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Units in real Abelian fields
by

ROMAN MARSZALEK (Opole)

1. Introduction. In this paper we consider the Galois module structure
of the group of units of real absolutely Abelian number fields. Let N be such
a field with Galois group I' = Gal(N/Q), let Exn be its unit group, and
denote by Ey the torsion-free part of Ey, i.e. Ey = Ex/{£1}. Moreover
hy will be the class number of V.

We shall by A denote the natural order, i.e. the factor ring of the integral
group ring ZI' by the ideal I generated by nye r7- This class of fields
contains all Abelian fields of prime degree as well as certain fields of odd
prime power degree with at most two ramified primes (A. Frohlich [9], see
also [4]). There are only a few results in the literature about the global Galois
module structure for real Abelian fields (see [3], [6], [9] and [16]).

The aim of this paper is to describe the class of Ex in the locally free
class group of the order A using the so called Hom description of the class
group, introduced by A. Frohlich [7].

To this end we introduce in Section 4 the logarithmic resolvent, which
will play a central role in our paper. This tool enables us to represent the
class of Ey in A as a homomorphism on the group of characters of I". This
representation involves a unit of finite index in Exn and certain semilocal
units generating 7Z, ® En (Theorem . In Theorem we shall eliminate
the global unit replacing it by Gaussian sums and values of Dirichlet and
p-adic L-functions at 1.

In Section 5 we focus on real tame cyclic extensions N/Q of prime degree.
In Propositions and we replace the semilocal generators of Z, @ En
with generators of the full Z,I"-modules of semilocal units of N, and subse-
quently in Proposition with semilocal generators of the ring of integers
of N. Finally in Theorem we obtain a representation of the class of Ey
in which Galois Gauss sums, Qp-irreducible characters and the orders of the
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Jordan—Holder factor modules of the p-Sylow subgroups of the ideal class
group of N will appear.

As an example of our approach we shall prove in Section 6 the following
necessary and sufficient conditions for a real tame Abelian field N of prime
degree to have a Minkowski unit (i.e. Ey & A):

THEOREM . Let N/Q be a real, tame and cyclic extension of prime
degree | > 2, and assume that | is reqular, i.e. does not divide the class
number h; of the lth cyclotomic field. Then N has a Minkowski unit if and
only if

Vp(h;f)@mp(l) = Vp(hg)dsxyp(l)

for any x,pu € f\{lp}, and for any prime p|hy, p # 1, where Dy ) is a
Q,-irreducible character of I' with x as a summand and hy is the order of
the @, ,-component of the class group of N.

Applying this theorem we get simple sufficient conditions for the existence
of Minkowski units:

COROLLARY . Let N/Q be a real, tame and cyclic extension of prime
degree I > 2 and let | be regular. Then N has a Minkowsk: unit in the
following two cases:

(i) hy =1,
(ii) any prime p dividing hy is a primitive root of unity modulo [.

This leads to new examples of fields having Minkowski units, like Q(47) 7,

Q(¢s9) T, Q(¢s3) ™, Q(Cror)t (Corollary [6.3]1), (ii)) and at least 611 fields
derived from Schoof’s tables in [I8] (Corollary [6.3]iii), (iv)).

2. Notation and definitions. We shall adopt the standard notation
from the book [20].

We shall deal with finite Abelian extensions L/Q of the rationals. For
every such extension we shall fix its generator 67 and denote by I its
Galois group and by dy, its discriminant. The maximal real subfield of L will
be denoted by LT. If K is a subfield of L, then Nr/k will denote the norm
map L — K.

For a finite or infinite prime p we shall denote by Ar,,, the corresponding
decomposition group and by T}, , a set of representatives for the cosets of
App in I'r. The ring of integers of L will be denoted by O, Er, will be its
unit group, and E, will denote the factor group Er/{£1} in the case when
L is real.

The algebraic closure of the p-adic field Q, will be denoted by @p, vp will
be the exponential valuation of Q, satisfying v,(p) = 1, and R,(L) and d;
will denote the p-adic regulator of L.
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J(L) and LU(L) will denote the group of ideles of L and the group of unit
ideles of L, respectively.

By a prime of L we understand an equivalence class of valuations of L.
A prime will be called infinite if it contains an Archimedean valuation, and
finite otherwise. The infinite prime of Q will be denoted by oc.

Let pz, be a fixed prime of L lying above p. Then for any t € 17, we
shall denote by Ly, the completion Q,(t(61)) of L at t(pr). For t € Tp

we shall also denote by Uy, ) and Ul

Hpr) the units and the principal units of

Ly, ), respectively.

If p lies above the infinite prime, then Ly, ) is either R or C, Uy, is
either R* or C*, and Ut(p ) is either R*T or C*, R*T being the multiplicative
group of positive real numbers.

By |X| we shall denote the cardinality of the set X. For a positive in-
teger m, (,,, will be a primitive mth root of unity. For any ring R, we shall
denote by R* its group of units.

For any finite Abelian group G we put G = Hom(G, C*). For any prime
number p, any x € G will be considered also as a character with values in @p,
via a suitable embedding of the algebraic closure of Q into @p.

Rg will be the free additive group having G for its set of free generators,
and Ry, will denote the free subgroup of R generated by G \{1¢}, 1¢ being
the trivial character.

For any character y € G we put

SRR

geG

If A is the automorphism group of a field contalmng {x(g9) : g € G,
X € G} then one defines an action of A on the group G by putting

X (9) =d(x(g)) forde A

Let @ be a @p—valued character of I" which is irreducible over Q,. This
character is the sum of @p—irreducible and conjugate characters of I'. If a
character p is a summand of @ we shall write u | .

If we treat x # 1 as a @p—valued character, then &, , will be an irre-
ducible character of I" over Q, having x as a summand.

Let H, be the p-Sylow subgroup of the class group of N. As H, is a
ZypI'-module we can define hy to be the order of the &, p-component of Hp,
i.e. the order of eg, ,H, where eg,  is the idempotent corresponding to @, .

If R is a commutative ring, we put G = deGg € RG. Then for any
RG-module M, the submodule M® = {m € M : Gm = 0} can be regarded
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as an RG/(G)-module with

(g%;;a:gg)m = <!]%C:;xgg)m

for z, € R and m € M, where § = g mod (G).

For any R-module M the submodule of all R-torsion elements of M will
be denoted by torg(M).

For any prime p (finite or infinite) we define the following three submod-

ules of J(L):

1 1
L, = H Lt(PL)’ ULp = H Ut(PL)’ UL,p = H Ut(pL)'
teTr p teTr p telr p

Let V.. be the set of real embeddings of L into C, and V. the set of non-
conjugate complex embeddings of L into C. Then

L= ][R J[Co and U} =[][R] Cs
veV, veEVL vEV, vEV,

where R, =R, C, = C and R}" is the multiplicative group of positive real
numbers. Now we define an action of I';, on L, as follows:

For any w,t € Tr,, we define wt € Ty, and d,,4 € Ar, so that wt =
Sy rwt. Now for v = dw and u = (u¢)ter, € Ly, 6 € App, w € T1, , we put

Y(u) = (66wt (ugg) )t

where the automorphisms from Ay, , are extended to Ly, ) by continuity.
We shall use the following observation which is a consequence of the
action of I';, on L,:

REMARK 2.1. Let L be an Abelian field containing the values of all char-
acters of a finite Abelian group G and let p be a prime. Let f: Ry, — Ly be
a homomorphism such that f(x) = (fo(X"))ier,, where fo € Hom(Ry,, Ly, ).
Then

f € Homp, (R, Ly) if and only if fo € Homa, (Rg, Ly,).

Note that by the normality of L/Q the fields L, ) do not depend on
the ideal py, chosen, so f is defined correctly.
We shall need the following extension of the logarithm:

Log,: [ Lip,) — Ly Logy((ar)e)=(logy(ar)e for (ar)ee [] Lig,
tETL,p tGTLﬁp

where log,, is the Iwasawa p-adic logarithm (see e.g. [20]).
For the infinite prime we define

Log,, : L5, — Loo by Log. ((uy)y) = (logy |ty])o,

where log., denotes the usual logarithm defined for positive reals.
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Let I' be a finite Abelian group. We define the orders A = ZI'/(I),
Ay = ZpF/(f),Aoo = RI'/(I) in the algebras A = QI'/(I), A, = QpF/(f),
R’/ (f ), respectively, and we shall write 4 = v mod (f) in A or Ay,. We also
put $(A) =[], A}

For any order U in a semisimple finite-dimensional algebra we shall denote
by Cl(U) the locally free class group of U and by (X )y the element of Cl(U)
corresponding to the module X.

If F is an Abelian field containing {x(v) : v € I, x € f} and 2 =1F =
Gal(F/Q), then we define a Z{2-embedding i, : F' — F}, by

Zp(b) = (t(b))t with t € TF,p~

3. Auxiliary results. In this section we state some results needed later.
First we introduce the main ingredient of the Hom description of the class
group, the notion of general determinant defined on the algebras A, Z,I"
and RI" (see [7]).

For any a = ) afyeAandef\{lp}weput

Dety(a) = Z ayx ().
yel’

Observe that if a € A*, then Det, (a) € F* (Dety (ab) = Det, (a) Det, (b) for
a,b € A). If u+# 1r is another character we put

Dety4,(a) = Dety(a) Det,(a),

yerl

obtaining a homomorphism
Det(a): R — F*, Det(a)(x) = Dety(a).
This also gives a homomorphism
Det: A* — Homg (R}, F*),
which can be extended to the homomorphism
Det: Ay — Homgo (R, F)

defined by Dety (3 . cr ay7) = > e ayip(X(7)) for ay € Qp.
After restricting from A7 to A7, we obtain

Det: AZ — Homg (R}, Upyp),
and finally we have
Det: 4(A) — Homg(R}, (F)).

We shall also need the determinant map for the algebras Z,I" and RI’
defined by Dety (3. crayy) = X2 cr ayip(x(7)) for ay € Qp or R. We shall
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also use Det to denote the above map because of the evident identity

(3.1) Det <Z awfy) = Detx<2 ay?) for a, € Q, or R and x # 1r.

yel yerl

Now we can state

THEOREM 3.1. Let X be a locally free A-module of rank one. Choose a
free generator v of QR X over A and for each prime p choose a free generator
xp of Ly @ X over Ap. Then both v and x, are free generators of Q, ® X
over Ay, and so

Tp = Apu, A € Ap.

(i) Let h = (hp) € Hom(R}, [, F}y) be defined by hy(x) = h(x)p =
Dety (X\p) for all p and x € R). Then h € Homg(R},J(F)) and
its class [h] modulo Homgp (R}, F*) Det(U(A)) depends only on the
isomorphism class of X.

(i1) There is a unique isomorphism

Cl(A) 2 Homg (R}, J(F))/[Homg (R, F*) Det(LU(A))]

so that for every locally free rank one module X, the class (X) 4 maps
onto the corresponding class [h] as constructed above.

Proof. Modify slightly the proof of the analogous theorem for orders in
the group ring QI; see Theorem 1 in [7] and also [§]. =

REMARK 3.2. If f € Homg(R},J(F)), then its component f, at the
infinite prime p = oo is an element of Det(A%,). Moreover the map f' defined

by f,(x) = fp(x) for finite p and fi (x) =1 for x # 1r has the same class
[f'] modulo Homg (R, F*) Det(U(A)) as f.

Proof. Define fo, € Homg(Rr, FL) by foo(X) = fool(x) for x # 11 and
foo(1r) = 1. According to Proposition 2.2 of [7] one has Homq (R, FX) C
Det((RI')*) and so there is @ € (RI')* such that fu(x) = Det,(a) for any
X € I'. Now the first part of our assertion follows by noting that foo(x) =
Det, (&) where & denotes the image of o in A% (Det(a) defined on RI" has
the same values as Det(a) defined on Ay).

To prove the second part it suffices to observe that f f/~! lies in Det (L(A)). =

Now let N be a real Abelian field of finite degree over Q with I' =

= Gal(N/Q). For this field we specify our notations in the following

Way Ay = Anp, T, = Tnp, p = pn, Up = Unyp and U1 = UN For a

prime p we shall denote by e,, f, and g, = |T}| the ramlﬁcatlon 1ndex the

residue class degree of p in N and the number of prime ideals in Oy above
p respectively.
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In the case of a finite prime p we put
Ejlv,p ={e € En: (t(e))ter, € U;}a
Enp = dp(Zp ® En) = dp(Zp ® Ex ) C U,
where dy, : Z), ®E11\7,p — Uy, dy(a®e) = (t(e)*)ter, for a € Zy and ¢ € EJlV,p'

Since N is real, the decomposition group of the infinite prime in N is
trivial, hence Ty, = I'. We define the totally positive units by

Ef ={e € Ex: (v(e))rer € Us}
and we put
ENoo = doo(R® Ef;) = doo(R® Ey) C UL,
where doo : R® EY — UL, doo(a ® €) = (y(g)?)yer for any a € R and
e € B
THEOREM 3.3. Let N be a real Abelian field. Then for a finite prime p,

pepRy(N)

bvdnmn, ’

where ny, is the absolute norm of [l,er t(p), b =1 unless p = 2 and —1

ltorz, (Up /Enp)| &

is not a norm in Ny for p|2, in which case b = 2. The relation L means
equality up to a p-adic unit factor. If p = oo, then |tor(UL /€N )| = 1.

Proof. For finite p it suffices to apply Corollary 2.6.1(ii)2, Theorem 2.6.4
and Remark 2.6.5(i) in [I1, Chapter III]. If p = oo, then T = I' and the
I'-homomorphism

(uy)y — Z log(uv)v_l

~yel’
gives UL /EN.co = RI'/(RI')?, whence torg (UL /En ) = {1}. m
THEOREM 3.4 (Ramachandra units). Let n # 2mod 4, and let n =

. ;" be its prime factorization. Le run through all proper subsets o
Ppi be it factorization. Let I through all bsets of
{1,...,s}, and let ny = [[;c; p5". For 1 < a < n with (a,n) =1 define

Wy LG 1
ga = HGHW where la = 5(1—(1)277/[
I I
Then the elements &, form a set of multiplicatively independent units gene-
rating a subgroup of finite index in the group of units of Q(¢,)™.
Proof. This is Theorem 8.3 in [20]. m

THEOREM 3.5. Let x be an even nontrivial primitive Dirichlet charac-
ter of conductor f and let m be an integer not divisible by f. Let 7(x) =



122 R. Marszatek

Zgzl x(a)C§ be the Gauss sum. Then

f
Z X(a)log,(1 —(F") = % )m?Lp(l’X) for a prime number p.
a=1
(a,f)=1

For the infinite prime

f
_ x(m)fL(1, x
3" (@) loga |1 — ¢sm) = XM LX)
a=1
(a,f)=1
Proof. In the case of finite p and (m, f) = 1 this is Leopoldt’s original
formula (for a proof see Theorem 5.18 in [20)]).
Thus we may confine ourselves to the case (m, f) > 1 and f { m. Ob-
serve that as x(m) = 0 in this case, it suffices to show that the sum also
vanishes. Write m = myd where d = (m, f). Then after putting ¢ = am; we

obtain
f !

g a)log, (1 — ¢¥™ g (c)log, (1 — (§ 4.
=1 c=1
(a.)=1 (c.f)=1

Since y is primitive and d|f (1 < d < f), there is an integer b such
that b = 1 (mod f/d), (b,f) = 1, and x(b) # 1 (see [I, Theorem 2 on
p. 469]).

As b=1 (mod f/d) one has Cfcd = (?Cd and so after a suitable change of
the summation index we have

f f
> x(@)log,(1=¢f) = > x(e)log,(1 =)
c= c=1
(=1 (=1
f
=x(0) Y x(c)log, (1 — ().
c=1
(e.f)=1
Since x(b) # 1 it follows that
f
S %) log,(1- 5 =0
c=1
(C,f)Zl

and this completes the proof for finite primes.
If p = oo it suffices to apply the preceding argument to the well known
classical formula (for a proof see Theorem 4.9 in [20]). =

We shall also need the following technical result:
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LEMMA 3.6. Let p be a prime number and let @ be an irreducible char-
acter of I' over Q. Let a € Z,I" and put a = Zuef aye, with a, € Zy[Cnl,
where n is the exponent of I'. Then

(i) The elements of {a, : p | @} are all conjugate over Qpy((,), and the
values vy(a,) are equal for all p|®.
(ii) If ay # 0 for p| P, then

vp(lea(Zpl'/ZpI"a)]) = vp(ay)@(1),
where x is any summand of .

Proof. (i) Let a =3__ . byy with by € Z,. Observe that, for any u € T,
ay = Y er byp(7y), and if 4 and x are summands of @ then p = x? for some
o € Gal(Qp(¢n)/Qp). Thus by the above equation we get a, = o(a,). The
second part of (i) is an immediate consequence of the first.

(ii) Note that |e¢(ZpI'/Z,I'a)| = |esZpl’/es(ZpI'a)|. Since eq(ZyIa) is
the image of egZ,I" under the Qp-linear transformation £ : x — ax, it fol-
lows that |esZyI"/eq(ZyI'a)| modulo Zj is equal to det(L). Thus calculating
the determinant of the matrix of £ relative to the basis {e, : u|®} we
obtain

lea(ZpT)ZyT0)|Zy = [ [ apZy = p* V77,
|

where the last equality follows from (i) and the fact that @ is the sum of
@(1) irreducible characters over Q,,. =

4. Logarithmic resolvent. From now on we assume that /' 2 N U
{x(y) : v € I x € I'}, and for any prime p, we choose a set of represen-
tatives for the decomposition group of p in the extension F/Q (recall that
Gal(F/Q) = £2) in the following way.

Let S, be a set of coset representatives of the decomposition group for
the prime pp over a prime p of N in the extension F'/N. Let Tp C (2 be a
set of extensions of elements of the set T}, such that each ¢t € T}, has exactly
one extension  in Tp. In this way TpSp is a set of coset representatives of
the decomposition group for pr over p in the extension F'/Q. Therefore we
can write

F, = H H Fio(pr) for finite p,
teTy s€Sy

Fo = H H Cis where C; , = C.
t€To SESOO

Using these sets of representatives we define the Z{2-embeddings



124 R. Marszatek

G Np= ] Ny = F» by
teT,

Jp((ar)t) = (ags)zs  where azg = ap € Nyp) for any t € Tj,, s € 5.

We need to define Det on the rings NpF/(f) and N,I". This can be done
by putting
Detx<z bfy) :Detx(z bw> =" GpB)in(x(7))  for by € Ny x#Lr,
yel ~yel’ ~yel’
where i, was defined at the end of Section 2.
LEMMA 4.1. Let p be a prime, u € (UZ})O and y € Ap. Then
> Log,(v(yw)y ' =y Y Log,(v(u)7 .
yerl yerl

Proof. Put y = > scp ysd. Since Log,(w®) = alog,(w) and yw =
w)¥s, for any a € Z, or a € R and w € U}, we get
ser’ P P

Z Logp(’)/(yu)):}/_l = Z LOg,p (fy H 5(u)y5>:y—1

yel’ yel’ ser
=Y ) ysLog,(dv(u)y !
~yel' éel’

On the other hand

y Y TLog,(v(w)7 ' = ysLog,(y(u)dy "

yel ~yel' del’
= Z Z Ys Logp(aé(u))dfl after substituting o = 76! m
oel’ ael’

PROPOSITION 4.2. Let p be a finite or infinite prime and let u € E?V,p
generate an Ap-submodule of finite index in Ey . Then

> Log,(v(u))y ™" € (N,I'/(I'))".
yel’
Proof. First assume that u = (t(g)):, where ¢ € EY generates an A,-
submodule of finite index in Ey. It suffices to find an element ) ;.- 256 €
NpF/(f) such that

Zx(gg Z Logp(’yu)’y_1 =1, that is, ngé Z Logp(*yu)’y_l =14zl
oel’ yerl’ oel’ yerl

1

with € N,. Hence after substituting o = 6y~ we obtain

Z (Z xs Logp(&x*lu))a =1+al.

ael’ ferl’
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This is equivalent to the system of equations

Zajg Logp(5ofl(u)) —z=0 fora#l,
oer

ng Log, 0(u) —x = 1.
oel’

By putting u = (t(¢))s, x5 = (x5¢)¢ € Np and x = (x¢); € N, with t € T),
we get systems of equations (one for each t € 1))

Zx(g’tlogp(tc;oz—l(s)) —x; =0 fora#1,
oerl’

Z w5 tlog,(td(e)) — xp = 1.
der’
Thus after subtracting we get

> wsdog,(tda (e)/td(e)) = —1  for ar #1,
oer

> wslog,(ti(e)) — xp = L.
éel’

According to Leopoldt’s conjecture which is known to be true for Abelian
fields and by the independence of {y(g) : v € '\ {1}} in the Archimedean
case we get

det[log,(6a"(€))]aser (1} # O
Using this and Lemma 5.26 of [20] with } 5. log,(d(e)) = 0 we arrive at

det[log,, (6™ (£) /8(¢))]aser\piy # 0.

showing that the systems of equations have solutions, which proves our
proposition for u = (t(¢));.

Now we turn to the general case. Let v € 8?\[71) generate the A, -module
of finite index in €y, and choose € € EY generating an A,-submodule of
finite index in En. Then u = (t(¢)); also generates a module of finite index
in €y, and therefore for suitable m € Z and y € A, we get v™ = uY. By
Lemma ] we have

m Y Log,(y(v))7 ' =y Y _ Log,(y(u)7 .

yel’ yerl

Similarly v = v* for some m’ € Z and z € Ap, so we obtain

m'y Log,(v(u)7 " =2 _ Log,(v(v)7 "

yel yerl
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Consequently, by combining the above equalities, we get

mm' > " Log,(6(u))d " =yz > Log,(d(u))s .

éerl oer

Since Y scr Logp(é(u))g_l is a unit of (NpF/(f)), as we have shown above,
the last equality implies mm/l = yz and so (1/m)y € (N,I'/(I'))*. Thus
finally

S Log, (0)5 ™ = -y > Tog, (1(w)3 ™" € (N,I/(F)" =
oel’ yerl

Now, for any finite or infinite prime p and x € I’ \ {1}, we may define
the p-logarithmic resolvent of u € (U,)° by

() = Dty (3 Log, (1()7 ™) = 3 i (X)) Lo, (1)) € By
yerl yerl
We also write
(E)np = ((HE))Np € Fp  for e € BY (or (EY)°).
COROLLARY 4.3. Let u € (En,)° generate an Ap,-submodule of finite
index in Enp and x € I'\ {1r}. Then
(U|X)N,p € Fz;ky
and for every x € A,,
(zulx)n,p = Dety () (ulx) N p-
Proof. By Proposition there exists A € NpI'/ (I') such that

A Log,(v(w)y ' =1,
yel’

and since Det, is a ring homomorphism, the first assertion follows. The
second assertion is an immediate consequence of Lemma [£.1] =

Let x € r \ {1} and for any prime p let u, be an element of U}?. We
define the logarithmic resolvent, the main tool of our paper, by

((up)pX)N = ((up|X)Np)p € HF;
P

Ifee E?V, then we write for brevity
(elx)n = ((ep]X)Np)ps

with €, = (t(¢)):, where t € T),. If g, € (Z, ® En)°, then we also put
([ X)vp = (dp(11p) [X) N -
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REMARK 4.4. The logarithmic resolvent can be extended to elements of
U, by putting
(uh)np = Dety (D Log, (v(w)r™") = D ip(%(1)ip (Log, ().
yerl yerl
Note also that the identity in Corollary [4.3] remains valid.
We shall also need the usual resolvent introduced by A. Frohlich (see e.g.

[7]) and used in the study of the additive Galois structure of rings of integers.
For a = (ap)p with ap € Zp ® On = [;er, Op,, We put

lapx]n = Dety (3= v(@)r ™) = D ip(X(1)ip(1(ay)) € Fy

yel’ yel
for x € . The resolvent of a is defined by

lalx]n = ([ap|X]Np)p-

THEOREM 4.5. Let N be a real Abelian field and assume that Ey is
A-locally free. Let ¢ € EY; generate an A-submodule of En of finite index
and for any prime p let €, be an element of (Z, @ EN)? whose image is an

Ap-free generator of Z, ® En. Then, for x € f'\ {11}, the map

X = ((ep)p )N (D)3
is a representative of (En)a in
Homg (R}, J(F))/[Homg (R, F*) Det(U(A))].

Moreover we can choose €, in such a way that this map is equal to 1 at all
primes not dividing the index (En : Ag).

Proof. First consider finite primes. Let 9, : Z, ® Ey — Z, ® Ey denote
the Z,I'-homomorphism mapping 1 ®n to 1 ®@7.

Applying Theorem to X =En, v=1®E, zp, =Vp(ep) we get

Uplep) = Mp(1®E) = Mpp(1®e)  with Ay € A7

As 9, restricted to (Z,®Ey )" is an A,-homomorphism and there is a positive
integer m such that p™\, € A,, one has

Up(p"ep) = Vp(p™ Ap(1 ® £)).
Since the kernel of ¥, is Z,-torsion we can choose a positive integer m’ > m
so that p™' ker Y, = {0} and so pmlep = pm’ Ap(1®e). Now applying Corollary
to the above equation we obtain Det, (p™ \,)(1®¢|x)np = (0™ €p|X) N p
and finally

Dety (Ap) = (5p|X)N,p(5|X)&1p~

For p = oo the map ¥4 : ZR ® Exy — R ® Ey is an isomorphism so we

obtain £, = Aso(1 ® €), which as above gives the required formula.
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To prove the last part of the theorem it suffices to put ¢, = 1 ® ¢ for
primes not dividing (Ey : Ae). Indeed, since for these primes

(Zp ® EN)]Ap(1®¢) = (Zy ® EN)/(Zp @ Ac) = 7Ly, @ (En/Ae) =2 {1},

we infer that 1 ® € is a free generator of Z, ® Ey. Thus, by definition,

(EpX)Inp = (1 @elX)np = (dp(1 @ E)[X)np = (E(E)elX)Np = (€[X)n,p and so
we can use this special choice of ¢, in the representing map. =

From now on we choose F' to be a cyclotomic field Q(¢,,) containing N and
the values of all characters from I'. Thus 2 = Gal(F/Q) = Sal(Q(Cn)/Q)
and by putting H = Gal(F/N), we obtain
(4.1) 2/H = Gal(N/Q) =
SO we can identify I' with 2/H.

By (4.1) any character of I' can be treated as a character of {2 which is
trivial on H Thus for any y € I, there is o € {2 such that x(gH) = x0(9)
for any g € £2. We also identify the group {2 with (Z/nZ)* and hence we can
regard Yo as a Dirichlet character modulo n. Next we assign to this character
the primitive character y..

Thus x — xs« gives a 1-1 correspondence between I and the group of
primitive Dirichlet characters associated with the field N.

In order to make the statement of the next theorem consistent for p = oo
we put x«(p) = 0 so that x.(p)/p —1 = —1. We also write Loo(s, xx) =
L(Sa X*)

THEOREM 4.6. Let N and €, be as in Theorem . Then, for x € f\
{11}, the map

(X*)]5> , .
with 6 € T,,S,
Lp(17X£) o,p pep

is a representative of (En)a in
Hom (R, 3(F))/[Homg (R, ) Det(4(A))].
Proof. Let e € EY generate a module of finite index in Ey. By definition
EX)np = (EHE) ) Np = D in(X(7))jpLog, (v(t(e))e)),
yerl

whence

4.2 ~) 1 t(e ith ¢ € T), and Sp.
(42)  (ehow (%x log,(yt(e))),  witht € T and s € 5,

To simplify notation we write (e|x) = >_,cp X(7)log,(v(¢)) and then by
[£.2) we have (e]x)np = (t(e)[X")zs-
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Let W be a set of representatives for cosets of the subgroup H in f2.
Then by identification (4.1]) of I" with £2/H and by the definition of xo we

can write
(t(e)|x Z ¥ *(wH) log,(wt(e Z X w) log, (wt(e)).
weW weWw
On the other hand H C ker xo and automorphisms of H are identities on N,

so we get
ZX )log,,(gt(e Z Z X ’(wh) log,(wht(e))

gesn weW heH
= [H| > Xf(w)log,(wt(c))
weWw
and consequently
(4.3) (t)X™) = [HI71 D x5 (9) log, (gt (e)).
geN

Let HT be a set of coset representatives of the subgroup Sal(F/F*) in H.
Since Gal(F*/N) = H/Sal(F/F*), the norm map Np+ /y acts as multipli-
cation by >, i+ h € Z12.
As we have
E](\f+:N) C Np+/n(Ep+) C En,
it follows that Np+ /5 (Ep+) is of finite index in Ey. Hence there is an integer
d and n € Ep+ such that ¢ = Np+n(m) = [Thep+ h(n). Thus, by ([.3),

(te)!IX") = [HI Y X6 (9)1og, ( TT onim)

genN heH+
= 1H Y (X % (o) 1o, (gfn(n)) )
heH+t g€

and after substituting r = gh we get

H ST S TR () log, (ri(n))

heH+ reQ
= [H'|[HT| Y X6 (r) log,,(ri(n)) (ke xo 2 H),
ref?
whence by [H|/|HT| =2 we obtain
(4.4) (HeX"™) = 57 Z X5 (9) log, (gE(n)).

ges?
Let x4 be a primitive character for yo with conductor n, and let {2, =
{6 € 2:5=1 (mod n,)} (we identify 2 with (Z/nZ)*). As £2, is the kernel
of the homomorphism 2 — (Z/n.Z)*, we have 2/, = (Z/n.Z)*.
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We now show that if F is the fixed field of 2, then F, = Q((.), where

G = (ﬁ/ " is a primitive n4th root of unity. Indeed, for any o € 2, we have
0(C«) = ¢« and hence Q(¢,) C Fi. On the other hand

(Fy : Q) = [Sal(Fy/Q)| = [£2/02| = [(Z/n:Z)*| = (Q(&) : Q).
Note that x§, x%*, 2, ns, (. mean the same for x'* as xo0, X, 2, N, Cs
for x.
Let R, be a set of representatives for cosets of 2, in (2. Since (2, is
contained in the kernel of yo and th 4) gives

(4.5) (t() Z X2 (0) log, (c(n.))
cER*
where 7. = [[,c0, (1) = Np/p, (1) is a real unit of Fi.
For any ¢ € TpSp we put 6((x) = 2+, 0. € Z, and for £ € T}, we also write
e =ty
Now applying Theorem [3.4] for n = n, one has, for some integer d.,

. at*nI
7 o _ lats
= Tl =11 (H< e
acV acV
where V = {1 < a < 3p(ns) — 1 : (a,n) = 1} and z, € Z. In order
to apply Theorem we consider characters x}* as functions defined on Z
with x§°(c) = 0 for (¢,n.) > 1. Using (4.5), log,(¢+) = 0 and the fact that
¢ € (Z/nZ)* acts on (, by (i — (¢ we obtain

1 — acty«nry
(O = g7 2 Yt oon, (e )

c=1lacV I

- 5. 3 S S (@) logy (1 — C27) — log (1 — ¢

c=lacV 1

= 2dd ZZ.Ta(ZX logp — gct*nj ZX logp 1 Cct*nl))
1

Now we apply Theorem [3.5] with f = n., m = atun; fora € V or a = 1 and
ny # 1. Hence

Zx ) log, (1= C2™) =0 (x(at.ny) = 0).

Thus

(t(e)Ix —de d <ZX ¢) log,,(1— () ZX ¢)log,,(1— C“*))

aeV c=1
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and once again using Theorem [3.5]

(HE)IX*) = Alp,is) 2] e S~ () — 1)

where

A(p,Ts) = (x*(p) —p) if p is finite,
if p is infinite.

Since (e|x)np = (t(e) X');, and the map

X (fs(zz;;* IR n))

is an element of Homg (R, F*) it follows from Theorem [4.5[ that the map

w0 weem non(((ERAEES) )

is a representative of (En)4 in
Homg (R}, J(F))/[Homg (R}, F*) Det(U(A))].

For s € S, we put s((,) = C,il where s’ € Z. Since s((y) = Z*n/n*, it fol-
lows that s’ = s, (mod ny). As x«(x mod n,) = xo(z) one has H mod n,
C ker x4, whence S, mod n, C ker x, because S, C Gal(F/N) = H. There-
fore x«(s’ mod ny) =1 for s representing s € S, and we get

Ko (F5)) = xa (Ba)oa(52) = xe () xe(s" mod m) = xa(t).
On the other hand for any ¢ € 7,5, one has 7(x%) = x2(.)0[7(x«)]. Now
it follows that 7(x%)/x(t.) = s(7(x«)), which together with (4.6 shows
that R is the required homomorphism. =

5. Cyclic fields. From now on we assume that the field N is a tame
cyclic extension of Q of prime degree [ # 2 with I' = Gal(N/Q) = ().
Observe that the conductor of N is a square-free integer ¢ such that ¢(q) =0
(mod [), where ¢ denotes the Euler function, and ¢ is also the conductor of
X« for x € I'\ {17}. Thus we put F = Q(Cq)-

Our strategy is to replace the logarithmic resolvent of €, in Theorem
by the logarithmic resolvent of a suitable element of U;, and then by the
resolvent of a Zy,I-generator of Z, ® Oy

In order to calculate the p-logarithmic resolvent, for any prime p, we have
to consider separately two cases: g, = 1 and g, = [.

In case g, = 1 we have A, = I" and so T}, = {id}, N, = Ny, and U, = U,.
Thus, for any u € U1 and a, € Z, ® On = Oy, one has
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(ulX)np = (ulx® s—<ZX ) log,, ¥( ))s,

(5.1) vel
lap|X]np = (Z )Zs(v)v(ap)) with s € S,.
yel' s
In case g, = | we have A, = {id}, so T, = I" and hence N, = Q,

U; = HweF UV(P) with Uv(p) = 14 pZy,. For any v = (u)y e U and

ap = (ay)y € Zp ® On = [,er Zp using the definition of the action of I" on
N,, we obtain

(ulx)n (Z ts(x(v)) log, u7t> (Z X*(v)log, u,yt)
yel’ yel’
and respectively
(@) = (D Esx(an) . = (D X" ().
el yerl
By changing the summation variables we get

(ulx)np = )is (Z X logp uAY)

yel

s t))is(z st(v)a,y) ~ withteT,and s € S5,
yel’ ts

(5.2)

[ap|X]N,p

For p = oo one has g = [ and Ay, = {id}, so Tx = I'" and hence
Ny =R, Us = HveF R**. For any u = (uy)y € Uy, and aco = (a4), €
R®ONn =]],cr R we get

(u’X)N,oo = )is (Z X (7) log, u7>

yerl
lasoldvg = O (0)is (- (e )
yerl

with ¢ € T, and s € Sy
Now we examine the structure of U; as a Zpl'-module.

PROPOSITION 5.1. Let N/Q be a tame real Abelian extension with an
odd prime degree l. Then the module UI} is Zpl'-free for any prime p # 2
and U3 = Zol' & (Z/27)% where I' acts trivially on Z/27Z, and go is the
number of prime ideals above 2 in N.

Proof. First consider the case g, = 1 where U; = Upl.
Let p # 2. If (s € Np and s > 1, then we would have

P = DNy Q) =1,
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which is impossible, so s = 0. Thus N, is regular (i.e. does not contain pth
roots of unity). Consequently, by Théoréme 17 in [14], U} is Z,I-free.

If p =2 and g2 = 1, then the only 2°th roots of unity in IV, are £1. Since
Nn,/q,(=1) = =1, Theorem 1 of [2] implies that Uy = Lol & (Z/21).

In the case of finite p, g, = | and p # 2, we have Up1 = H'yGF Uw where
le =1+ pZy. Aslog, : 1 + pZy, = pZyp, the mapping

Z log,, (uy )y v, where Uy € 1+ pZy,
'yEF

establishes an isomorphism UI} = Zpl'.

For infinite p the mapping o, defined by Yoo ((uy)y) = 3. cr log(uy)y~?

for u, € R** shows that Ul ~ RI".
Ifp=2and go =1, let (¢1,92) : 14229 = (1+4Z2){£1} — Zo®(Z/27)
be an isomorphism (p; = & 7 logs). Then the mapping

e (Y erlwn ™ (eam)y)
yel’
gives Uj = ZoI' @ (Z/27)". w
PROPOSITION 5.2. Let N/Q be a tame real Abelian extension with a

prime degree | and let vy be a generator of I'. Let En; be an A;-free module
with generator ; and let u; be a ZiI'-free generator of Ull. Then for any

X € f \ {1F};
(e1lx)n = Dety (1 —50)™ (wi|x) vy Dety (p1)
where pp € A}, mp = v (IRy(N)/v/dnni)+1 and ny is defined in Theorem.

Proof. Let ¥; : Ul1 — ZyI" be a Z;I'-isomorphism. Since [ # 2 one has
Eny C (UHY, hence ¥(E,) is a submodule of (Z,I")° = (1 — v9)Z I

Since every nontrivial submodule of (1 — ~0)Z;I" equals (1 — vo)**1Z;,I"
with some k > 0, we get

W(Eny) = (1 —0)" ™ Z I for some integer k; > 0,

and so

UM Eni =TT/ (1 — o)tz I
Because Z;I" = (1 — v9)Z;I" & Z; as Z;-modules, we have
torz, (U} /En) = torg, {[(1 — 70)ZiT @ Z;] /(1 — o)X 17z, T}
= torg, [(1 —~0)Zi T/ (1 — o))" 17, 1).
Since (1 — v9)Z;I" is isomorphic to Z;[(;] as a Z;I"-module, we get
[torz, (U} /En0)| = 12411/ (1 = Q)M Z (G| = p™
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On the other hand, Theorem [3.3] gives

(5.3) by = ”l(zf\}jld%\:l)'

Since g; and w; are Z;I'-generators for €y,; and Ul1 respectively, ¥(e;)
and (1 — 40)" () are Z;I'-generators of (1 — ~vo)¥*+1Z,I". This implies
that there exist x,y € Z;I" such that ¥;(;) = (1 — vo)" T la®(u;) as well as
(1-— 'yo)kl‘HWl(UZ) = y¥(g;), hence & = (1 — vp)* 2w, and

(5.4) (1— 'yo)kl+1up = ye;.
Thus ¢; = zye;, so €, = Tye;, where T, § are the images of x, y in A;. As ¢
is an Aj-free generator of &y, we get Ty = 1, hence z,7y € AJ.

Now by (5.4) we obtain (gei|x)ns = ((1 = 70)* " wlx)n, and applying
Corollary [£.3] and Remark [£.4] one has

Det (9)(e1]X) v, = Dety (1 — 70) ™ (wg|x) v

hence

(211X) v, = Dety (Z) Dety (1 = 70)" ™ (w]x) v
Finally using (5.4) with Det, (1 — v9) = Det, (1 — 40), and putting p; = Z,
we arrive at the required formula. m

In the proof of the next proposition we shall use results in which two
types of cyclotomic units of an Abelian field appear.
First we define the group of formal cyclotomic units of N (see [12])

Cy = <:l:NQ(CnK /K( CnK) K CN, (a,, TLK) = 1) N EyN

where K runs over all nontrivial cyclic subfields of NV, nx denotes the con-
ductor of K and (:) denotes the subgroup of N* generated by elements and
their conjugates. The second kind of cyclotomic units are the Sinnott units
([19]), which could be defined (see [15]) by

C;V = <i:NQ(Cr)/Q(Cr)ﬂN<1 — Cﬁ) l<r ’ q, (a,r) = 1> N Eyn
where ¢ is the conductor of N.
Generally these groups of units are not always equal but in the case of

prime degree of N/Q we have C = C. Indeed, since ng | ¢, the inclusion
D follows from

N6 ge)/K (= Grge) = Nogn, nn/ K (NQGa ) /00 )nv (1= Grie))-
To get the inverse inclusion note that Q(¢,) NN is either N or Q and so the

generators of C'y are of two types

Noe)n(L=¢) or Nyl =)

The former are also generators of Cy and the latter can only generate +1
so Cy C Cy.
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PROPOSITION 5.3. Let N/Q be a tame real Abelian extension with odd
prime degree l. For any odd prime number p # 1 let En, be an Ap-free
module with generator €, and let u, be a Z,I'-free generator of UI}. Let
Ena/torz, (En2) be an Az-free module with free generator €3 torz, (En2) and
let uy € U be such that its image is a free ZoI'-generator of Uj /torz, (U3).
Then for any prime number p # 1 and any x € f\ {1r},

(ep1X)np = (0" )5 (up|X)vp Dety(pp),  where
dpy = vp(Lp(1, xx)) — Vp(hg)/@xm(l) for odd primes p,
da,x = va(La(1,xx)) — 1 — v2(h3) /Py 2(1) and pp, € A,

D, p, s a Qp-irreducible character of I with summand x and hy is the order
of the @y, component of the class group for N.

Proof. Let p be an odd prime and let u, generate UI}. Let ¥, be an
isomorphism U1 = ZpI" such that ¥,(up) = 1.

Since p # 2 one has Fap =1 (Enyp C (U})°) so we can put

(5.5) €p = Z prtue u,  with t, € Zp[¢]" and integers ry, > 0.
H#Lp
Hence we obtain
(5.6) U, (ep) = Z prtue, = Z prey Z tu€p-
u#Lp u#LP u#Lp

Since Zu#lp p"rtue, € Zpl', it follows from Lemma that r, = ry are
equal, and ¢, and ty are conjugate over Q,(¢;) provided the characters p and
¥ are summands of the same irreducible character of I" over Q.

Thus for any Qp-irreducible character 1" of I" and o € Gal(Q,(()/Qp)

one has o (3,1 tuit(v)) = X tur 1 (), whence > 1 tufi(7y) € Zp. Con-
sequently, we have

S tuew=7 (X0 twnn)v =7 32 (S Dty € 2,1
pw#lr yel' p#lr vyl T p|T

where 7" runs over all nontrivial irreducible characters of I" over Q,.

Since 3y, tuep Do, t;leu =1—(1/DT and t} € Zp|(], the image
of > 41, tuey in Ap is a unit in Aj. Then according to (5.5) and Corol-

lary
(eplX) (Z p ”tﬂeu“p‘ ) = DetX< Z pmtueu> (up|X) N p

pFLp HF#Lp
= (p'x *)s(up|x)n,p Dety (pp),
where p, = Zu;élp tueu € A,. In order to calculate ry we apply Lemma
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and to obtain

(5.7) Vp(’eéx,p(U;}/gN,p)D = Vp(‘edﬁx,p(ZPF/[ZPFWP(EP)])|) = Txdsx,p(l)'
Let Cnp € En,p be the closure of CNHE}\,J) embedded by d,, into U}}, i.e

Cnp =dp(Zp® (CNﬁE1 »)) = dp(Zy, ® C). Note that the last equality is a

consequence of Z,Q Exy = 7Z ®E11\7 (a®@n = a/(pfp—1)(8)7)10)61)_1 € Zp®E}V’p

for any a € Zj, and any 1 € En).

In [12] p. 157] R. Greenberg (see also [10, Théoréme 1|) proved that for
any odd prime number p,

(5:8) vpllea,(Up /€xp)) = v T Lo(1in)).

1Py, p
We also need a conjecture of G. Gras which, as shown by R. Greenberg
in [I2], is a consequence of the Main Conjecture proved by B. Mazur and
A. Wiles in [I7]. It states that H, and the p-Sylow subgroup of En/Cn
have isomorphic Jordan-Hélder series as Zp,I'-modules for p > 2. This is
equivalent to

(5.9) lea(EN/CN)p| = leaHyp|

where @ is an irreducible nontrivial character of I" over @, and the subscript
p indicates that we are dealing with the p-component.

Since En,p = dp(Zy ® EN ) = dy(Z, ® En) and d), is injective (see
Theorem 3.6.2(vi) in [11] Chapter HI]) one has

(EN/CN)p 2 Zp @ (EN/CN) = (Zp @ EN)/(Zy @ CN) = ENp/CN ps

so by (5.9 -,
lea(ENp/Cnp)| = |eaHy|.
This and (5.8]) yield now
vollea, Uy /Exp)) = vo( TT Lo(L)) = villea, , Hol):
HIPx.p

Since all € I’ \ {1} with p|®,, are conjugate over Q,, we have

p = x7 for some o € 2 = Gal(Qp((q)/Qp) (recall that F = Qpy((yq)). By
Theorem and 7(x7) = x7(0x)o(7(x)), where o, is an integer defined by

o(Cq) = ¢+, we get Lp(1, pi) = o(Lp(1,xx)), which gives vp(Ly(1, ps)) =
vp(Lp(1, x«)). Thus we obtain

’/p(‘edix,p(Upl/SNm)’) Dy p(Dvp(Lyp(1, ) _Vp(h;z(%
which together with (5.7) gives
rx = Vp(Lp(L, ps)) — Vp(h%()/djx,p(l)-
Finally after putting d,, = 7, we arrive at the required formula for odd
primes.
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Now let p = 2. Denote by = the isomorphism U & ZoI'®(Z/27)92. Since
ug torz, (U3) is a free ZoI'-generator of U} /torz, (U3), the first component
of Z(ug) is a unit of ZsI'. Thus we may assume, without loss of generality,
that this component is 1.

As the torsion submodules of U} and & N,2 are of exponent 2, u3 and

£3 are generators of the submodules (U})? and (€y,2)?, respectively. By the

same argument we can treat =((U3)?) and Z((€y2)?) as submodules of Zo I
Observe that I'e3 = 1, hence there exist z, € Zs[(;]* and integers b, > 0

such that
2 = Z 2b“xueuu§.
H#Lp
Hence we obtain
(5.10) 22 = Z 2nz,e, = Z e, Z Tey
u#lp pFELp HFLP

and arguing as in the case of odd p we get
(5.11) (e2]x)n2 = (2bx5)5(u2])<)]v72 Dety (p2) for some po € Aj.
We also have

ea, (U /(En2)?] & e, ,[(Zal” © (Z/22)%) ) 22T 5 (¢3)]

> e o[Lol' Lol Z(€3)] @ eq ,(L)272) = eq ,[Zol Lo E(e3)]
where the last isomorphism is a consequence of the trivial I'-action on
(2/27)%. Now, using Lemma [3.6] and (5.10)), we get
(5.12) va(lea, o (Uz/(En2))]) = byPy2(1).
As torZ(E}VQ) = {£1} and Zo ® {£1} = {1 ® (£1)} one has torz,(En2)
{(£1)} and so, by the assumption of the proposition, Eno/{(£1)}
ZoI'/(I'). Hence Eno = Zol'/(I') © (Z/27) and since eg, ,(Z/27) = {0}
(1p { @y 2), we obtain
es,,(En2/(EN2)) = e {221/ (D) & (Z/22)]/2(Zo T/ (1))}
= e, o {Z2L/(I)/2(Z2 /(1)) }

From [ZoI'/(I')]/2[Zal/(I)] & ZoI'/[2ZoT + (I')] and e@x’zf =0 we get
ea o A[ZoT/ (D)) 2022/ (D))} & e, (22T /2ZaT),

hence by Lemma e, ,(En2/(En2)?)| = 2%x2() and gives

(5.13) va(lea, o (Uy /En2)]) = (by — 1)Pya(1).

Let Cn2 C En,2 be the closure of C'y N E11\7,2 in U21.

eI
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Now we shall need formulas analogous to (5.8]) and (5.9) for p = 2. The
first one comes from Gillard [I0, Théoréme 1 for [ =2, I' = {1}] and gives

va(lewa(Uka/€n2)) = va( TT Z2(1 1)) = ya().
1| Py2
The second
lea, o (En/C)2| = |ea, , Ha 27020

is a special case of the formula in [I3, Theorem 4.15]. This theorem is applied
for p = 2, Ay = 1 where d(x’) = Py 2(1) (in the notation of [13]) and
|(R:U)y| =1 because 21 (R : U) (Proposition 5.1 in [19]). As in our case
Cy = Cn we can replace C'\, by Cy in this formula.

Applying these formulas together with (5.11)), (5.13]) and proceeding as
for odd primes we obtain the asserted formula for p = 2. u

LEMMA 5.4. Let p be a prime number and let I' = (o) be a cyclic group
of prime order 1 # p. Put ey = (1/1) > cp x(MY7Y, er = (/DI and eq =
1—e forxef\{lp}.

(i) If I is an ideal of ZyI" such that I C (Z,I")" and rankg, (I) =1—1,

then
@ p'XeyZy in casel|p—1,
I'=q x#1r
ZpI'p"eg in case l{p—1.
(ii) If I is an ideal of Z,I" such that rankz,(I) =1, then
@p’"xepr in case l|p—1,
1={ %

Zp,I'p"eo ® Zpyl'pter in caselfp—1,
where 1y, T and h are nonnegative integers.

Proof. (i) In case I | p—1 we have ; €Z,, and hence (Z,I")° = ®x¢1F exLp.

Let I be a mnontrivial ideal of (Z,I")° with rankz,(I) = | — 1. Then
Qpl = @X#F exQp and so, for any x # 1r, there exists a nonnegative
integer r, such that p"™e, € I. Choose r, to be minimal.

Suppose x € I and =z = Zx#r ayey with a, € Z,. Since, for each
p# 1r, e, € I and xe, = ayey,, we have p™ | a,. Thus x € @wélp p'XeyLiy,
so I C @x#lr p"xeyZy. As the opposite inclusion is obvious, the first case
of (i) follows.

In the case l { p — 1, Zyley = {Zé;%) a;jvy € Lyl : Zé;% a; = 0}, so

the map defined by Zé;% ajfyé — Z;;B ajClj establishes a Zj,I-isomorphism
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ZpI'eg = Zyp|(). As any submodule of Z,[(] is of the form Z,[¢]p" it follows
that each ideal of Z,I" contained in (Z,I")? has the desired form.

(ii) If I| p— 1, then it suffices to apply the same argument as in the proof
of (i). If [ {p—1, then Q,I = Q,I'eg ® Qpe1, where eg and e; are primitive
idempotents of Q,1". Observe that there exists a nonnegative integer h such
that p"e; € I and choose h to be minimal. Let z € I. As I C ZI,
ZpI'eq @ Zper, there exist ag € Z,I" and a1 € Zj, such that x = apeg + are;.
Since xe; = aje; € I, we then have ph |a; and therefore z € I’ prhel.
As rankz, (1°) = 1 — 1 it follows from (i) that I C Z,I'p"eq & Zpp™e;. This
completes the proof of (ii) because the opposite inclusion is obvious. m

PROPOSITION 5.5. Let N/Q be a tame real Abelian extension of odd
prime degree 1. Let a, be a free ZyI'-generator of Z, ® On and for any
prime p # 2 let uy, be a free Z,I"-generator of Upl. Let ug € U} be such that
its image 1s a free Zol -generator of U%/torzp(U%). Then for any prime p
and any x € I'\ {11} there exists wy € A} such that

(upX)np = P lap|x]n,p Dety (wp)
where s, = 1 with two exceptions:

e s,=0wheng,=fy=1andl|p—1

e 5o =2 when go =1 or fo = 1.

Proof. Assume first g, = [. Then UZ} = nyeF(l +pZy) and Z, @ Oy =
Hve 1 Zy. Consider the case p # 2 and let ¥ be the isomorphism UI} = Zp,I'
defined in Proposition

Put ¥(up) = > pwyy and up = (uy)y. Observe that ¥(uy) is the image
of a free generator, so it lies in (Z,1")*. Thus

1 _ 1 _
W (upex = — Z Ing(u’y)'Y 16x = - Z X() Ing(uv)ex
p yel’ p yel’
but ¥ (up,)e, = Z’VEF wy X (7)ey. Therefore

— Z x(y logp Uy) Z wyx (v

VEF yel’
and by (5.2)) we get
() = (X O)es (p D2 02X (7)) = Dty () (X (D)

~yel’
where w = 3" p w7y € A}
On the other hand for a, = (ay)y € [[ e Zp, using arguments as above
and the isomorphism [[ ¢y Z, = Z,I" given by (ay)y — > crayy 1 we
obtain
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aphdvy = O 0) (3 ar¥™ (1)) = Dety(0) (™ (1),
yel’
with a =37
Thus (up|X)np = plap|x]n,p Dety(wa™), ie. s, = 1, which shows the
required formula in the case under consideration.
In the case p = 2 and g2 = 1 let ¥a: []
homomorphism defined by

ayy € A,

~er ZQ — ZQF be the ZQF—

Uyt (Uy)y % Z logy(uy)y™! where uy, € 14 2Zs.
yerl

Aslogy(142Z3) = logy({£1}(14+4Z9)) = 475, ¥, is surjective and its kernel
is torz, (U3 ).

Since, by assumption, u torz, (Us) is a free Zo I'-generator of U /torz, (U3),
Wy (uz) is a unit of ZsI'. Indeed, let u € U3 be such that W5 (u) = 1. Then there
is 0 € ZoI such that uker Wy = (Sug) ker Wo, whence [Ws(ug) = Wa(u) = 1.
Now proceeding as in the case g, = [ and p # 2 with ¥s(ug) we get

(u2|x)n2 = 4az|x]n2Dety (w2)  for some wy € A3, ie. so = 2.

Now suppose that g, = 1, p # 2 and note that Z, ® Oy = O, and
U; = Up1 with p being the only prime ideal of On above p.

First assume that f, = [ and p # 2. Then e, = 1,50 1 > ¢,/(p — 1)
and the map (1/p)log, : U; — 0Oy is a ZpIl-isomorphism. Consequently,
(1/p)log,(up) is a free Z,I-generator of the ring of integers Oy so log,(u,) =
pxpay, for some x), € (Z,I")*, and hence by (5.1)),

(5.14) (uplX)np = (uplx®)s = plap|x°]s Dety (25),
so s, = 1.

In order to examine the case f, = 1 and p # 2 assume first that [ {p — 1.
In this case let ¥y denote a Zjy,I'-isomorphism UI} — ZpI'. Then, by Lemma
5.4{(ii), we obtain

Y(U,") = Zpl'p™eo @ Zpp'mer = Z,T (p"meo + p'mer)
for integers m > 1. Note that 11 = hy =0 and 41 > Tm, hmt1 > A

As U3 /U = pf for integers j > 1, we have

(5.15) Uy /U | = ple(m=D),
On the other hand
U /US| = |Zp T/ B0(Up)| = 12T/ (Zp T ™ e @ Zypp"™er)| = plt=Hrm+hm,

whence by (5.15)),
(5.16) (=11 +hpm = fr(im—1)=m—1.
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Since W (uy,)(p"™eg +pimer) is a generator of Do(U,"), it follows that up m =
(p"meg + phmel)up is a generator of U)". Note that up1 = up. Consequently,

for any x # 1r we have (upm|x)np = Dety(p"™eq +phm61)(up|x)N7p =
p"™ (up|x)N,p because Det, (e1) = 0. Thus

(5.17) (Uup,m|X)Np = 2" (Up|X) N p-

Now we put m = 2 in , whence (I—1)ro+he = landsore =0, hg = 1.
By the formula |U} /U™ | = p for integers j > 1 one has (I —1)(rj41 — 1) +
hj+1 — hj = 1, whence Til =715 and hj+1 = hj + 1. This implies r,, = 0
and consequently for m = [, by (5.17), we obtain (up|x)np = (Upi|X)Np-
Since ep/(p — 1) = 1/(p — 1) < I, the map (1/p)log, : Uzl, — Op is a Zpl-
isomorphism and thus (1/p)log,(u,;) is a free generator of Oy, giving the

formula , ie. sp = 1.

Now let I|p — 1. Let © be a Z,I-isomorphism O, = Z,I" such that
O(ap) =1 and let p denote the closure of p in Oy. Since ¢; € Z,, Lemma
gives

O(p) = GB Zpp*e, = Z,I" Z theX with some integers t, > 0.
XEf XEf

This and |O,/p| = p imply
(5.18) >t =1

x€eIl
On the other hand as e,/(p — 1) < 1 the mapping log,, establishes a Z,I"-
isomorphism U, = p and thus @(log,(up)) is a Z,I-free generator of O(p).
This means that O(log,(up)) = zp>_ < p'xe, for some z;, € (Z,I')* and
consequently log,(up) = ap > pxeyap. Thus

(5.19) (up|x) = [log, (up)|x] = p™ Dety (z;)[ap|x].

By in order to show that all t, are equal to 0 for x € I'\ {1p} it
suffices to prove that ¢;,, > 1. To this end note that f@(ﬁ) = prtlf e1, and
I'pC pNZ, = pZ,, whence @(f’ﬁ) = Zpp''rei,. C pZyl, and so t1,. > 1,
showing that s, = 0.

Now we consider the case p = 2 and go = 1. For any integer m > 1 put
Uy = (U {£1})/{£1} and observe that Uy = U} /{&1} with Ty = up{=1}
as free ZyI'-generator. Let Wy denote a ZoI'-isomorphism Ué = ZoI'. Then
by Lemma [5.4{ii) (the case [ {p —1),

Uo(Uy') = Zol'2meq @ Zo2Mme = Zpl'(27meg + 2Mmey),  m > 1,

and again as in the case p # 2, 11 = h1 = 0 and 711 > T, Bna1 = e
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Note that
02/03'] = U3 /U3 {1},
and —1 € U3" if and only if 1 < m < ey. Since the kernel of the homomor-
phism Uj /U3 — U} /U3 {41} is nontrivial and equal to {£1-U"} precisely
when —1 ¢ U3, by (also true for p = 2) we have

—1 —m 2f2(m—1), 1 <m < ey,
LTy = { :

2f2(m=1=1" 1y > ¢y,
On the other hand
—— — _
Uy /Uy | = |22 WUy = |ZaT [ (Za2"meq ® Zp2"mey)| = 20 1rm+hm
whence
fQ(m_l)y 1§m§627
5.20 -1 + hpy =
(5.20) ( T + hm {fg(m—l)—l, m > eg.
Since Wy(T2)(2"meg + 2'mey) is a generator of Wy(Uy'), it follows that
ugm{£l} is a generator of U;n, where ug,,, = (2"ep + 2Pmer)uy. Note
that ug 1 {£1} = uy. Consequently, for any x # 1p we have (ugm|x)n2 =
Det, (2" eg + 2" ey ) (uz|x) N2 = 2" (uz|x) N2 because Dety (e1) = 0. Thus
(5.21) (u2m|X) N2 = 27 (u2]X) N 2-

To consider the case p =2 and fo =1 we put m =2 in (5.20). As eg =1
we obtain (I — 1)rg + he =1 — 1, whence r9 € {0, 1}.

We shall prove that 7 = 1. Since the extension N,/Q is unramified,
the norm map is surjective on U2, i.e. I'U? = 1 + 22Zs. The above and
1427y = (1 4+ 4Z2){£1} imply

Uy = (TU) {F1} = (14 2Z2)/{=1} = (1 +4Zo){£1}) /{£1} = U,
and so ﬁg(fﬁé) = %(fﬁg) Thus from f@Q(U;) = Zseq and f@(ﬁg) =
Zo2M2eq we infer that ho = 0, whence 75 = 1 and so by (5.21)), (u22|x)Nn2 =
2(uz[x) N 2-

Because —1 ¢ U2 (2 > eg), we have U; =~ U and ugp is a free Zol'-
generator of UZ. Since ey = 1, it follows that %logz is a ZoI-isomorphism
U2 = O5. Therefore

[logy (uz,2)|X]n2 = 4laz|x]n,2 Dety(y)  for some y € (ZoI')*
and so by [logy(uz2)[x]n2 = (uz22|x) N2 = 2(u2|x)n,2 We have
(u2|x)n2 = 2[az|x]n2 Dety(y)  for some y € (Z21')",
proving that so =1 for fo = 1.

In the case fo = 1 and eg =1 we put m = 2 in (5.20)) to get (I —1)ra+ ho
= 1, whence ro = 0, hy = 1. It turns out that r; = 0 for each j. In order to
prove this we apply (5.20) for [ > j > 2 and obtain (I — 1)r; + h; = j — 1,
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whence (I—1)(rj—rj—1)+hj—hj—1 =1, which implies r; = 0and h; = j—1
for i > 5 > 2. For j > I+ 1 we have (I — 1)r; + h; = j — 2, which gives
(I —1D)ripq1 + b1 =1 —1 and so 741 = 0 because hyy1 > hy =1 — 1. After
subtracting suitable equations we obtain (I — 1)(rj41 —7;) + hj1 —hj =1
for j > 1 + 1, proving that r; =0 for j > [ + 1.

Now by putting m = 20 in (5.21) we obtain (u22|X)n2 = (u2|x)n2-
Since —1 ¢ U2 (21 > e3), we get U;l =~ U2 and ug g is a free Zy'-generator
of UZ.

On the other hand in our case 2] > ey and so log, establishes an isomor-
phism U22l =~ p2l = 40,. Therefore

[logy(u2.21)|x] N2 = 4[az|x]|n,2 Dety(z)  for some x € (ZoI')",
whence
(u2|x)n2 = 4az|x]n2Dety(x)  for some z € (Zo1)*,

showing that sg = 2 for fo = 1.

Finally if p = [, then e, = 1 as N/Q is tame, e,/(p—1) < 1 and so the map
(1/p)log, : U; — Oy is a Zy[-isomorphism. Consequently, (1/p)log,(uy) is
a free generator of O, and proceeding as in the preceding cases we obtain

(uplx)Np = plap|x®]s Dety(z,)  for some x, € (Z,1")",
completing the proof of our proposition. =

Now we can formulate the main theorem of this section.

THEOREM 5.6. Let N be a tame real cyclic field of prime degree | > 2
and let vy generate I'. For any prime p # 1 put

Wp,x = pdp’XJrsPa Wiy = Detx(l — %)™, Woo,x = 1,
where dp,y, sp, and my are from Propositions[5.2] and[5.5} Then the map

— D7 (s 6
X — 7(N/Q, x)(KX*(p)L/IiL;();) bce)

is a representative of (En)a in
Homg (R, J(F))/[Homgo (R, F*) Det(U(A))],
where T(N/Q, x) is the Galois Gauss sum and X is the primitive character
for x.
The definition and the properties of Galois Gauss sum can be found in [7].
We recall that for p = oo we put x«(p)/p—1 = —1 and Lo (s, x«) = L(s, X«)-

Proof. Note that as A = Z[(j] is a maximal order it follows that E is
A-locally free, i.e. for any prime p, Z, ® Ey and R ® Ey are A,-free and
Aoo-free respectively. Since IV is tame, Noether’s theorem implies that Oy is
Z-locally free, i.e. Z,®0y and R®Oy are Zy,I'-free and RI-free respectively.

wp,x“) with 8 € T'S
d,p
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To apply Theorem [£.6] we shall prove, for each prime p, the existence of
gp € (Z, @ En)? whose image is a free Aj,-generator of Z, ® Ey.
Assume first that p is odd. Then

Zy ® En = (Zp ® En)/(Zp ® {£1}) = Zy ® EN
and (Z, ® Ex)? = Z, ® Ey because for any a ® n € Z, ® Ex one has

I'a®n) =a®(£1) = (a/2) ®1 = 1@ 1. Therefore there is ep € (Zp @ En)°
whose image is a free A,-generator of Z, ® Ey for odd p.

For p = 2 we have Zs ® {#1} = {1 ® (£1)} and s0 Zy ® Ey = Zs ®
En/{1® (£1)}. Let e2 € Z2 ® En be such that e2 mod {1 ® (£1)} is a free
Ajs-generator of Zy ® Ex /{1 ® (£1)}. Then I'es € {1 ® (+1)} and if we had
I'ey =1® (—1) # 1® 1, then we can take e(1 ® (—1)) which belongs to
(Zy ® En)? (because |I'| is odd) and its image generates Zo @ E .

In the infinite case one has R® Ey = R® E . Then we put 50 = 1®¢eq €
R ® Ey = (R® En)°, where g9 and its conjugates generate a subgroup of
finite index in Ey.

Thus according to Theorem @ for the above defined ¢, we infer that the
map

— D7 (v 19 . 5
X = ((%)p’X)N([(X*(p)L/f(L ;é) () )M with 0 € T},5),

represents the class of Fy.

Observe that dp(ep) is a free Ap-generator of €y, for odd or infinite
prime p, and da(e2){(£1)} is a free As-generator of Eno/{(£1)}. By defi-
nition (ep|x)n,p = (dp(ep)|X)N,p and after applying Propositions and
for d,(e,) and da(e2){(£1)} we obtain

(erlx) vy = Dety (1 = F0)™ (w|x) v Dety (1),

(eph) v = (0" )5 (uplX) v Det (),
where p, € A} and the existence of free generators u, and ug torz, (U3) is a
consequence of Proposition [5.1
Next, by Proposition [5.5| we obtain

(ep|X)vp = Dety (zp)wp x [ap|X]Np

for some x, € Z,I'* and some a, that is a free Z,I-generator of Z, ® Oy
(the existence of a) follows from Noether’s theorem on tame extensions).
Thus for p #£ [ the map

X = (@i [0 (0) /P = )T (0)]™ /Lo (L X)) s X v.p

is the pth component of the map which represents the class of E in CI(A).
If p =1 > 2, then a reasoning as for p # [, together with Propositions
and gives the I[th component of the above map.
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In the infinite case let uoo = (uy)y be a free RI-generator of UL, and
W4, be the RI-isomorphism Ul =2 RI" defined in the proof of Proposition
[5.1l Then since

Voo (En,00) € Woo((Un0)”) = (RI)” = RI'(0 — 1)

and €N oo = doo(R® Ey) has R-dimension |I'|—1, we infer that Voo (Enoo) =
RI'(y0 — 1). Hence Yoo (doo(ex0)) and Yoo(uso(o — 1)) are Aoo-generators
of ¥oo(EN,00). Then, by arguing as in the proof of Proposition there
exists © € A% such that de(60) = (70 — 1)Uso, Whence (dos(€00)|X) N0 =
Dety (z(70—1))(too|X) N,00- As Log, : Ull\/,oo —R®ON =][,crRisan RI-
isomorphism it follows that as = (log.,(uy)), is a free generator of R® Oy .
Note that, by definition, (500|X)N,oo = (doo(eoo”X)N,oo and (uoo|X)N,oo =
[aoo|X]N,ooa S0 (500|X)N,oo = DetX(SU(’)/() - 1))[aOO’X]N,oo- Since Yo —1€ ‘A;cw
the map

X = ([T Oe)]™ /L(1, X)) eslace | x] v .0

is the coordinate at co of the map considered above.

By the formula (5.24) of Chapter I and Theorem 6 of the book [7] the
map x — [a|X]nT(N/Q,x)"! is a representative of the class of Oy in the
locally free class group

Cl(ZI') = Homg(Rr,d(F'))/[Hom,(Rr, F*) Det(U(Z1"))].

On the other hand since N/Q is an Abelian tame extension, N has a nor-
mal integral basis, i.e. Oy = ZI" and therefore the class of (Oy) is trivial.
Consequently, the maps x — [a|x]y and x — 7(N/Q, x) are equal modulo
Homg(Rp, F*) Det(4(ZI")) and so equal modulo Homg (R, F*) Det(£(A)).
Thus after replacing [a|x]n by 7(N/Q, x) we obtain the required formula. m

6. Minkowski units in fields of a prime degree. Now we are able to
give sufficient and necessary conditions for real cyclic fields of prime degree
to have the simplest multiplicative Galois module structure, i.e. to have their
groups of units A-free modulo torsion. This is equivalent to the existence of
units which together with their conjugates are fundamental units; such units
are called Minkowski units.

Using these conditions we also give new examples of fields having Min-
kowski units. Let h; denote the class number of the Ith cyclotomic field.

THEOREM 6.1. Let N/Q be a real, tame and cyclic extension of prime
degree l > 2 and letl be regular, i.e. hy is prime tol. Then N has a Minkowsk:
unit if and only if

Vp(hff)@mp(l) = Vp(hg)djx,p(l)

for any x, p € r \ {11}, and for any odd prime p # | dividing hy .
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Proof. Because A is commutative it satisfies the Eichler condition (see
Proposition 51.2 in [5]) which is sufficient for A to have locally free can-
cellation. This means that (X)4 = (Y)4 implies X =2 Y for A-locally free
modules X and Y ([5, pp. 303-304]). Thus in order to show that Ex = A, it
suffices to prove that the class (Exn)4 in CI(A) is trivial. Since A and Z[(]]
are isomorphic rings, we have |Cl(A)| = h;, and from the assumption that
hy is prime to [, one concludes that (En)4 = 1 if and only if (En), = 1.

Let f € Homg(R},J(F')) be a homomorphism representing the class
(En).ain Cl(A) as defined in Theorem. Thus in order to examine whether
En = A it suffices to consider the function f!.

In view of Remark [3.2] we can always assume that each homomorphism
representing a class in CI(A) has its component at infinity equal to 1.

For any x # 1 we put

(61) f(X) = T(N/Qv X)(wp7x5/Wx5,p)p,5
where

W PR LP(LXﬁ) — LP(LXi)Xi((S*)
PO/ =D (A ) /p—1DT(x2)
with an integer d. such that §(¢,) = (g*.

Since we need only an evaluation of Vp(V[/;l< 5 p) it suffices to consider

L (1 X* “
me = (X* (p) Z X* logp - Cq)

where the last equality is a consequence of Theorem
Hence for any o € Gal(Qy,((14)/Qp) and x # 11, one has

(6.2) oc(Wyp) = X (0:) Wyo p

where o, is an integer defined by o((;) = ¢7*.

Now using Leopoldt’s p-adic class number formula (see Theorem 5.24 in

[20]) l 1
2 _thRl(N) . X*(l) B
m — Xl*;ll( I ) Ll(lax*)

and [ cp7(xs) = Vdy, we get 217 hy Ry(N) /dy = [T, Wit

Observe that for p = [ all characters x € r \ {1} are conjugate over Q
since the decomposition group of I in Q(¢;) is the whole group Gal(Q(¢;)/Q).
This in turn by shows that v, (W, ;) = v (W) for all x,u € I\ {1p}.
Thus the above and [ 1 dy (N/Q is tame) imply

-
(6.3 <Z—1>w<wx,l>:w(21hgwm):w(hNRl(N)) for x # 1r.
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Since v,(Wy p) = vp(Lp(1, x+)) +1 —vp(7(x+)), Theorem [5.6{and (6.3]) imply

Wiy 1
= —_— 1 —
Vl<Wx,l) 11— wnlhw)),

V9 <;/Z;> =52 — 24 1a(7(x+)) — va(hd) /Py 2(1),

1/p<;f’x > = sp — L+ 1p(7(xx)) — vp(hy) /Py p(1)  for other primes p.
X?p

This and the fact that s, = 1 for all unramified primes p in N (see Propo-

sition [5.5) show that vp,(wpy/Wy,p) = 0 for any x # 1p and almost all

primes p. Thus we obtain

Wp 18 ) .
= €JF), §e€T,S,.
<Wx5,p P8 nr

If we take any o € (2 which is the identity on Q,({;), then gives
o(WL,) =W, showing that W} , € Q,(¢;) and consequently (wp/Wy,p)!
€ Qp(Q)-

Note that for any prime pp in F over p one has Q,((;) C Fp,., so each 0
from the decomposition group Ap, is an extension of some automorphism
of Qp(¢;). This and the fact that v,(L,(1,x7)) = vp(oLy(1,x4)) for o €
Sal(Qp(¢1)/Qp) imply that w,, s = d(wp ) for each 6 € Ap,. Similarly using
(6-2) we obtain (W,s )" = 6(Wy,)! for § € Apy. Now applying Remark

X
to the mapping defined by

w

l
5 . .
D(y) = (Dy(x*))sp = (W>  withsets
X“sp/ p,

we deduce that D € Homg (R}, J(Q(()))-
As (wpr/Wyp) and 7(x«)! € Qp(¢), for odd p # I the numbers

Ax,p = Vp((wp,x/me)l) - Vp(T(X*)Z) —l(sp—1) = _l’/p(hg)/@x,p(:l%
ay,2 = 1a((w2,/Wy,2)') = v2(T(xx)") — (52 — 2) = —lva(hY) /Py 2(1)

are rational integers. Thus we can define a mapping ¥ on R} by putting

F(x) = (Fp(x?))p.s Where F,(x) = px» for p # [ and Fj(x) = 1.
We also define mappings B(x) = (B,(x°))ps and S(x) = (5p(x°))p.s by

By(x) =p”  with by = I(s3 — 2), b, = I(s, — 1) for odd prime p # I,
Bi(x) = (1= x(70))" 1),

The mapping G is defined by

(6.4) Sp(x) = Dp()F, (0B, )T (x) -
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Since Bp(x) = 1 for almost all p and B,(x7) = ( »(x)) for o € 2, it
T

follows that B € Homg (R}, 3(Q(¢))). Similarly 7(x9)! = o(7(x+)!) € Q({)
for o € {2, so the map x — (T(Xi)l)pﬁ is in Homg (R}, 3(Q(&)))-

Using similar arguments applied to w,, we get a,s, = ay, and so
Fp(x°) =6(F,(x)) for any § € Ap,. Hence by Remark we infer that F e

Homg (R}, 3(Q({;))), which together with (6.4) gives § € Homp (R}, 3(Q(()))-
The definition of § in (6.4) and (7« (x)) = 0 show that G,(x) € Z,[¢]* for
any p and x # 1r. Since, for any representative t € Tg¢,)p, the completion

of Q(Q1) at 1(pg(c) is Qp(t(G)) = Gy(G). we have

§ € Homy, (R’n II H %(g).:t)
P
= Homy, (R’p, H H Zp[gl]*> C Homg, (R}, H F;)
p t P

where t runs over Ty, and p; denotes t(pg(c,)) for short.

We shall prove that G € Det(LU(A)).

For any prime p # I define G, € Homg(Rr, [[, Zp[G]*) to be G,(x) =
9p(x) for x # 1p and G,(1r) = 1. Since p { | = [I'|, ZpI" is a maximal
order in Q,I" and by Proposition 2.2 in [7] we get Homgo(Rr, [ [, Zp[(]*) =
Det((ZpI")*). Consequently, G;, € Det((Z,I")*) and so G, € Det(Ay) because
the image (under vy — 7) of any unit of Z,I" is a unit of A, and they have
the same Det,.

For p =1 let X 7é Ip and let 7o be a generator of I' with X(’)’o) = (.
Put Gi(x) = Z] OaJCl € Zy[¢]*. Since Zj 0%70 — Z xJCl is a
ring isomorphism A = 74[¢], we have Ej:() a;%, € Aj. Also note that
DetX(E] —6 ajyo) (S1(x?))o- Let u be any nontrivial character of I". Since,
in this case, all nontrivial characters of I" are conjugate over (;, we have

p = x” for some p € Gal(Q;(¢;)/Q;) and so
-1 -1
Det,, (Z afyé) = (Z ajxpo(yé)) .
j=0 j=0

= (P(SX7)))e = (X))o = (Gi(17))o,

which shows that G; € Det(A}). Thus §G=(Gp), € Det([ ], A,) =Det(Ll(A)).

We will show that B € Homg (R, F*) Det(L(A)). To see this observe
that B,(x) = 1 for almost primes so we can put B(x) =11, Bp(x) € F* for
any X # 1p and define the map B’ : x — (B(X?))po- It is clear that B’ €
Homg (R, F*). As B,(x) is a power of p for p # [ and B;(x) is a power of
1 — G times a unit of Z[(j] we deduce that B/B" € Homg (R}, [[, [T, Zp[G]")

)

where ¢ runs over T, - Then after proceeding as for § we obtain B/B' e
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Det(U(A)), whence
(6.5) B =B'(B/B’) € Homg (R}, F*) Det(U(A)).

Since the Galois Gauss sum 7(x, N/Q) is an algebraic number in F' and
T(x7, N/Q)/o(1(x, N/Q)) is an lth root of unity for any o € {2 (see Theorem
20B(ii) in [8]),

x — 7(x, N/Q)! is an element of Homg (R}, F*).

We can say the same about the function

X (T(Xg)l)p,a-
Thus by (6.1)), the definition of D, (6.4) and (6.5) we may write
(6.6) fl=9% with F € Homg(R}, F*)Det(U(A)).

Now assume that the conditions of our theorem are satisfied. Then for
any prime p and any o € {2 we have F,(x?) = o(Fp(x)). Since Fp(x) is
always a power of p and equals 1 for almost all p, we can apply the same
arguments as used for B to get I € Homg (R}, F*) Det(L(A)). Thus by
we have f! € Homg (R}, F'*) Det(4(A)), which proves that Ey is A-free.

Conversely, suppose that E'n is A-free. Then the representing function
f of the class (En)4 belongs to Homg (R, F*) Det(4(A)) and so does f!.

Consequently, according to we have F € Homgp (R}, F*) Det(U(A)).
Thus, by the definition of F, we may write

(Fp(X7))o = (P77 )0 = (Z’(XU))G(QP,X")U € H Fa*(pp)
o€Tr,

where Z € Homg (R, F*) and the mapping x +— (ypyo)os is an element
of Det((A})). Hence y, - € OF o and since p®»x” = Z(x7)yp,yo one has
o(pp

Ypxo € F' N O}o<pF). It follows that

)

Vo(pr) (P"PX7) = Vo(pp) (0(Z(X)))  and so eap e = vp(Z(x))

where 1, denotes the normalized pp-adic exponential valuation (i.e. with
image Z) in Fy, and e is the ramification index of p in F'. The above equalities
show that for any o from T’ ;,, the set of representatives of the decomposition
group of p in F, and for any nontrivial character x one has a, o = a, . This
is also true for any o from the decomposition group for p, as a consequence
of the 2-invariance of (F,(x?)), and Remark 2.1. Thus for any p, x # 1p
and o € {2 one has a, s = a, y, and our theorem follows. m

Now we apply the above theorem to give examples of fields having Min-
kowski units. This will be done in two corollaries.

COROLLARY 6.2. Let N/Q be a real, tame and cyclic extension of prime
degree | > 2 and let | be regular. Then N has a Minkowski unit in the
following two cases:
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(i) hy =1,

(ii) any prime p dividing hy is a primitive root modulo .

Proof. (i) In the case hy = 1, the homomorphism F defined in the proof
of Theorem has all values equal to 1, so F represents the trivial class.

(ii) If p is a primitive root of unity modulo I, then the decomposition
group of p is the whole group Gal(Q(¢;)/Q) = Gal(Q;(¢;)/Q;) and so all
nontrivial characters of I" are conjugate over Q. Consequently, &, , = ®,,,
for all x, € I'\ {1p} and for p|hy. Thus the condition of Theorem ﬂ“
satisfied and the existence of a Minkowski unit follows. m

1s

The next corollary provides concrete examples of fields with Minkowski
units. As is well known, all real Abelian fields of prime degree over Q less
than 23 have Minkowski units (see [3]); below we shall give fields of degree
I > 23. Let Q(¢;)" denote the maximal real subfield of Q(¢,) and A its
class number.

COROLLARY 6.3. Letl and q be odd prime numbers such that | is regular
and ¢ = 1 (mod [). Let N be the unique real subfield of Q(¢;) such that
(N :Q) =1. Then N has a Minkowski unit for the following pairs (l,q):

(i) (23,47), (29,59) (z’.e. N = Q(C47)+, @(C59)+). In this case hN =1
(see tables in [20]).

(i) (41,83), (53,107) (i.e. N = Q(Gss)", Q(Cror)*), (23,139) (tables
in [20]) on the assumption that the generalized Riemann hypothesis
holds.

(iii) 1|¢—1 and q is a prime less than 10000 from Schoof’s table (|18])
such that h;r = 1. There are 564 such pairs.

(iv) I|q—1 and q is a prime less than 10000 from Schoof’s table ([18])
such that h;“ > 1 and all prime factors of h; (possible factors of
hn) are primitive roots of unity modulo l. There are 47 such pairs.

The correctness of the examples in (iii), which is highly probable, depends
on whether the entries in Schoof’s table are equal to h(‘; for suitable ¢’s (see
the discussion in [20, pp. 420-421]).

Proof. All the above fields satisfy one of the conditions of Corollary
In case N is a proper subfield of Q(¢,)* we use the relation hy | hf (see
Theorem 22 in [20]). Then if A} > 1 we consider prime factors of h as
possible factors of hy and check whether they are primitive roots of unity
modulo /. =
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