## On a conjecture of Sárközy and Szemerédi

by

YONG-GAO CHEN and JIN-HUI FANG (Nanjing)

Two infinite sequences A, B of non-negative integers are called *infinite* additive complements if their sum contains all sufficiently large integers. For a set T of non-negative integers, let T(x) be the counting function of T. That is,  $T(x) = |T \cap [0, x]|$ .

It is easy to see that, for infinite additive complements A, B, we have

$$\liminf_{x \to \infty} \frac{A(x)B(x)}{x} \ge 1.$$

In 1994, Sárközy and Szemerédi [14] proved the following deep result which was conjectured by Danzer in 1964 ([2], see also [5, p. 10] and [9, p. 75]).

Theorem (Sárközy and Szemerédi, 1994). For infinite additive complements A, B, if

(0.1) 
$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} \le 1,$$

then

(0.2) 
$$A(x)B(x) - x \to \infty$$
 as  $x \to \infty$ .

Sárközy and Szemerédi [14, p. 245] posed the following conjecture.

Conjecture 0.1. There exist infinite additive complements A, B satisfying (0.1) such that

(0.3) 
$$A(x)B(x) - x = O(\min\{A(x), B(x)\}).$$

In this paper, we disprove this conjecture. In fact, the following stronger result is proved.

<sup>2010</sup> Mathematics Subject Classification: Primary 11B13, 11B34; Secondary 05A17. Key words and phrases: additive complements, sequences, counting functions.

Theorem 0.2. For infinite additive complements A, B, if (0.1) holds, then, for any given M > 1, we have

$$A(x)B(x) - x \ge (\min\{A(x), B(x)\})^M$$

for all sufficiently large integers x.

For related results, one may refer to [1], [6], [7], [8], [10], [12] and [13].

## 1. Preliminary lemmas

Lemma 1.1 (Narkiewicz [11]). For infinite additive complements A, B, if (0.1) holds, then either

$$\lim_{x\to\infty}\frac{A(2x)}{A(x)}=1\quad or\quad \lim_{x\to\infty}\frac{B(2x)}{B(x)}=1.$$

LEMMA 1.2. Let  $S = \{s_1, s_2, ...\}$  and  $T = \{t_1, t_2, ...\}$  be finite sequences of integers, and let r(S, T, n) denote the number of solutions  $n = s_i + t_j$ ,  $s_i \in S$ ,  $t_j \in T$ , and  $\delta(S, T, n)$  denote the number of solutions  $n = t_j - s_i$ ,  $s_i \in S$ ,  $t_j \in T$ . Then

$$\left(\sum_{r(S,T,n)\geq 1} (r(S,T,n)-1)\right)^2 \geq \sum_{\delta(S,T,n)\geq 1} (\delta(S,T,n)-1).$$

Proof. Let

$$\begin{split} M_1 &= \{(i_1,j_1,i_2,j_2): s_{i_1}, s_{i_2} \in S, \, t_{j_1}, t_{j_2} \in T, \, i_1 \neq i_2 \text{ or } j_1 \neq j_2, \\ s_{i_1} + t_{j_1} &= s_{i_2} + t_{j_2} \}, \\ M_2 &= \{(i_1,j_1,i_2,j_2): s_{i_1}, s_{i_2} \in S, \, t_{j_1}, t_{j_2} \in T, \, i_1 \neq i_2 \text{ or } j_1 \neq j_2, \\ t_{j_2} - s_{i_1} &= t_{j_1} - s_{i_2} \}. \end{split}$$

Then  $M_1 = M_2$  and

$$|M_1| = \sum_{n} r(S, T, n)(r(S, T, n) - 1)$$

$$= \sum_{r(S, T, n) \ge 1} (r(S, T, n) - 1)^2 + \sum_{r(S, T, n) \ge 1} (r(S, T, n) - 1),$$

$$|M_2| = \sum_{n} \delta(S, T, n)(\delta(S, T, n) - 1)$$

$$= \sum_{\delta(S, T, n) > 1} (\delta(S, T, n) - 1)^2 + \sum_{\delta(S, T, n) > 1} (\delta(S, T, n) - 1).$$

It is clear that

$$\begin{split} & \Big( \sum_{r(S,T,n) \geq 1} (r(S,T,n)-1) \Big)^2 \geq \sum_{r(S,T,n) \geq 1} (r(S,T,n)-1)^2 \\ & \geq \frac{1}{2} \Big( \sum_{r(S,T,n) \geq 1} (r(S,T,n)-1)^2 + \sum_{r(S,T,n) \geq 1} (r(S,T,n)-1) \Big) = \frac{1}{2} |M_1| \\ & = \frac{1}{2} |M_2| = \frac{1}{2} \Big( \sum_{\delta(S,T,n) \geq 1} (\delta(S,T,n)-1)^2 + \sum_{\delta(S,T,n) \geq 1} (\delta(S,T,n)-1) \Big) \\ & \geq \sum_{\delta(S,T,n) \geq 1} (\delta(S,T,n)-1). \quad \blacksquare \end{split}$$

Remark. Similarly,

$$\left(\sum_{\delta(S,T,n)\geq 1} (\delta(S,T,n)-1)\right)^2 \geq \sum_{r(S,T,n)\geq 1} (r(S,T,n)-1).$$

**2. Proof of Theorem 0.2.** We will prove the following general theorem.

THEOREM 2.1. Let A and B be infinite additive complements such that (0.1) holds. Suppose that h is a function on  $(0, \infty)$  satisfying:

- (a)  $h(x) \to \infty$  as  $x \to \infty$ ;
- (b)  $h(\min\{A(x), B(x)\}) \leq \frac{2}{3}\sqrt{x}$  for all sufficiently large integers x.

Then

(2.1) 
$$A(x)B(x) - x \ge h(\min\{A(x), B(x)\})$$

for all sufficiently large integers x.

Firstly we derive Theorem 0.2 from Theorem 2.1. Suppose that Theorem 2.1 is true. Take  $h(x) = x^M$ . By Lemma 1.1, we may assume that

$$\lim_{x \to \infty} \frac{A(2x)}{A(x)} = 1.$$

Then  $A(x) \leq x^{1/(2M+2)}$  for all sufficiently large x. Thus

$$h(\min\{A(x), B(x)\}) \le h(A(x)) = A(x)^M \le x^{M/(2M+2)} < \frac{2}{3}\sqrt{x}$$

for all sufficiently large x. Now Theorem 0.2 follows from Theorem 2.1.

Proof of Theorem 2.1. Let  $f_x(n)$  be the number of solutions of a+b=n,  $a \in A, a \le x, b \in B$  and  $b \le x$ . Since A, B are infinite additive complements, we have

$$f_x(n) \ge 1, \quad n_0 \le n \le x.$$

Hence

$$(2.2) A(x)B(x) \ge x - n_0.$$

By (0.1) and (2.2), we have

(2.3) 
$$\lim_{x \to \infty} \frac{A(x)B(x)}{x} = 1.$$

By Lemma 1.1, we may assume that

(2.4) 
$$\lim_{x \to \infty} \frac{A(2x)}{A(x)} = 1.$$

By (2.3) and (2.4), we have

(2.5) 
$$\lim_{x \to \infty} \frac{B(2x)}{B(x)} = \lim_{x \to \infty} \frac{B(2x)A(2x)}{2x} \frac{2x}{A(x)B(x)} \frac{A(x)}{A(2x)} = 2.$$

By (2.4) and (2.5),

(2.6) 
$$A(x) < x^{1/4}, \quad B(x) > x^{3/4}$$

for all sufficiently large x. Then

$$\min\{A(x), B(x)\} = A(x)$$

for all sufficiently large x.

If (2.1) does not hold, then

$$(2.7) A(x)B(x) - x < h(A(x))$$

for infinitely many positive integers x.

Now we cancel the multiplicities of B (B is a sequence, and some integers may appear in B many times). Let B' be the set of all integers of B. Then B' can be seen as a strictly increasing sequence. Thus  $B'(\ell+1) \leq B'(\ell)+1$  for all integers  $\ell$ . By (2.3), we have  $B(x) < \infty$  for all x > 0. This implies that each integer appears in B at most finitely many times. So B' is an infinite set.

Since the sum of A and B contains all sufficiently large integers, it follows that so does the sum of A and B'. That is, A and B' are also infinite additive complements. It is clear that

(2.8) 
$$\limsup_{x \to \infty} \frac{A(x)B'(x)}{x} \le \limsup_{x \to \infty} \frac{A(x)B(x)}{x} \le 1.$$

Similar to (2.3), we have

(2.9) 
$$\lim_{x \to \infty} \frac{A(x)B'(x)}{x} = 1.$$

By (2.4) and (2.9), as in (2.5),

(2.10) 
$$\lim_{x \to \infty} \frac{B'(2x)}{B'(x)} = 2.$$

By (2.4) and (2.10), we find that

(2.11) 
$$A(x) < x^{1/4}, \quad B'(x) > x^{3/4}$$

for all sufficiently large x. Then  $\min\{A(x), B'(x)\} = A(x)$  for all sufficiently large x.

Since

$$A(x)B'(x) - x \le A(x)B(x) - x$$

for all integers x, it follows from (2.7) that

(2.12) 
$$A(x)B'(x) - x < h(A(x))$$

for infinitely many positive integers x.

Suppose that  $x_1 < x_2 < \cdots$  are all positive integers with

$$(2.13) A(x_k)B'(x_k) - x_k < h(A(x_k)).$$

By the assumption on h,

$$(2.14) h(A(x_k)) \le \frac{2}{3}\sqrt{x_k} < x_k^{1/2}.$$

By (2.11) and (2.14),

(2.15) 
$$B'(x_k) - 2h(A(x_k)) > x_k^{3/4} - 2x_k^{1/2} \to \infty \quad \text{as } k \to \infty.$$

Let  $u_k$  be the largest integer with

$$B'(u_k) \le B'(x_k) - 2h(A(x_k)).$$

It follows from (2.15) that  $u_k$  exists for sufficiently large k and  $u_k \to \infty$  as  $k \to \infty$ . Since  $h(A(x_k)) \to \infty$  as  $k \to \infty$ , we know that  $u_k < x_k$  for all sufficiently large integers k. By the definition of  $u_k$ , we have

$$B'(u_k) + 1 \ge B'(u_k + 1) > B'(x_k) - 2h(A(x_k)).$$

Thus

$$(2.16) 2h(A(x_k)) \le B'(x_k) - B'(u_k) < 2h(A(x_k)) + 1.$$

By the assumption on h and (2.11),

$$0 \le \lim_{k \to \infty} \frac{2h(A(x_k))}{B'(x_k)} \le \lim_{k \to \infty} \frac{2x_k^{1/2}}{x_k^{3/4}} = 0.$$

It follows from (2.16) that

(2.17) 
$$\lim_{k \to \infty} \frac{B'(u_k)}{B'(x_k)} = 1.$$

Thus, by (2.10) and (2.17),

$$\lim_{k \to \infty} \frac{B'(u_k)}{B'(\frac{1}{2}x_k)} = \lim_{k \to \infty} \frac{B'(u_k)}{B'(x_k)} \lim_{k \to \infty} \frac{B'(x_k)}{B'(\frac{1}{2}x_k)} = 2.$$

So  $\frac{1}{2}x_k < u_k < x_k$  for all sufficiently large integers k. Thus

$$(2.18) A(\frac{1}{2}x_k) \le A(u_k) \le A(x_k)$$

for all sufficiently large integers k. By (2.4) and (2.18) we have

$$\lim_{k \to \infty} \frac{A(u_k)}{A(x_k)} = 1.$$

Thus, by (2.9) and (2.17),

(2.19) 
$$\lim_{k \to \infty} \frac{u_k}{x_k} = \lim_{k \to \infty} \frac{u_k}{A(u_k)B'(u_k)} \frac{A(u_k)B'(u_k)}{A(x_k)B'(x_k)} \frac{A(x_k)B'(x_k)}{x_k} = 1.$$

Let  $w_k = x_k - u_k$ . Then, by (2.19), we have  $w_k = o(x_k)$ . By (2.16),

$$2h(A(x_k)) \le B'(x_k) - B'(u_k) = B'(u_k + w_k) - B'(u_k)$$
  
 
$$\le B'(u_k) + w_k - B'(u_k) = w_k.$$

It follows from  $h(A(x_k)) \to \infty$  as  $k \to \infty$  that  $w_k \to \infty$  as  $k \to \infty$ . It is clear that (2.16) is equivalent to

$$(2.20) 2h(A(x_k)) \le B'(x_k) - B'(x_k - w_k) < 2h(A(x_k)) + 1.$$

Now we prove that  $A(x_k) = A(w_k)$  for all sufficiently large integers k. Let  $f'_x(n)$  be the number of solutions of a + b = n,  $a \in A$ ,  $a \le x$ ,  $b \in B'$  and  $b \le x$ . Since A, B' are infinite additive complements, we have

$$(2.21) f_x'(n) \ge 1, n_0' \le n \le x.$$

Hence

$$(2.22) A(x)B'(x) \ge x - n_0'.$$

By (2.13), (2.20) and (2.21), we have

$$h(A(x_k)) > A(x_k)B'(x_k) - x_k = \sum_{n=0}^{2x_k} f'_{x_k}(n) - x_k$$

$$\geq \sum_{n=n'_0+1}^{x_k} f'_{x_k}(n) + \sum_{\substack{w_k < a \le x_k \\ a \in A}} \sum_{x_k - w_k < b \le x_k} 1 - x_k$$

$$\geq \sum_{n=n'_0+1}^{x_k} 1 + \sum_{\substack{w_k < a \le x_k \\ a \in A}} \sum_{x_k - w_k < b \le x_k} 1 - x_k$$

$$= (A(x_k) - A(w_k)) (B'(x_k) - B'(x_k - w_k)) - n'_0$$

$$\geq 2(A(x_k) - A(w_k)) h(A(x_k)) - n'_0.$$

Thus

$$0 \le A(x_k) - A(w_k) \le \frac{1}{2} + \frac{n'_0}{2h(A(x_k))} < 1$$

for all sufficiently large integers k. So  $A(x_k) = A(w_k)$  for all sufficiently large integers k. Since  $w_k = o(x_k)$ , we have  $2w_k < x_k$  for all sufficiently large integers k. As  $w_k < 2w_k < x_k$  and  $A(x_k) = A(w_k)$  for all sufficiently large integers k, we get  $A(x_k) = A(2w_k)$  for all sufficiently large integers k.

Define

$$D = \{(b, a) : b \in B', a \in A, b \le x_k - w_k, b - a > w_k\},$$

$$D_1 = \{(b, a) : b \in B', a \in A, 2w_k < b \le x_k - w_k, b - a > w_k\},$$

$$D_2 = \{(b, a) : b \in B', a \in A, \frac{3}{2}w_k < b \le 2w_k, b - a > w_k\}.$$

Then  $D_1 \cap D_2 = \emptyset$ ,  $D_1 \cup D_2 \subset D$ . Hence  $|D| \ge |D_1| + |D_2|$ .

For  $(b, a) \in D_1$ , we have  $a < b - w_k \le x_k - 2w_k \le x_k$  and  $b > 2w_k$ . Since  $A(x_k) = A(w_k)$  for all sufficiently large integers k, we have  $a \le w_k$  for all sufficiently large integers k. Thus

$$D_1 = \{(b, a) : b \in B', a \in A, 2w_k < b \le x_k - w_k, a \le w_k\}$$

for all sufficiently large integers k. By (2.9) and (2.22), noting that  $A(w_k) = A(x_k) = A(2w_k)$  for all sufficiently large integers k, we have

$$|D_1| = (B'(x_k - w_k) - B'(2w_k))A(w_k)$$

$$= B'(x_k)A(w_k) - B'(2w_k)A(w_k) + (B'(x_k - w_k) - B'(x_k))A(w_k)$$

$$= B'(x_k)A(x_k) - B'(2w_k)A(2w_k) + (B'(x_k - w_k) - B'(x_k))A(w_k)$$

$$\geq x_k - n_0 - 2w_k + o(w_k) - (B'(x_k) - B'(x_k - w_k))A(w_k).$$

From  $A(x_k) = A(w_k)$ , (2.6), (2.20) and the assumption on h, we deduce

$$0 \le (B'(x_k) - B'(x_k - w_k))A(w_k)$$

$$< (2h(A(x_k)) + 1)A(w_k) = (2h(A(w_k)) + 1)A(w_k)$$

$$\le (2w_k^{1/2} + 1)w_k^{1/4} = o(w_k).$$

Hence  $|D_1| \ge x_k - 2w_k + o(w_k)$ .

Now we are going to estimate  $|D_2|$ . It is clear that

$$D_2 \supseteq \{(b, a) : b \in B', a \in A, \frac{3}{2}w_k < b \le 2w_k, a \le \frac{1}{2}w_k\}.$$

Thus

$$|D_2| \ge A(\frac{1}{2}w_k)(B'(2w_k) - B'(\frac{3}{2}w_k)).$$

It follows from  $A(x_k) = A(w_k)$  and  $w_k < \frac{3}{2}w_k < 2w_k < x_k$  that  $A(w_k) = A(\frac{3}{2}w_k) = A(2w_k)$  for all sufficiently large integers k. By (2.4) and (2.9), we

have

$$|D_2| \ge A\left(\frac{1}{2}w_k\right) \left(B'(2w_k) - B'\left(\frac{3}{2}w_k\right)\right)$$

$$= A(w_k)(1 + o(1)) \left(B'(2w_k) - B'\left(\frac{3}{2}w_k\right)\right)$$

$$= (1 + o(1)) \left(A(w_k)B'(2w_k) - A(w_k)B'\left(\frac{3}{2}w_k\right)\right)$$

$$= (1 + o(1)) \left(A(2w_k)B'(2w_k) - A\left(\frac{3}{2}w_k\right)B'\left(\frac{3}{2}w_k\right)\right) = \frac{1}{2}w_k + o(w_k).$$

Thus

$$(2.23) |D| \ge |D_1| + |D_2| \ge x_k - 2w_k + \frac{1}{2}w_k + o(w_k).$$

Now we derive a contradiction. Let

Now we derive a contradiction. Let 
$$S = \{a \in A : a \leq x_k\}, \quad T = \{b \in B' : b \leq x_k\}, \quad g(n) = \sum_{\substack{(b,a) \in D \\ b = n}} 1.$$

Then, for all integers n,

$$f'_{x_k}(n) = r(S, T, n), \quad g(n) \le \delta(S, T, n),$$

where r(S, T, n) and  $\delta(S, T, n)$  are defined as in Lemma 1.2. By that lemma,

$$\begin{split} \left(\sum_{f'_{x_k}(n) \geq 1} (f'_{x_k}(n) - 1)\right)^2 &= \left(\sum_{r(S,T,n) \geq 1} (r(S,T,n) - 1)\right)^2 \\ &\geq \sum_{\delta(S,T,n) > 1} (\delta(S,T,n) - 1) \geq \sum_{g(n) > 1} (g(n) - 1). \end{split}$$

Noting that  $w_k < b - a \le x_k - w_k$  for all  $(b, a) \in D$ , we get

(2.24) 
$$\sum_{g(n) \ge 1} 1 \le \sum_{w_k < n \le x_k - w_k} 1 = x_k - 2w_k.$$

It follows from (2.23) and (2.24) that

$$\begin{split} \sum_{g(n) \geq 1} (g(n) - 1) &= \sum_{g(n) \geq 1} g(n) - \sum_{g(n) \geq 1} 1 = |D| - \sum_{g(n) \geq 1} 1 \\ &\geq x_k - 2w_k + \frac{1}{2}w_k + o(w_k) - (x_k - 2w_k) = \frac{1}{2}w_k + o(w_k). \end{split}$$

Thus

(2.25) 
$$\sum_{f'_{x_k}(n) \ge 1} (f'_{x_k}(n) - 1) \ge \frac{\sqrt{2}}{2} \sqrt{w_k} (1 + o(1)).$$

Since

$$\sum_{n=0}^{n'_0} f'_{x_k}(n) + \sum_{n=n'_0+1}^{x_k} (f'_{x_k}(n) - 1) + \sum_{n=x_k+1}^{2x_k} f'_{x_k}(n)$$

$$= \sum_{n=0}^{2x_k} f'_{x_k}(n) - x_k + n'_0 = A(x_k)B'(x_k) - x_k + n'_0,$$

it follows that

$$\sum_{f'_{x_k}(n) \ge 1} (f'_{x_k}(n) - 1) \le A(x_k)B'(x_k) - x_k + n'_0.$$

Thus, by (2.13),  $A(x_k) = A(w_k)$  and the assumption on h, for all sufficiently large integers k, we have

rege integers 
$$k$$
, we have 
$$\sum_{f'_{x_k}(n) \geq 1} (f'_{x_k}(n) - 1) \leq A(x_k)B'(x_k) - x_k + n'_0 < h(A(x_k)) + n'_0 = h(A(w_k)) + n'_0 \leq \frac{2}{3}\sqrt{w_k} + n'_0.$$

It follows from (2.25) that

$$\frac{\sqrt{2}}{2}\sqrt{w_k}(1+o(1)) < \frac{2}{3}\sqrt{w_k} + n_0$$

for all sufficiently large integers k, a contradiction.

This completes the proof of Theorem 2.1. ■

3. Additive complements with more than two sequences. Infinite sequences  $A_1, \ldots, A_r$  of non-negative integers are called *infinite additive complements* if their sum contains all sufficiently large integers.

It is easy to see that, for infinite additive complements  $A_1, \ldots, A_r$ , we have

$$\liminf_{x \to \infty} \frac{A_1(x) \cdots A_r(x)}{x} \ge 1.$$

Theorem 3.1. For infinite additive complements  $A_1, \ldots, A_r$ , if

$$\limsup_{x \to \infty} \frac{A_1(x) \cdots A_r(x)}{x} \le 1,$$

then, for any given M > 1, we have

$$A_1(x)\cdots A_r(x) - x \ge \left(\min\left\{\frac{A_1(x)\cdots A_r(x)}{A_1(x)}, \dots, \frac{A_1(x)\cdots A_r(x)}{A_r(x)}\right\}\right)^M$$

for all sufficiently large integers x.

*Proof.* Given i with  $1 \le i \le r$ , let  $A = A_i$  and

$$B = A_1 + \dots + A_{i-1} + A_{i+1} + \dots + A_r$$
$$= \left\{ \sum_{j=1}^r a_j : a_j \in A_j \ (1 \le j \le r, \ j \ne i) \right\}.$$

Since  $A_1, \ldots, A_r$  are infinite additive complements, so are A and B. It is clear that

$$B(x) \le \frac{A_1(x) \cdots A_r(x)}{A_i(x)}.$$

Hence

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} \le \limsup_{x \to \infty} \frac{A_1(x) \cdots A_r(x)}{x} \le 1.$$

This implies that (0.1) holds. Since A, B are infinite additive complements, we have

$$\liminf_{x \to \infty} \frac{A(x)B(x)}{x} \ge 1.$$

Thus

(3.1) 
$$\lim_{x \to \infty} \frac{A(x)B(x)}{x} = 1.$$

By Lemma 1.1, either

$$\lim_{x \to \infty} \frac{A(2x)}{A(x)} = 1 \quad \text{or} \quad \lim_{x \to \infty} \frac{B(2x)}{B(x)} = 1.$$

By (3.1),

$$\lim_{x\to\infty}\frac{A(2x)B(2x)}{A(x)B(x)}=\lim_{x\to\infty}\frac{A(2x)B(2x)}{2x}\lim_{x\to\infty}\frac{2x}{A(x)B(x)}=2.$$

Thus, either

$$\lim_{x \to \infty} \frac{A(2x)}{A(x)} = 1 \quad \text{or} \quad \lim_{x \to \infty} \frac{A(2x)}{A(x)} = 2.$$

Hence, for every i,

$$\lim_{x \to \infty} \frac{A_i(2x)}{A_i(x)} \in \{1, 2\}.$$

Let

$$\alpha_i = \lim_{x \to \infty} \frac{A_i(2x)}{A_i(x)}, \quad i = 1, \dots, r.$$

Since  $A_1, \ldots, A_r$  are infinite additive complements and

$$\limsup_{x \to \infty} \frac{A_1(x) \cdots A_r(x)}{x} \le 1,$$

it follows that

(3.2) 
$$\lim_{x \to \infty} \frac{A_1(x) \cdots A_r(x)}{x} = 1.$$

Hence  $\alpha_1 \cdots \alpha_r = 2$ . Since  $\alpha_i \in \{1, 2\}$ , exactly one of the  $\alpha_i$  is 2. Without loss of generality, we may assume that

$$\alpha_1 = \cdots = \alpha_{r-1} = 1, \quad \alpha_r = 2.$$

Now, we take  $A = A_r$  and  $B = A_1 + \cdots + A_{r-1}$ . Then

$$\lim_{x \to \infty} \frac{A(2x)}{A(x)} = 2 \quad \text{and} \quad \lim_{x \to \infty} \frac{B(2x)}{B(x)} = 1.$$

So A(x) > B(x) for all  $x \ge x_0$ . By Theorem 0.2,

$$A(x)B(x) - x \ge B(x)^{2M}$$

for all sufficiently large x. It follows from (3.1) and (3.2) that

$$\lim_{x \to \infty} \frac{A_1(x) \cdots A_{r-1}(x)}{B(x)} = 1.$$

Thus there exists  $u_0 \ge x_0$  such that

$$B(x)^2 \ge A_1(x) \cdots A_{r-1}(x), \quad x \ge u_0.$$

Noting that  $B(x) \leq A_1(x) \cdots A_{r-1}(x)$ , we arrive at

$$A_1(x) \cdots A_r(x) - x \ge A(x)B(x) - x \ge B(x)^{2M}$$
  
  $\ge (A_1(x) \cdots A_{r-1}(x))^M, \quad x \ge u_0.$ 

This completes the proof of Theorem 3.1.

## **4. Final remarks.** We pose several problems for further research.

PROBLEM 4.1. Is there a non-decreasing function l(x) with  $l(x) \to \infty$  as  $x \to \infty$  such that, for infinite additive complements A, B, if (0.1) holds, then

$$A(x)B(x) - x \ge l(x)$$

for all sufficiently large integers x?

The following Problem 4.2 is a special case of Problem 4.1.

PROBLEM 4.2. Is there a positive real number  $\theta$  such that, for infinite additive complements A, B, if (0.1) holds, then

$$A(x)B(x) - x \ge x^{\theta}$$

for all sufficiently large integers x?

PROBLEM 4.3. For each integer  $r \geq 3$ , find infinite additive complements  $A_1, \ldots, A_r$  such that

$$\lim_{x \to \infty} \frac{A_1(x) \cdots A_r(x)}{x} = 1.$$

For r = 2, Danzer [2] solved Problem 4.3, which gives a negative answer to a conjecture of Erdős (see [3], [4]).

Chen and Fang [6], [8] proved that, for infinite additive complements A,B, if

$$\limsup_{x\to\infty}\frac{A(x)B(x)}{x}<3-\sqrt{3}\quad\text{or}\quad\limsup_{x\to\infty}\frac{A(x)B(x)}{x}>2,$$

then  $A(x)B(x) - x \to \infty$  as  $x \to \infty$ . On the other hand, Chen and Fang [1] proved that, for any  $\varepsilon > 0$ , there exist infinite additive complements A, B

such that

$$2-\varepsilon < \limsup_{x \to \infty} \frac{A(x)B(x)}{x} < 2$$

and A(x)B(x) - x = 1 for infinitely many positive integers x.

**Acknowledgments.** This work was supported by the National Natural Science Foundation of China, Grant Nos. 11371195 and 11201237, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

## References

- Y.-G. Chen and J.-H. Fang, On additive complements. II, Proc. Amer. Math. Soc. 139 (2011), 881–883.
- [2] L. Danzer, Über eine Frage von G. Hanani aus der additiven Zahlentheorie, J. Reine Angew. Math. 214/215 (1964), 392–394.
- [3] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300.
- [4] P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221–254.
- [5] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monogr. Enseign. Math. 28, Univ. de Genève, Genève, 1980.
- [6] J.-H. Fang and Y.-G. Chen, On additive complements, Proc. Amer. Math. Soc. 138 (2010), 1923–1927.
- [7] J.-H. Fang and Y.-G. Chen, On finite additive complements, Discrete Math. 313 (2013), 595–598.
- [8] J.-H. Fang and Y.-G. Chen, On additive complements. III, J. Number Theory 141 (2014), 83-91.
- [9] H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, New York, 1983.
- [10] S. Z. Kiss, E. Rozgonyi and Cs. Sándor, On additive complement of a finite set, J. Number Theory 136 (2014), 195–203.
- [11] W. Narkiewicz, Remarks on a conjecture of Hanani in additive number theory, Colloq. Math. 7 (1959/60), 161–165.
- [12] M. B. Nathanson, Problems in additive number theory, IV: Nets in groups and shortest length q-adic representations, Int. J. Number Theory 7 (2011), 1999–2017.
- [13] I. Z. Ruzsa, Additive completion of lacunary sequences, Combinatorica 21 (2001), 279-291.
- [14] A. Sárközy and E. Szemerédi, On a problem in additive number theory, Acta Math. Hungar. 64 (1994), 237–245.

Yong-Gao Chen School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P.R. China E-mail: ygchen@njnu.edu.cn Jin-Hui Fang
Department of Mathematics
Nanjing University of
Information Science & Technology
Nanjing 210044, P.R. China
E-mail: fangjinhui1114@163.com