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1. Introduction. Finite dynamical systems are discrete-time dynami-
cal systems with finite state sets. Well-known examples of finite dynamical
systems include cellular automata and Boolean networks, which have found
broad applications in engineering, computer science, and more recently, com-
putational biology.

Finite dynamical systems over finite fields are most widely studied thanks
to the many good properties of finite fields. A monomial system of dimension
n over a finite field is defined by a function f = (f1, . . . , fn) : Fnq → Fnq , n ≥ 1,
where Fq is a finite field with q elements, Fnq is the vector space of dimension
n over Fq, and fi : Fnq → Fq is a monomial of the form aix

ai1
1 xai2

2 · · ·xain
n .

Monomial systems of dimension n over finite fields, especially Boolean
monomial systems, have been studied in [2] and [3] from the viewpoint of
graph theory. T. Vasiga and J. O. Shallit [11] have obtained several results
about tails and cycles in the orbits of repeated squaring over finite fields,
but some of their results are based on the Extended Riemann Hypothesis.
Then W.-S. Chou and I. E. Shparlinski [1] extended their results to repeated
exponentiation with any fixed exponent without resorting to the Extended
Riemann Hypothesis. A. Khrennikov [6], A. Khrennikov and M. Nilsson [7]
and M. Nilsson [8], [9] studied monomial dynamical systems over local fields.
Wu [12] studied monomial dynamical systems over finite fields associated
with the rational function field Fq(T ).

In this paper we study monomial dynamical systems of dimension one
over finite fields, of the form xn, from the viewpoints of arithmetic and graph
theory. We give formulas for the number of periodic points with period r
and for the number of cycles with length r. Then we define and compute the
asymptotic mean numbers and Dirichlet mean numbers of periodic points
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and cycles. Finally, we generalize Wu’s ideas in [12] to study the monomial
dynamical systems over finite fields associated with any function fields over
finite fields; we also point out a mistake in [12].

Our paper is organized as follows.
In Section 2, we study the properties of monomial systems from the view-

points of arithmetic and graph theory, including the properties of preperiodic
points, conditions for the existence of periodic points, the number of peri-
odic points with period r, the number of cycles with length r, the maximum
period, the total number of periodic points and cycles, the connectivity of
the directed graph associated to a monomial dynamical system, and so on.

In Section 3, we study the mean numbers of periodic points and cycles.
First, we compute the asymptotic mean number. Second, we define and
compute the Dirichlet mean number. We find that these two mean numbers
coincide.

In Section 4, we compute the asymptotic mean number by viewing a
finite field as the residue class field of a function field. Unfortunately, we find
that there are infinitely many cases in which the asymptotic mean number
of fixed points does not exist. It may be hard to compute the asymptotic
mean number in general cases. We provide a possible reason for this. Then
we define and compute the Dirichlet mean numbers of periodic points and
cycles.

In Section 5, we investigate whether the above results are applicable to
the general case of the form axn. We find that the answer depends on a.

2. Properties of monomial dynamical systems. Let q be a power
of a prime number p. Let Fq be a finite field with q elements. For any positive
integer n ≥ 2, we consider the dynamical system f : Fq → Fq, where

(2.1) f(x) = xn.

Let f◦r be the rth iterate of f , i.e. f◦r = f ◦ · · · ◦ f︸ ︷︷ ︸
r times

.

For every x ∈ Fq, the orbit of x (or an orbit of f) is the set

{y ∈ Fq : ∃k,m ∈ N such that f◦k(x) = f◦m(y)}.
Obviously the orbits of f give a partition of Fq.

Definition 2.1. Let xr = f◦r(x0). If xr = x0 for some positive integer r,
then x0 is said to be a periodic point of f . If r is the least natural number
with this property, then we call r the period of x0 and x0 an r-periodic point.
A periodic point of period 1 is called a fixed point of f . If for some r, the
iterate f◦r(x0) is periodic, we call x0 a preperiodic point of f .

Definition 2.2. Let r be a positive integer. The set γ = {x0, . . . , xr−1}
of periodic points of period r is said to be a cycle of f if x0 = f(xr−1) and
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xj = f(xj−1) for 1 ≤ j ≤ r − 1. The length of the cycle is the number of
elements in γ. We call a cycle of length r an r-cycle.

Since Fq is a finite set, each element of Fq is a preperiodic point of f .
By the definition of orbits and the discussion above, we know that the

orbits of f correspond to the cycles of f . Hence the total number of orbits
of f is equal to the total number of cycles of f .

All fixed points of f , except x = 0, are solutions of the equation xn−1 = 1
in Fq. The number of solutions of the equation xm = 1 in Fq is given by the
following lemma.

Lemma 2.3. The equation xm = 1 has gcd(m, q − 1) solutions in Fq.

Proof. See [5, Proposition 7.1.2].

All r-periodic points, r ≥ 2, are solutions of the equation xn
r−1 = 1. Let

mj = gcd(nj − 1, q− 1), j ≥ 1. Here we rewrite the proof of Proposition 5.2
of Section 5 in [12] for the convenience of readers.

Proposition 2.4. The system f(x) = xn has an r-cycle (r ≥ 2) in Fq
(i.e. f has an r-periodic point) if and only if mr does not divide any mj,
1 ≤ j ≤ r − 1.

Proof. For any 1 ≤ j ≤ r, let Hj = {ζ ∈ F∗q : ζn
j−1 = 1} = 〈ζj〉. Then

Hj is a subgroup of F∗q and the number of elements of Hj is |Hj | = mj .
Suppose f has an r-cycle (r ≥ 2). If there exists 1 ≤ j ≤ r− 1 such that

mr |mj , then Hr is a subgroup of Hj . Hence all r-periodic points belong
to Hj . By the definition of r-periodic point, this leads to a contradiction.

Conversely, suppose that mr - mj for all 1 ≤ j ≤ r − 1. Notice that mr

is the number of nonzero elements satisfying f◦r(x) = x. So by hypothesis,
for any j | r, mr > mj . Hence f must have an r-periodic point.

Let P(r, q) be the number of r-periodic points of f . Let C(r, q) be the
number of r-cycles of f . Each r-cycle contains r r-periodic points, so

C(r, q) = P(r, q)/r.

By Lemma 2.3, mj + 1 is the number of solutions of f◦j(x) = x in Fq.
Hence we have the following relation between mj , P(j, q) and C(j, q):

(2.2) mj + 1 =
∑
d|j

P(d, q) =
∑
d|j

dC(d, q) for j ≥ 1.

Let µ be the Möbius function. By the Möbius inversion formula and
(2.2), we obtain the following result.

Proposition 2.5. The number of r-periodic points of f and the number
of r-cycles of f are given respectively by
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P(r, q) =
∑
d|r

µ(d)(gcd(nr/d − 1, q − 1) + 1),(2.3)

C(r, q) =
P(r, q)
r

=
1
r

∑
d|r

µ(d)(gcd(nr/d − 1, q − 1) + 1).(2.4)

Remark 2.6. If f has no r-periodic points, then P(r, q) = 0. For ex-
ample, if n = 2 and q = 5, then m1 = m2 = 1. From Proposition 2.4, we
see that there are no 2-periodic points, i.e. P(2, 5) = 0. This also follows
from (2.3).

Let m ≥ 2 be a natural number. Denote the largest divisor of q − 1
which is relatively prime to m by q∗(m). If the prime factorization of q − 1
is pe11 · · · p

ek
k , then q∗(m) =

∏
pi-m p

ei
i .

Proposition 2.7. For any α ∈ F∗q, α is a periodic point if and only if
its order ord(α) divides q∗(n). Moreover, if α is a periodic point, then the
length of the corresponding cycle equals the exponent of n modulo ord(α),
and each element in this cycle has the same order.

Proof. See the first paragraph in the proof of [1, Theorem 1].

We use ϕ to denote Euler’s ϕ-function. We have the following lemma.

Lemma 2.8. We have

gcd(nr − 1, q − 1) = gcd(nr − 1, q∗(n)) for r ≥ 1.

Let r̂(n) be the exponent of n modulo q∗(n), i.e. r̂(n) is the least positive
integer satisfying q∗(n) | (nr̂(n) − 1).

M. Nilsson [8] proved the following result for p-adic dynamical systems.
We follow his idea to get a similar result for dynamical systems over finite
fields.

Proposition 2.9. If M is a positive integer not less than r̂(n), then
M∑
r=1

P(r, q) = q∗(n) + 1.

Proof. First we prove that P(r, q) = 0 if r > r̂(n). Since mr̂(n) =
gcd(nr̂(n) − 1, q − 1) = gcd(nr̂(n) − 1, q∗(n)) = q∗(n), and by Lemma 2.8,
we have mr |mr̂(n) for every r > r̂(n), it follows that P(r, q) = 0 by Propo-
sition 2.4.

Next we prove that if r - r̂(n) then P(r, q) = 0. Let l1 be a positive
divisor of q∗(n). Let s be the least positive integer such that ns − 1 ≡ 0
(mod l1). By the division algorithm we have r̂(n) = ks+ r1, where k, r1 ∈ Z
and 0 ≤ r1 < s. Since nr̂(n) ≡ 1 (mod q∗(n)), we have nr̂(n) ≡ 1 (mod l1).
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This implies that

1 ≡ nr̂(n) ≡ nks+r1 ≡ (ns)knr1 ≡ nr1 (mod l1).

By the definition of s, we have r1 = 0. Thus s | r̂(n).
Suppose r - r̂(n). Sincemr = gcd(nr−1, q−1) = gcd(nr−1, q∗(n)) | q∗(n),

if s is the least positive integer such that ns−1 ≡ 0 (mod mr), then s | r̂(n).
By the definition of s we must have s < r. But mr |ms. Hence P(r, q) = 0
by Proposition 2.4.

Thus
M∑
r=1

P(r, q) =
∑
r|r̂(n)

P(r, q).

By (2.2) and Lemma 2.8, we have∑
d|r

P(d, q) = gcd(nr − 1, q∗(n)) + 1.

Finally, we get our result by setting r = r̂(n) in the above formula.

Remark 2.10. From the proof of Proposition 2.9, we can only have
r-cycles (i.e. r-periodic points) such that r | r̂(n).

Corollary 2.11. The maximum length of cycles of f is r̂(n).

Proof. By Remark 2.10, it suffices to show that there exists an r̂(n)-cycle
of f . If r̂(n) = 1, this result is trivial, since 0 is a fixed point. If r̂(n) > 1,
suppose there exists an integer j, 1 ≤ j < r̂(n), such that mr̂(n) |mj . Then
mj = mr̂(n) = q∗(n). By the definition of r̂(n), we have j ≥ r̂(n). This leads
to a contradiction. Hence we have mr̂(n) - mj for all j, 1 ≤ j < r̂(n). Then
we get our result from Proposition 2.4.

Corollary 2.12. f has q∗(n) + 1 periodic points in Fq.

If each element of Fq is a periodic point of f , then q∗(n) + 1 = q, thus
gcd(q − 1, n) = 1. In fact f is bijective if and only if gcd(q − 1, n) = 1.
Therefore, each element of Fq is a periodic point of f if and only if f is
bijective.

Corollary 2.13. The total number of cycles (or orbits) of f is given by∑
r|r̂(n)

C(r, q) =
∑
r|r̂(n)

1
r

∑
d|r

µ(d)(gcd(nr/d − 1, q − 1) + 1).

Proof. Apply Remark 2.10 and (2.4).

Example 2.14. Let us consider the monomial system f(x) = x2 over F7.
From Proposition 2.5 we know that f has two 1-periodic points, two 2-
periodic points, two 1-cycles and one 2-cycle. From Corollaries 2.11–2.13,
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the maximum length of cycles of f is 2, so f has four periodic points and
three cycles. We can also get the above results by calculating directly.

The dynamics of f can be represented by the state space of f , denoted
by S(f), which is a directed graph. The vertex set of S(f) is Fq. We draw
a directed edge from a to b if f(a) = b. Note that a directed edge from a
vertex to itself is admissible, and the length of a directed cycle need not be
greater than 2. Hence S(f) encodes all state transitions of f , and has the
property that every vertex has out-degree exactly 1. Moreover, a connected
component of S(f) coincides with an orbit of f , and a directed cycle of S(f)
coincides with a cycle of f which has been defined in Definition 2.2.

We have the following proposition on the connectivity of S(f).

Proposition 2.15. S(f) is not connected.

Proof. First we claim that each connected component of S(f) contains
only one directed cycle. Indeed, if a connected component contains two or
more cycles, then there exists a vertex of this component which has out-
degree not equal to 1.

Note that {0} and {1} are two cycles of f , so there are more than one
directed cycles of S(f). Hence S(f) is not connected.

From the proof of Proposition 2.15, we know that each connected compo-
nent of S(f) contains only one directed cycle. Thus the number of connected
components of S(f) equals the number of cycles of f .

Consider a subdigraph of S(f), denoted by S(f∗), which is induced by
f∗ = f |F∗q . That is, we obtain S(f∗) from S(f) by deleting the vertex {0}.
We have the following result on the connectivity of S(f∗).

Proposition 2.16.

(1) S(f∗) is connected if and only if q∗(n) = 1.
(2) S(f∗) is not strongly connected.

Proof. (1) Suppose that S(f∗) is connected. Then S(f∗) has only one
connected component, so S(f∗) has only one directed cycle, hence f∗ has
only one cycle, namely {1}. So f has only two periodic points. By Corollary
2.12, we have q∗(n) = 1.

Conversely, suppose that q∗(n) = 1. By Corollary 2.12, f∗ has only one
cycle. Hence S(f∗) is connected.

(2) Suppose that S(f∗) is strongly connected. Then f∗ has only one cycle,
and each element of F∗q lies in this cycle. But f∗ has a 1-cycle, namely {1},
and no other elements of F∗q lie in this cycle.

We call f a fixed point system (see [2], [3]) if all directed cycles of S(f)
have length 1, that is, the number of vertices in every strongly connected
component of S(f) is one. Corollary 2.11 yields the following proposition.
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Proposition 2.17. f is a fixed point system if and only if r̂(n) = 1, i.e.
q∗(n) | (n− 1).

3. Mean numbers of periodic points and cycles. In this section we
discuss mean numbers of periodic points and cycles of f in Fq with respect
to q. Let τ(m) be the number of positive divisors of the positive integer m.
Let t be a positive integer. Let π(t) be the number of primes less than or
equal to t.

Definition 3.1. Let s be a positive integer. If the limit

lim
t→∞

1
π(t)

∑
p≤t
P(r, ps)

exists (including ∞), then we call it the asymptotic mean number of r-
periodic points of f in Fps , as p→∞, and denote it by N(r, s).

Similarly, we can also define the asymptotic mean numbers for r-cycles,
for all periodic points and for all cycles, respectively.

Let l and s be two positive integers. Let vs(l) be the number of solutions
of xs = 1 in Z/lZ. M. Nilsson [9] proved the following theorem.

Theorem 3.2 (M. Nilsson). Let t and m be positive integers. Then

(3.1) Im(s) , lim
t→∞

1
π(t)

∑
p≤t

gcd(m, ps − 1) =
∑
l|m

vs(l).

In particular if s = 1, then

Im(1) = lim
t→∞

1
π(t)

∑
p≤t

gcd(m, p− 1) = τ(m),

where the sum is over all primes p ≤ t.

Proof. See [9, Theorem 6.2].

Remark 3.3. From Lemma 2.3, we know that (3.1) is the asymptotic
mean number of solutions of xm = 1 in Fps , when p→∞.

We have the following proposition on the asymptotic mean number of
r-periodic points.

Proposition 3.4. If r is a positive integer, then

N(r, s) =
∑
d|r

µ(d)
( ∑
l|(nr/d−1)

vs(l) + 1
)
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=


∑

l|(n−1)

vs(l) + 1 if r = 1,∑
d|r

∑
l|(nr/d−1)

µ(d)vs(l) if r > 1,

where the sum is over all primes p ≤ t.
Proof. By (2.3) we have

P(r, ps) =
∑
d|r

µ(d)(gcd(nr/d − 1, ps − 1) + 1).

Notice that if r > 1, then
∑

d|r µ(d) = 0. Thus the result follows directly
from Theorem 3.2.

Remark 3.5. M. Nillson [9] proved that Im(s) is a periodic function
of s, and he also gave a formula for its period.

Example 3.6. If n = 2, the asymptotic mean number of fixed points
is 2 by Proposition 3.4. This can also be checked directly, since f has only
two fixed points 0 and 1 in every Fps .

We also get the following proposition about the asymptotic mean number
of r-cycles.

Proposition 3.7. Let r be a positive integer. Then

lim
t→∞

1
π(t)

∑
p≤t
C(r, ps) =

1
r

∑
d|r

µ(d)
( ∑
l|(nr/d−1)

vs(l) + 1
)

=



∑
l|(n−1)

vs(l) + 1 if r = 1,

1
r

∑
d|r

∑
l|(nr/d−1)

µ(d)vs(l) if r > 1,

where the sum is over all primes p ≤ t.
Proof. This follows directly from Proposition 3.4, since C(r, ps) =

(1/r)P(r, ps).

The asymptotic mean number of periodic points is equal to
∑∞

r=1N(r, s).
If r is a prime number, then

N(r, s) =
∑

l|(nr−1)

vs(l)−
∑

l|(n−1)

vs(l).

Since nr−1 = (n−1)(nr−1+· · ·+n+1) and n ≥ 2, it follows that N(r, s) ≥ 1.
Thus

∑∞
r=1N(r, s) =∞.

The asymptotic mean number of cycles equals
∑∞

r=1 (1/r)N(r, s). If r
is a prime number, then (1/r)N(r, s) ≥ 1/r. Note that

∑
p 1/p, where the
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sum is over all prime numbers p, is equal to ∞. Hence the asymptotic mean
number of cycles is infinite.

From the discussion in the above two paragraphs we get the following
proposition.

Proposition 3.8. The asymptotic mean numbers of periodic points and
of cycles are both infinite.

In fact, W.-S. Chou and I. E. Shparlinski gave a bound for the asymptotic
mean number of periodic points in [1, Theorem 2].

We recall the definition of Dirichlet density for natural numbers. Let A
be a set of primes in N. If the limit

lim
s→1+

∑
p∈A p

−s∑
p∈N p

−s

exists, then we call it the Dirichlet density of A, and denote it by δ(A).
The following lemma is another form of the Möbius inversion formula.

Lemma 3.9. Let m be a positive integer and g(r) =
∑

kr|m h(kr). Then

h(r) =
∑
kr|m

µ(k)g(kr).

Proof. See [9, Lemma 6.1].

We follow M. Nilsson’s idea in [9, Theorem 6.2] to get the following
lemma.

Lemma 3.10. Let m be a positive integer, l be a positive divisor of m,
and A(l,m) = {p ∈ N : gcd(m, ps − 1) = l}. Then∑

l|m

lδ(A(l,m)) =
∑
l|m

vs(l).

Proof. Let
B(l,m) = {p ∈ N : l | (ps − 1)}.

Obviously, B(l,m) =
⋃
kl|mA(kl,m). In fact this is a disjoint union. Thus

δ(B(l,m)) =
∑

kl|m δ(A(kl,m)). By Lemma 3.9, we have δ(A(l,m)) =∑
kl|m µ(k)δ(B(kl,m)). On the other hand,

B(l,m) =
⋃

is−1≡0 (mod l), i≤l

C(i, l), where C(i, l) = {p ∈ N : p ≡ i (mod l)}.

If is−1 ≡ 0 (mod l), then gcd(i, l) = 1. By Dirichlet’s theorem for arithmetic
progressions, we have δ(C(i, l)) = 1/ϕ(l), where ϕ is Euler’s ϕ-function.
Hence δ(B(l,m)) = (1/ϕ(l))vs(l). So

δ(A(l,m)) =
∑
kl|m

µ(k)
1

ϕ(kl)
vs(kl).
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Therefore∑
l|m

lδ(A(l,m)) =
∑
l|m

l
∑
kl|m

µ(k)
1

ϕ(kl)
vs(kl) =

∑
d|m

∑
k|d

d

k
µ(k)

vs(d)
ϕ(d)

=
∑
d|m

vs(d)
ϕ(d)

∑
k|d

d

k
µ(k) =

∑
d|m

vs(d),

since ϕ(d) =
∑

k|d (d/k)µ(k).

Remark 3.11. Similar to Remark 3.3, we call
∑

l|m lδ(A(l,m)) the
Dirichlet mean number of solutions of xm = 1 in Fps with respect to p.

Formally we compute the sum of the number of r-periodic points of f
over all prime numbers as follows:∑

p

P(r, ps) =
∑
p

∑
d|r

µ(d)(gcd(nr/d − 1, ps − 1) + 1)

=
∑
d|r

µ(d)
∑
p

(gcd(nr/d − 1, ps − 1) + 1).

Then we define the Dirichlet mean number of r-periodic points of f in Fps

with respect to p by∑
d|r

µ(d)
∑

l|(nr/d−1)

(l + 1)δ(A(l, nr/d − 1)),

denoted by D(r, s).

Proposition 3.12. Let r be a positive integer. Then

D(r, s) =

{∑
l|(n−1) vs(l) + 1 if r = 1,∑
d|r
∑

l|(nr/d−1) µ(d)vs(l) if r > 1.

Proof. By the definition of D(r, s) and Lemma 3.10, we have

D(r, s) =
∑
d|r

µ(d)
∑

l|(nr/d−1)

(l + 1)δ(A(l, nr/d − 1))

=
∑
d|r

µ(d)
( ∑
l|(nr/d−1)

lδ(A(l, nr/d − 1)) + 1
)

=
∑
d|r

µ(d)
( ∑
l|(nr/d−1)

vs(l) + 1
)
.

Remark 3.13. Comparing the above with Proposition 3.4, we see that
the asymptotic mean number and Dirichlet mean number of r-periodic
points are the same. Hence the Dirichlet mean numbers of r-cycles, of pe-
riodic points and of cycles are the same as the respective asymptotic mean
numbers.
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4. Mean numbers associated with function fields. In the previous
section, we have been computing mean numbers with respect to p. In this
section, on the contrary, we will fix a prime number p and compute mean
numbers with respect to the powers of p.

Let Fq be a finite field with q elements. Let A = Fq[T ] be the polynomial
ring over Fq. Let K be a function field with constant field Fq, and OK be
the ring of integers of K over A. It is well known that for every prime ideal
P in OK , the residue class field OK/P is a finite field, with cardinality a
power of q, and we call the degree of this extension [OK/P : Fq] the degree
of P , denoted by degP . We use |P | to denote the number of elements of
OK/P , i.e. |OK/P |.

In this section, we will view a finite field as OK modulo some P .
Let L/K be a finite extension of function fields. It is well known that

if a prime P of K is unramified over L, then to every prime P of L
over P , we can associate an automorphism (P, L/K) in G = Gal(L/K)
called the Frobenius automorphism of P. Moreover, the set of automor-
phisms (P,L/K) , {(P, L/K) : P over P} is a conjugacy class in G.

First we recall two results on function fields. One concerns the prime ide-
als decomposition in constant field extensions. The other is the Chebotarev
density theorem for the natural density of primes.

Lemma 4.1. Suppose the constant field of a function field K is Fq, Kn =
FqnK, and O and On are the rings of integers of K and Kn respectively.
Then for every prime P of O with degree d, we have

POn = P1 · · ·Pg

where each Pi is a prime of On, g = gcd(n, d) and the degree of the residue
class f(Pi/P ), i.e. [On/Pi : O/P ], equals n/gcd(n, d).

Proof. See [10, Propositions 8.5 and 8.13].

Theorem 4.2 (Chebotarev). Let L/K be a Galois extension of function
fields. Denote Gal(L/K) by G. Let F and E be the constant fields of K and L
respectively, and suppose F has q elements. Let [E : F ] = l, [L : KE] = m,
[K : F (T )] = d, and let gK and gL be the genera of K and L respectively.
Let C be a conjugacy class in G, and set

Sk(L/K,C ) = {P unramified prime of K : (P,L/K) = C , and degP = k}
and Ck(L/K,C ) = |Sk(L/K,C )|. For every ρ ∈ C , ρ|E is the same power
of the Frobenius σ of E/F , say ρ|E = σa for all ρ ∈ C . Then

(1) Sk(L/K,C ) is empty except when k ≡ a (mod l).
(2) If k ≡ a (mod l), then∣∣∣∣Ck(L/K,C )− |C |

km
qk
∣∣∣∣ < 4|C |

(
d2 +

1
2
gLd+

1
2
gL + gK + 1

)
qk/2.
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Proof. See [4, Proposition 5.16].

In what follows, we fix a prime p and a function field K with constant
field Fq, where q is a power of p. Let PK be the set of all primes of K. If t
is a positive integer, then we denote by PK(t) the set of all primes P of K
with degP ≤ t, and we also denote |PK(t)| by πK(t).

We recall the definition of density. Let A be a subset of PK . Let A(t) =
{P ∈ A : degP ≤ t}. If the limit limt→∞ |A(t)|/πK(t) exists, then we call it
the natural density of A. If the limit

lim
s→1+

∑
P∈A |P |−s∑
P∈PK

|P |−s

exists, then we call it the Dirichlet density of A, and denote it by δ(A).
We follow Wu’s idea ([12, Lemma 4.2]) to get the following lemma.

Lemma 4.3. Let r be a positive integer. Let S(r, PK) denote the set of
all primes in PK such that r | (|P | − 1).

(1) If gcd(r, q) = 1, then

δ(S(r, PK)) = 1/lr,

where lr is the minimal positive integer l such that ql ≡ 1 (mod r).
(2) S(r, PK) is not empty if and only if gcd(r, q) = 1.

Proof. (1) Assume |P | = qs. Then r | (|P | − 1) if and only if qs ≡ 1
(mod r). Consequently, there exists a minimal positive integer lr such that
qlr ≡ 1 (mod r). In fact lr is the multiplicative order of q modulo r. Thus
qs ≡ 1 (mod r) if and only if lr | s. Hence r | (|P | − 1) if and only if lr | s.

Let Hr = {ζ : ζr = 1} ⊂ Fq (algebraic closure of Fq). Let ζr be a
generator of Hr. Let F = Fq(ζr). Then [F : Fq] = lr. Let Kr = K(ζr). Then
Kr is a constant field extension over K of degree lr. By Lemma 4.1 and the
conclusion in the above paragraph, there is a bijection between S(r, PK) and
the set of primes of OK which split completely in Kr. By [10, Proposition
9.13], we obtain

δ(S(r, PK)) = 1/lr.

(2) If gcd(r, q) = 1, then by (1), S(r, PK) is not empty. Conversely, sup-
pose S(r, PK) is not empty. Then there exists P ∈PK such that r | (|P | − 1).
Assume |P | = qs; then r | (qs − 1), thus gcd(r, q) = 1.

Remark 4.4. Wu ([12, Lemma 4.2]) stated the same result for the nat-
ural density of S(r, PK) in the case of rational function fields. But her result
is not correct. She used the conclusion for the Dirichlet density to compute
the natural density. However, if we further assume r - (q − 1), the natural
density of S(r, PK) does not exist (see Lemma 4.5).
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Let S(r, PK(t)) be the set of all primes in PK(t) such that r | (|P | − 1),
and C(r, PK(t)) = |S(r, PK(t))|. The next lemma shows that if gcd(r, q) = 1
and r - (q − 1), then the natural density of S(r, PK) does not exist.

Lemma 4.5. If gcd(r, q) = 1, then the limit limt→∞C(r, PK(t))/πK(t)
equals 1 or does not exist. In particular,

lim
t→∞

C(r, PK(t))
πK(t)

= 1 if and only if r | (q − 1).

Proof. We compute the quantities in Theorem 4.2 in our case. It is ob-
vious that l = lr. Since Kr/K is a constant field extension, we have m = 1
and G = Gal(Kr/K) is an abelian group, in fact G = Gal(F/Fq) = 〈σ〉,
where σ is the Frobenius of the extension F/Fq. Thus every C contains only
one element, hence |C | = 1. We use its element to denote each conjugacy C
of G. Thus for every σs ∈ G, s ∈ {0, 1, . . . , lr − 1}, if Sk(Kr/K, σ

s) is not
empty, then∣∣∣∣Ck(Kr/K, σ

s)− 1
k
qk
∣∣∣∣ < cqk/2, where c = 4

(
d2 +

1
2
gKrd+

1
2
gKr + gK + 1

)
.

Since a prime ideal P of OK splits completely in Kr/K if and only if
(P,Kr/K) = 1, that is, a = 0, by Theorem 4.2(1) we have

S(r, PK(t)) =
⋃

k≤t, lr|k

Sk(Kr/K, 1).

So C(r, PK(t)) =
∑

k≤t, lr|k Ck(Kr/K, 1).
Since all prime ideals of OK are unramified in Kr, the set of all primes of

K with degree k is
⋃
s Sk(Kr/K, σ

s), where s runs over {0, 1, . . . , lr−1}. By
Theorem 4.2(1), Sk(Kr/K, σ

s) is not empty if and only if k ≡ s (mod lr).
Hence the set of all primes ofK with degree k is Sk(Kr/K, σ

k). Thus πK(t) =∑
k≤t Ck(Kr/K, σ

k).

So we have∑
k≤t, lr|k

(
qk

k
− cqk/2

)
< C(r, PK(t)) <

∑
k≤t, lr|k

(
qk

k
+ cqk/2

)
,

∑
k≤t

(
qk

k
− cqk/2

)
< πK(t) <

∑
k≤t

(
qk

k
+ cqk/2

)
.

Thus ∑
k≤t, lr|k

( qk

k − cq
k/2
)

∑
k≤t

( qk

k + cqk/2
) <

C(r, PK(t))
πK(t)

<

∑
k≤t, lr|k

( qk

k + cqk/2
)

∑
k≤t

( qk

k − cqk/2
)

for large enough t.
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First we have

lim
t→∞

∑
k≤t, lr|k

( qk

k − cq
k/2
)

∑
k≤t

( qk

k + cqk/2
) = lim

t→∞

∑
k≤t, lr|k

( qk

k + cqk/2
)

∑
k≤t

( qk

k − cqk/2
) = lim

t→∞

∑
k≤t, lr|k

qk

k∑
k≤t

qk

k

.

If lr = 1, that is, r | (q − 1), then

lim
t→∞

∑
k≤t, lr|k

qk

k∑
k≤t

qk

k

= 1, i.e. lim
t→∞

C(r, PK(t))
πK(t)

= 1.

Otherwise if lr > 1, suppose that limt→∞
C(r,PK(t))
πK(t) exists. For a subse-

quence {C(r, PK(tlr))/πK(tlr)} we have∑
k≤t

( qklr

klr
− cqklr/2

)
∑
k≤tlr

( qk

k + cqk/2
) <

C(r, PK(tlr))
πK(tlr)

<

∑
k≤t

( qklr

klr
+ cqklr/2

)
∑
k≤tlr

( qk

k − cqk/2
) .

Thus

lim
t→∞

∑
k≤t

( qklr

klr
+ cqklr/2

)
∑
k≤tlr

( qk

k − cqk/2
) = lim

t→∞

∑
k≤t

( qklr

klr
− cqklr/2

)
∑
k≤tlr

( qk

k + cqk/2
) = lim

t→∞

∑
k≤t

qklr

klr∑
k≤tlr

qk

k

= lim
t→∞

∑
k≤t

bk∑
k≤t

ak
,

where bk = qklr/(klr) and ak =
∑klr

i=(k−1)lr+1 q
i/i.

By the Stolz Theorem, we have

lim
t→∞

∑
k≤t bk∑
k≤t ak

= lim
k→∞

bk
ak

=
1

1
qlr−1 + 1

qlr−2 + · · ·+ 1
q + 1

.

Hence

(4.1) lim
t→∞

C(r, PK(tlr))
πK(tlr)

=
1

1
qlr−1 + 1

qlr−2 + · · ·+ 1
q + 1

.

Now, for another subsequence {C(r, PK((t+1)lr−1))/πK((t+1)lr−1)}
we have
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k≤t

( qklr

klr
− cqklr/2

)
∑

k≤(t+1)lr−1

( qk

k + cqk/2
) < C(r, PK((t+ 1)lr − 1))

πK((t+ 1)lr − 1)

<

∑
k≤t

( qklr

klr
+ cqklr/2

)
∑

k≤(t+1)lr−1

( qk

k − cqk/2
) .

Thus

lim
t→∞

∑
k≤t

( qklr

klr
+ cqklr/2

)
∑

k≤(t+1)lr−1

( qk

k − cqk/2
) = lim

t→∞

∑
k≤t

( qklr

klr
− cqklr/2

)
∑

k≤(t+1)lr−1

( qk

k + cqk/2
)

= lim
t→∞

∑
k≤t

qklr

klr∑
k≤(t+1)lr−1

qk

k

= lim
t→∞

∑
k≤t

bk∑
k≤t

ak
,

where bk = qklr/(klr) and a1 =
∑2lr−1

i=1 qi/i, while ak =
∑(k+1)lr−1

i=klr
qi/i if

k > 1. By the Stolz Theorem, we have

lim
t→∞

∑
k≤t

bk∑
k≤t

ak
= lim

k→∞

bk
ak

=
1

1 + q + · · ·+ qlr−1
.

Hence

(4.2) lim
t→∞

C(r, PK((t+ 1)lr − 1))
πK((t+ 1)lr − 1)

=
1

1 + q + · · ·+ qlr−1
.

But by hypothesis, we have

lim
t→∞

C(r, PK(tlr))
πK(tlr)

= lim
t→∞

C(r, PK((t+ 1)lr − 1))
πK((t+ 1)lr − 1)

.

Comparing (4.1) with (4.2), we get a contradiction. Hence limt→∞
C(r,PK(t))
πK(t)

does not exist if lr > 1.

Remark 4.6. (1) From the proof of Lemma 4.3(1), we know that if
gcd(r, q) = 1, then there is a bijection between S(r, PK) and the set of
prime ideals in OK which split completely in Kr. Thus Lemma 4.5 tells us
that if gcd(r, q) = 1 and r - (q − 1), the natural density of the set of prime
ideals of OK that split completely in Kr does not exist.

(2) From the proof of Lemma 4.5, we know that the set of all primes
of K with degree k is Sk(Kr/K, σ

k), and
∣∣|Sk(Kr/K, σ

k)| − 1
kq

k
∣∣ < cqk/2.
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We follow M. Nilsson’s idea (see [8, Theorem 4.9]) to get the following
lemma.

Lemma 4.7. Suppose m is a positive integer.

(1) Let r be a positive divisor of m. Let Ā(m, r, PK) = {P ∈ PK :
gcd(m, |P | − 1) = r}. Then∑

r|m

rδ(Ā(m, r, PK)) =
∑
r|m∗

1
lr
ϕ(r),

where m∗ is the largest divisor of m relatively prime to q, and ϕ is
Euler’s ϕ-function.

(2) If m is a prime number, gcd(m, q) = 1 and m - (q − 1), then the
limit

lim
t→∞

1
πK(t)

∑
P∈PK(t)

gcd(m, |P | − 1)

does not exist.

Proof. (1) By Lemma 4.3(2), if gcd(r, q) > 1, then the sets S(r, PK) and
Ā(m, r, PK) are both empty. So we can suppose that gcd(r, q) = 1. Since
S(r, PK)={P ∈PK : r | (|P | − 1)}, we have S(r, PK) =

⋃
kr|m∗ Ā(m, kr, PK).

As this is a disjoint union, we obtain δ(S(r, PK)) =
∑

kr|m∗ δ(Ā(m, kr, PK)).
By Lemma 4.3(1), δ(S(r, PK)) = 1/lr. Hence

δ(Ā(m, r, PK)) =
∑
kr|m∗

µ(k)δ(S(kr, PK)) =
∑
kr|m∗

µ(k)
lkr

from Lemma 3.9. Therefore∑
r|m

rδ(Ā(m, r, PK)) =
∑
r|m∗

rδ(Ā(m, r, PK)) =
∑
r|m∗

r
∑
kr|m∗

µ(k)
lkr

=
∑
s|m∗

∑
r|s

r
µ(s/r)
ls

=
∑
s|m∗

1
ls

∑
r|s

rµ

(
s

r

)

=
∑
s|m∗

1
ls
ϕ(s),

since ϕ(s) =
∑

r|s rµ(s/r).
(2) Let t ∈ N and put B(m,PK(t)) =

∑
P∈PK(t) gcd(m, |P | − 1). Let r

be a positive divisor of m and put

Ā(m, r, PK(t)) = {P ∈ PK(t) : gcd(m, |P | − 1) = r},
A(m, r, PK(t)) = |Ā(m, r, PK(t))|.
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It follows that B(m,PK(t)) =
∑

r|m rA(m, r, PK(t)) and S(r, PK(t)) =⋃
kr|m Ā(m, kr, PK(t)). So C(r, PK(t)) =

∑
kr|mA(m, kr, PK(t)). We have

A(m, r, PK(t)) =
∑

kr|m µ(k)C(kr, PK(t)) by Lemma 3.9. Hence

B(m,PK(t)) =
∑
r|m

rA(m, r, PK(t)) =
∑
r|m

r
∑
kr|m

µ(k)C(kr, PK(t))

=
∑
s|m

∑
r|s

rµ

(
s

r

)
C(s, PK(t)) =

∑
s|m

C(s, PK(t))
∑
r|s

rµ

(
s

r

)
=
∑
s|m

C(s, PK(t))ϕ(s).

By hypothesis, we have

B(m,PK(t)) = C(1, PK(t)) + C(m,PK(t))ϕ(m)
= πK(t) + C(m,PK(t))ϕ(m).

So

lim
t→∞

1
πK(t)

∑
P∈PK(t)

gcd(m, |P | − 1) = lim
t→∞

1
πK(t)

B(m,PK(t))

= lim
t→∞

(
1 +

1
πK(t)

C(m,PK(t))
)
,

and by Lemma 4.5, this limit does not exist.

Remark 4.8. For every prime ideal P in OK , the ring of integers of K,
the quotient OK/P is a finite field. Lemma 2.3 tells us that the equation
xm = 1 has gcd(m, |P |−1) solutions inOK/P . We call

∑
r|m rδ(Ā(m, r, PK))

the Dirichlet mean number of solutions of xm = 1 in OK/P with respect
to P .

From the proof of Lemma 4.7(2), we have

B(m,PK(t)) =
∑
r|m

C(r, PK(t))ϕ(r) =
∑
r|m∗

C(r, PK(t))ϕ(r)

for every positive integer m. Then

(4.3) lim
t→∞

1
πK(t)

∑
P∈PK(t)

gcd(m, |P | − 1) = lim
t→∞

1
πK(t)

∑
r|m∗

C(r, PK(t))ϕ(r).

Lemma 4.5 tells us that limt→∞
1

πK(t)C(r, PK(t))ϕ(r) does not exist for each
r |m∗ and r - (q − 1). But it is not easy to answer whether the limit (4.3)
exists in general case. Lemma 4.7(2) tells us that if m∗ is a prime and
m∗ - (q − 1), then the asymptotic mean number of solutions of xm = 1 in
OK/P with respect to P does not exist.
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For every prime ideal P of OK , since OK/P is a finite field, we can
consider a monomial system f : OK/P → OK/P , where

(4.4) f(x) = xn, n ≥ 2.

Let P(r, P ) denote the number of r-periodic points of f . Let C(r, P )
denote the number of r-cycles of f . Then f has all the properties stated in
Section 2. So we can use the conclusions and notations of Section 2.

We have the following result on the asymptotic mean number of fixed
points in OK/P with respect to P .

Proposition 4.9. If n − 1 is a prime number, gcd(n − 1, q) = 1 and
(n− 1) - (q − 1), then

lim
t→∞

1
πK(t)

∑
P∈PK(t)

P(1, P )

does not exist. Thus the asymptotic mean number of fixed points of f does
not exist.

Proof. By Proposition 2.5, we have

lim
t→∞

1
πK(t)

∑
P∈PK(t)

P(1, P )

= lim
t→∞

1
πK(t)

∑
P∈PK(t)

(gcd(n− 1, |P | − 1) + 1)

= lim
t→∞

1
πK(t)

∑
P∈PK(t)

gcd(n− 1, |P | − 1) + 1.

By hypothesis and Lemma 4.7(2), we get the desired result.

By Dirichlet’s theorem on arithmetic progressions, there are infinitely
many primes of the form n− 1. So infinitely many n satisfy the hypothesis
of Proposition 4.9. In fact it is not easy to compute the asymptotic mean
number of periodic points and cycles in the general case, for the same reason
as discussed after Remark 4.8. But we can define and compute the Dirichlet
mean number.

Let r be a positive integer. By Proposition 2.5, we have P(r, P ) =∑
d|r µ(d)(gcd(nr/d − 1, |P | − 1) + 1). We compute the sum of the numbers

of r-periodic points of f as follows:∑
P∈PK

P(r, P ) =
∑
P∈PK

∑
d|r

µ(d)(gcd(nr/d − 1, |P | − 1) + 1)

=
∑
d|r

µ(d)
∑
P∈PK

(gcd(nr/d − 1, |P | − 1) + 1).
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Recall that Ā(nr/d − 1, k, PK) = {P ∈ PK : gcd(nr/d − 1, |P | − 1) = k} for
each d | r. Then we define the Dirichlet mean number of r-periodic points of
f in OK/P with respect to P by∑

d|r

µ(d)
∑

k|(nr/d−1)

(k + 1)δ(Ā(nr/d − 1, k, PK)),

denoted by D(r,K).

Proposition 4.10. Let r be a positive integer. Then

D(r,K) =
∑
d|r

µ(d)
( ∑
k|(nr/d−1)∗

1
lk
ϕ(k) + 1

)

=



∑
k|(n−1)∗

1
lk
ϕ(k) + 1 if r = 1,

∑
d|r

∑
k|(nr/d−1)∗

1
lk
ϕ(k)µ(d) if r > 1,

where m∗ is the largest divisor of m relatively prime to q.

Proof. By Lemma 4.7(1), we have

D(r,K) =
∑
d|r

µ(d)
∑

k|(nr/d−1)

(k + 1)δ(Ā(nr/d − 1, k, PK))

=
∑
d|r

µ(d)
( ∑
k|(nr/d−1)

kδ(Ā(nr/d − 1, k, PK)) + 1
)

=
∑
d|r

µ(d)
( ∑
k|(nr/d−1)∗

1
lk
ϕ(k) + 1

)
.

Since
∑

d|r µ(d) = 0 if r > 1, we obtain the desired result.

Example 4.11. If n = 2, then by Proposition 4.10 the Dirichlet mean
number of fixed points is 2. This can also be checked directly, since f has
only two fixed points 0 and 1 in every OK/P .

We call D(r,K)/r the Dirichlet mean number of r-cycles of f in OK/P
with respect to P , and denote it by C(r,K). From Proposition 4.10, we have
the following result.

Corollary 4.12. If r is a positive integer, then

C(r,K) =



∑
k|(n−1)∗

1
lk
ϕ(k) + 1 if r = 1,

1
r

∑
d|r

∑
k|(nr/d−1)∗

1
lk
ϕ(k)µ(d) if r > 1.
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We call
∑

r≥1D(r,K) the Dirichlet mean number of periodic points. Note
that it may be infinite.

Proposition 4.13. The Dirichlet mean number of periodic points is
infinite.

Proof. If r is a prime number, then

D(r,K) =
∑

k|(nr−1)∗

1
lk
ϕ(k)−

∑
k|(n−1)∗

1
lk
ϕ(k).

Since nr − 1 = (n − 1)(1 + n + · · · + nr−1), it follows that (nr − 1)∗ =
(n− 1)∗(1 + n+ · · ·+ nr−1)∗. So if there are infinitely many primes r such
that (1 + n+ · · ·+ nr−1)∗ > 1, then noting that ϕ(k) ≥ lk for all k ≥ 1, we
will have D(r,K) ≥ 1, which will finish the proof.

Suppose there are finitely many primes r such that (1 + n + · · · +
nr−1)∗ > 1, say {r1, . . . , rm}, and r1 < · · · < rm. If a prime r satisfies
r > rm, then (1 +n+ · · ·+nr−1)∗ = 1. Hence there exists a positive integer
s such that 1 +n+ · · ·+nr−1 = ps. For a prime k such that r+ 1 ≤ k < 2r,
we also have

(1 + n+ · · ·+ nr−1 + nr + · · ·+ nk−1)∗ = 1,

i.e. [(1 + n+ · · ·+ nr−1) + nr(1 + · · ·+ nk−r−1)]∗ = 1. Hence there exists a
positive integer s1 such that (1+n+ · · ·+nr−1)+nr(1+ · · ·+nk−r−1) = ps1 .
Note that s < s1, so ps |nr(1 + · · · + nk−r−1). Since ps > 1 + · · · + nk−r−1,
we have p |nr, and hence p |n. But 1 + n + · · · + nr−1 = ps, so p | 1, a
contradiction.

We call the infinite sum
∑

r≥1C(r,K) the Dirichlet mean number of
cycles.

Proposition 4.14. The Dirichlet mean number of cycles is infinite.

Proof. We arrange the prime numbers as p1 < p2 < · · · , i.e. p1 = 2,
p2 = 3 and so on. Since

∑
r≥1C(r,K) ≥

∑
i≥1C(pi,K), if we can show∑

i≥1C(pi,K) is infinite, our proof will be finished.
Since

∑
i≥1C(pi,K) =

∑
i≥1 (1/pi)D(pi,K), noting that

∑
i≥1 1/pi is

infinite, from the proof of Proposition 4.13, if we show that there are finitely
many primes r such that (1 +n+ · · ·+nr−1)∗ = 1, i.e. finitely many primes
r such that D(r,K) = 0, then the proof will be finished.

Suppose there are infinitely many primes r such that (1 + n + · · · +
nr−1)∗ = 1. Assume r1 and r2 are two of them, and r1 < r2. Then there
exist positive integers s1 and s2 such that 1 + n + · · · + nr1−1 = ps1 and
1 + n+ · · ·+ nr2−1 = ps2 . Since

1 +n+ · · ·+nr2−1 = (1 +n+ · · ·+nr1−1) +nr1(1 +n+ · · ·+nr2−r1−1) = ps2
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and s1 < s2, we have ps1 |nr1(1 + n + · · · + nr2−r1−1). Suppose that r2 <
2r1. Then 1 + n + · · · + nr2−r1−1 < ps1 , so p |nr1 and p |n. But 1 + n +
· · · + nr1−1 = ps1 , so p | 1, a contradiction. Hence we have r2 ≥ 2r1. From
the proof of Proposition 4.13, there are infinitely many primes r such that
(1 + n+ · · ·+ nr−1)∗ > 1; let pk be the minimal prime such that

(1 + n+ · · ·+ npk−1)∗ > 1 and (1 + n+ · · ·+ npk+1−1)∗ = 1.

Let A be the set of all primes r such that (1 + n + · · · + nr−1)∗ = 1 and
r ≥ pk+1. Let B be the set of all primes r such that (1+n+ · · ·+nr−1)∗ > 1
and r ≥ pk. Note that for every positive integer m, there exists a prime r
between m and 2m, and for any two adjacent elements r1, r2 of A, we have
r2 ≥ 2r1. So if we let the elements of A correspond to the elements of B by
their sizes, then we get ∑

r∈A

1
r
≤
∑
r∈B

1
r
.

Since A∪B = {pi : i ≥ k} and
∑

i≥k 1/pi is infinite, it follows that
∑

r∈B 1/r
is infinite. Note that

∑
i≥1C(pi,K) ≥

∑
r∈B 1/r, so

∑
i≥1C(pi,K) is infi-

nite.

5. The general case. As suggested by the referee, in this section we
investigate whether the above results are applicable to the general case f :
Fq → Fq, where

f(x) = axn, n ≥ 2, a ∈ F∗q .

Lemma 5.1 (see [5, Proposition 7.1.2]). Let m ∈ N, α ∈ F∗q. Then the
equation αxm = 1 has solutions in F∗q if and only if α(q−1)/d = 1, where
d = gcd(m, q − 1). If there are solutions, then there are exactly d solutions.

Set Gm = {α ∈ F∗q : αxm = 1 has solutions}. It is easy to see that Gm is
a subgroup of F∗q . In fact, Gm = {αm : α ∈ F∗q}.

All nonzero r-periodic points are solutions of the equation

a1+n+···+nr−1
xn

r−1 = 1.

If f has nonzero fixed points, i.e. axn−1 = 1 has solutions in F∗q , then

a
q−1

gcd(n−1,q−1) = 1. So

(a1+n+···+nr−1
)

q−1
gcd(nr−1,q−1) = 1.

Hence a1+n+···+nr−1
xn

r−1 = 1 has solutions. So there are exactly gcd(nr−1,
q − 1) solutions. But if f has r-periodic points with r > 1, then the state-
ment “f has nonzero fixed points” is not true. For example, let q = 5, a = 3
and n = 3; it is easy to check that each element in F∗5 is a 2-periodic point
of f , but f does not have nonzero fixed points.
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If a ∈ Gn−1, then (2.3) and (2.4) are true according to the above para-
graph. Thus the monomial system considered in this section has r-periodic
points if and only if the monomial system considered in Section 2 has r-
periodic points, so Proposition 2.4 is also true here. But Proposition 2.7 is
not true, for example, for q = 5, a = 2 and n = 4. Furthermore, we have the
following proposition.

Proposition 5.2. If a ∈ Gn−1, i.e. f has nonzero fixed points, then
all the results relating to f in the above sections are true except Proposi-
tion 2.7.

If a /∈ Gn−1, then f has no nonzero fixed points. Thus (2.3) and (2.4)
are not true here. So all the results relating to f in Sections 3 and 4 are
invalid here. Notice that the identity of F∗q has order 1, so the conclusion
of Proposition 2.7 is not true here. Moreover, all the results relating to f
in Section 2 are invalid except Corollary 2.12 and Proposition 2.15. For
example, let q = 3, a = 2 and n = 3; recalling the notation in Section 2, we
have m1 = 2, m2 = 2, q∗(n) = 2 and r̂(n) = 1, and f has one fixed point
and two 2-periodic points. Hence S(f∗) is strongly connected.

Lemma 5.3. f has q∗(n) + 1 periodic points in Fq.
Proof. Let r be the least common multiple of all periods of periodic

points and r̂(n). Then each periodic point of f satisfies f◦r(x) = x. Con-
versely, each solution of f◦r(x) = x is a periodic point of f . Since f◦r(x) = x
has solutions in F∗q , by Lemma 5.1 there are exactly d = gcd(nr − 1, q − 1)
solutions in F∗q . Since d | (q − 1) and gcd(d, n) = 1, we have d | q∗(n). Since
q∗(n) | (q−1) and q∗(n) | (nr−1), we have q∗(n) | d. Hence we get the desired
result.

Proposition 5.4. If a /∈ Gn−1, i.e. f has no nonzero fixed points, then
all the results relating to f in the above sections are invalid except Corollary
2.12 and Proposition 2.15.
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