(2 A(2x)B(2 2
i AG)BQ) - AQE)BR) T 9

z—oo  A(z)B(x) T—00 2z z—o0 A(x)B(x)
Thus, either

. AQ2r) . AQ2w)
mll)nolo A =1 or xh_{glo Al =2.
Hence, for every 1,
1 1,2}.
Jm @ € {1,2}
Let
a; = lim M, i=1,...,r
Since A1,..., A, are infinite additive complements and
limn sup ALE) - Ar(@)
T—00 x

it follows that
A A,
(3.2) lim ALE) - Ar(@)

T—00 T

=1.

Hence aj -+ a, = 2. Since «; € {1,2}, exactly one of the «; is 2. Without
loss of generality, we may assume that

ap=--=a,_1=1, «a=2.
Now, we take A= A, and B= A1 +---+ A,_1. Then
A(2x) B(2x)

=1.
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So A(x) > B(z) for all x > x¢. By Theorem 0.2
A(x)B(z) —x > B(z)*M
for all sufficiently large . It follows from (3.1)) and (3.2 that

1, A1 ({E) e Arfl(l')
500 B(z)

Thus there exists ug > xg such that
B(z)? > Ai(z) - Arq(x), = > ug.
Noting that B(z) < Aj(z)--- Ar_1(x), we arrive at
Ay(z)- - Ap(z) — 2 > A(z)B(z) — 2 > B(z)*M
> (Ai(z)--- Ar_l(x))M, T > up.
This completes the proof of Theorem "

=1.

4. Final remarks. We pose several problems for further research.

PROBLEM 4.1. Is there a non-decreasing function l(x) with [(z) — oo
as x — oo such that, for infinite additive complements A, B, if (0.1]) holds,
then

A(z)B(x) — z > l(x)
for all sufficiently large integers x?
The following Problem [4.2]is a special case of Problem

PROBLEM 4.2. Is there a positive real number 0 such that, for infinite
additive complements A, B, if (0.1 holds, then

A(x)B(z) —x > a°
for all sufficiently large integers x?

PROBLEM 4.3. For each integer r > 3, find infinite additive complements
Ay, ..., A, such that
L Ai@) e Ay()
T—00 x
For r = 2, Danzer [2] solved Problem which gives a negative answer
to a conjecture of Erdés (see [3], [4]).
Chen and Fang [6], [8] proved that, for infinite additive complements
A, B, if

=1.

limsupM <3—-V3 or limsupM

T—>00 x T—00 X

then A(z)B(x) —x — 0o as  — 0o. On the other hand, Chen and Fang [I]
proved that, for any € > 0, there exist infinite additive complements A, B

> 2,



58

Y .-G. Chen and J.-H. Fang

such that

2—€<limsupM<2

T—00

and A(x)B(z) —x =1 for infinitely many positive integers z.
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