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Two conjectures on an addition theorem
by

XIANGNENG ZENG and PINGzHI YUAN (Guangzhou)

1. Introduction. In this paper, we follow the notation of [10]; we recall
some key notation in the next section.
In 1961, Erdés—Ginzburg—Ziv [4] proved the following theorem.

THEOREM 1.1 (EGZ Theorem). Let G denote a cyclic group of order n
and S € F(G) be a sequence of length 2n — 1 over G. Then 0 € > (S).

The length 2n — 1 is sharp in view of the example S = 0"~ 1¢g"~!, where
g is a generator of G.

The inverse problem to the EGZ Theorem is to investigate the structure
of S satisfying 0 ¢ >, (5). Let k = |S| —n. Peterson and Yuster [I7] solved
the case of k = n — 2. Bialostocki and Dierker [I] and Flores and Ordaz [5]
solved the case of k = n—3. Gao [6] solved the case of n—[(n+1)/4]—1 < k <
n—2. Gao et al. [7] solved the case when n is a prime and n—|(n 4+ 1)/3] -1 <
k < n — 2. Finally, Savchev and Chen [18] gave a structural description of
sequences S of length n+k with [(n—1)/2| < k < n—2; this description does
not carry over to smaller values of k (see [9, 5.1.16 and 5.1.17]). Therefore
Gao, Thangadurai and Zhuang considered in [§] the maximal multiplicity of
sequences S with 0 ¢ >, (S) and stated the following two conjectures.

CONJECTURE 1.2 ([8]). Let G be a cyclic group of order n > 2, k €
[1,n —2] and S € F(G) a sequence of length |S| =n+ k. If h(S) < k, then
0e) (9.

CONJECTURE 1.3 ([8]). Let G be a cyclic group and S € F(G \ {0}) a
sequence of length |S| = |G|. Then }_(S) = <) (5)-

Many authors verified both conjectures for large k and h(S) respectively.
In [8], the proposers proved both conjectures when n = p! is a prime power
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and k> n/p—1 (h(S) > n/p— 1, respectively). Cao [2] verified Conjecture
When n = p*g® and k > n/p—1, where p, q are primes and p < q. DeVos,
Goddyn and Mohar [3] proved the conjectures for any abelian group G when
k> |G|/p—1 (h(S) > |G|/p—1, respectively), where p is the smallest prime
divisor of |G|.

In this paper, we obtain the following result on Conjecture [1.2

THEOREM 1.4. Let n > 2. Conjecture holds for k > n/q — 1, where
q 1s the smallest divisor of n with q > 2.

Theorem [1.4] improves the related result of DeVos, Goddyn and Mohar
[3] for cyclic groups of even order n. We present the proof in Section 4. Also
we will show that the bound on k is sharp (see the remark after the proof).
For Conjecture [1.3] we have the following result.

THEOREM 1.5. Let G be a cyclic group of ordern > 2, H < G a subgroup
of G, and By the set of all sequences S € F(G \ {0}) with |S| = |G| and

Stab(3_<p(s)(5)) = H.

(i) If S € By with h(S) = |G/H| =1, then 3__y,5)(S) = >2(5).
(ii) If S € By with h(S) € [2,|G/H]|| and |G/H| = h(S)t + r with
r € [0,h(S) — 1], then
2
[H| -1
(iii) Let k € [2,|G/H]|] and set |G/H| = kt + r where r € [0,k — 1]
is the remainder of |G/H| divided by k. Suppose 2 < r < k —
2/(|H|—1). Then there exists a sequence S € By such that h(S) =k
and Zgh(S)(S) # 2.(5).

In Theorem|[L.5] part (i) implies that if h(S) is sufficiently large compared
with |G/H|, then 3 ) (S) = >2(5), while (ii) and (iii) imply that if
S € By and h(S) is small, then it is possible that 3 _,g)(5) # >2(5). Also,
the theorem shows that }°_,)(S) = >_(5) holds for special n and h(S)
without any assumptions on the structure of S. For example, let n = p' be
a prime power and h(S) = p. Then the remainder of |G/H| divided by h(.S)
is always 0, which implies that h(S) > |G/H| — 1 and }__y,5)(5) = 2_(5)
by the theorem.

Since Conjecture is not always true, the length |S| or the restricted
length h(S) may not be large enough. This suggests investigating how large
5| or h(S) should be to have }-_y, 4)(S) = 3_(5). We define L(G) to be the
smallest integer | € Ny such that every sequence S € F(G \ {0}) of length
S| = 1 satisfies }° ) (S) = 22(5). We have

2 <r <h(S)
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THEOREM 1.6. Letn > 16 and G be a cyclic group of order n.

(i) If n is a prime, then L(G) = n.

(ii) If n is a composite number, then L(G) = 2n —4a —b+3 > n+1,
where the pair (a,b) € N? satisfies n = ab and |4a + b| is mini-
mal.

THEOREM 1.7. Let n > 16 and G be a cyclic group of order n. Let
S € F(G\{0}) be a sequence of length |S| = n.

(i) If n is a prime, then 3°p5)(S) = 22(S) and the restricted length
h(S) is the best possible.
(ii) Ifn is a composite number, then 3 opg)_2(S) = 22(5).

2. Notation. Let a € R. Then |a] denotes the maximal integer not
exceeding a, and [a] denotes the minimal integer not less than a. Let
a,b € R. Then [a,b] = {z € Z : a < x < b} denotes the integers between a
and b.

Let G be an abelian group and H a subgroup of G. Let ¢y : G — G/H
be the natural homomorphism. Let A, B be subsets of G. A+ B ={a+b:
a € A,b € B} denotes the sum set of A and B and @(A) denotes the image
of A, that is, @ (A) = {Pu(g) : g € A}.

We say A is H-periodic if A is a union of H-cosets (i.e. A+ H = A),
where H is a subgroup of G, referred to as the period. Note that the triv-
ial subgroup {0} is a period of every A. If A is H-periodic for some non-
trivial subgroup H, then A is periodic, and otherwise A is aperiodic. Let
Stab(A) = {g € G : A+ g = A} denote the stabilizer of A. By the defi-
nition, any period of A is a subgroup of Stab(A) and thus Stab(A) is the
maximal period of A.

A quasi-periodic decomposition of A with quasi-period H, where H is a
non-trivial subgroup of G, is a partition A = A; U Ag such that A;NAg = 0,
A+ H = Ay and Ag C ag + H for some qp € G. Here A; or Ag may be
empty. Note that every A has a quasi-periodic decomposition with H = G
and A; = (. The set A is quasi-periodic if A; is not empty in some quasi-
periodic decomposition A = A; U Ayp.

Let A be a set. Then the free abelian monoid with basis A, written
multiplicatively, is denoted by F(A).

Let G be an additive finite abelian group, Gy C G a subset and F(Gg)
the free abelian monoid over Gy. An element S = a;-...-a; = HgEGo g"g(s) €
F(Gy) is called a sequence over Gy, where v4(S) is the multiplicity of g in S.
Let |S| =1 = 3 cq, Vg(S) denote the length of S, h(S) = max{vy(9) :
g € Go} the mazimal multiplicity of S and supp(S) = {g : v4(S) > 0} the
support of S. We say that T is a subsequence of S if T'| S in F(Gy).
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We write
S
o(9) = Zai, the sum of S,
i=1
Yp(S)={c(T) : T| S with |T| = k}, the set of k-term subsums of S,

Ya8)= U ;09
]

jE[Lk
22(8) =224 5/(5), the set of all subsums of S.

Any map ¢ : A — B can be naturally extended to ¢ : F(A) — F(B).
For example, @y (S5) = Py (a1) -+ Pu(ag))-

We denote by D(G) the Davenport constant of G, defined as the smallest
integer | € N such that every sequence S € F(G) of length |S| > [ satisfies
0 € >2(5) (see Chapter 5 in [10] for some of its main properties).

Let G be an additive abelian group. We need the concept of setpartitions
introduced by D. Grynkiewicz in [11] (see also [15] p. 562]). Let P denote the
set of non-empty finite subsets of G. The elements of F(P) will be called
setpartitions (over G), and an n-setpartition A (over G) is an element of
F(P) of length n (in other words, A is a formal product of n non-empty
subsets of (). In particular, a sequence over G can be viewed as a setparti-
tion. We denote by | A| the length of A. We call B a sub-setpartition of A if
B|Ain F(P).

Let A= A;--- A, € F(P) be an n-setpartition over G. We set

o(A) = ZAI», S2(A) = {z € o(B) : B| A with |B| = k}.

3. Preliminary results. For the proofs, we need the following results.

THEOREM 3.1 (Kneser’s Theorem [16]). Let G be an abelian group, and
let Ay, ..., Ay be a collection of finite subsets of G. If H = Stab(} ;| Ai),

then n n
i=1 i=1

THEOREM 3.2 (DeVos-Goddyn-Mohar Theorem (DGM Theorem) [3]).
Let G be an abelian group, A= Ay --- A a setpartition over G, and n € N
with n < m. Set H = Stab(}_)(A)). Then

(S = (Y minfn, [{i€ [Lm]: AN Q #0}} —n+1).
QeG/H
Also we need the Kemperman Structure Theorem which was first proved
n [16]. We will use the notation from [14], where substantial progress was
made on this classical result.
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DEFINITION 3.3. The pair (A, B) of non-empty finite subsets of the
abelian group G is said to be a critical pair if |A+ B| = |A| + |B| — 1.

Let G be an abelian group, A, B C G finite non-empty subsets of G, and
g € G. We denote the number of expressions of g in A+ B by rap(g9) =
AN (g — B)| = |{(a,b) : a € A, b€ B,a+b = g}|. We say that g is the
unique expression element if rq p(g) = 1.

DEFINITION 3.4. We call a pair (A, B) of non-empty, finite subsets of
an abelian group G an elementary pair if one of the following conditions
(I)=(IV) holds true.

(I) |JAl]=1or |B|=1.

(IT) |A| > 2, |B| > 2 and A and B are arithmetic progressions with
common difference d, where the order of d is at least |A| + |B| — 1.

(IlT) ACa+ H, BCb+ H (for some a € A, b € B and H < G),
|A|+|B| = |H|+1 (thus A+ B=a+b+ H), and a+b is the only
unique expression element in A + B.

(IV) ACa+H,BCb+H (forsomea € A,be Band H<G), A+ B
contains no unique expression elements, A and B are aperiodic,
and A=g— (b+ H)\ B (for some g € G).

THEOREM 3.5 (Kemperman Structure Theorem (KST)). Let A and B
be finite, non-empty subsets of an abelian group G. Then

o |A+ B| = |A|+|B| — 1, and either A+ B is aperiodic or contains a
unique expression element

if and only if there exist quasi-periodic decompositions A = Ay U Ag and
B = By U By with common quasi-period H, and Ay and By non-empty, such
that:

(1) rey(a)048)(c) =1, where c = Py (Ag) + Pu(Bo),
(ii) |2r(A) +Pu(B)| = |2a(A)| + |Pu(B)| - 1,
(111) A+ H=A, B+ H = By,
(iv) (Ao, Bo) is an elementary pair,
(v) ifrapla+b) =1 wherea € A and b € B, then a € Ay and b € By.

Condition (v) was not stated in Kemperman’s original paper, but can
be derived from KST as shown in [12] and [13].

4. Proof of Theorem [1.4l For the proof of Theorem 1.4, we need some
lemmas.

LEMMA 4.1. Let G be an abelian group of order n and S € F(G) with
|S| =n+Ek. Ifh(S) <k, then ), (S) is periodic.
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Proof. Since ) (S) = ca(S)—>_,(5), >_,,(5) and >, (S) have the same
stabilizer. If h(S) < k and ), (S) is aperiodic, then by DGM Theorem,

1>k (S)| > |S| —k+1> |G|+ 1, which is a contradiction. =

LEMMA 4.2. Let G be an abelian group of order n and S € F(G) with
|S| = n+ k. Suppose H = Stab(}_,(S)) and k > |G/H| — 1. Then 0 €
2n(S)-

Proof. By the EGZ Theorem and the hypothesis, we get the decom-
position S = Sy --- Sy T such that [S;| = |G/H| and o(S;) € H for all
i € [1,|H|], and |T| = k. It follows that o(S1---S)) € HN Y, (S). Since
H = Stab(},,(5)), we have 0 € > (S5). =

DEFINITION 4.3. Let G be a cyclic group of order n and S, S’ € F(G).
We say S is equivalent to S’ (written S = S’) if there exists an integer t
with ged(t,n) = 1 and b € G such that S = ¢5" + b, where S’ = aja) - - - al,
and 5" + b = (tag + b)(ta) +0b)--- (tal, +b).

It is easy to see that 0 € >, (S) if and only if 0 € >, (S5) for all [ € N,
thus we may consider equivalent forms of S in some cases.

LEMMA 4.4. Let k, m be positive integers with 2 < k < m — 2 and K
a cyclic group of order m. Let S € F(K) with |S'| = 2m + k, h(S") < 2k
and Y,.(S") aperiodic. Suppose that k > 2m/q — 1 where q is the minimal
diwvisor of 2m with ¢ > 2. Then o(S’) € 3, (5").

Before we give the proof of Lemma[£.4] we show how to deduce Theorem
[L4] from the above lemmas.

Proof of Theorem [1.4]. By Lemma h(S) < k implies that >, (5) is
periodic with the maximal period, say H. If k > |G/H|—1, then 0 € >~ (S5)
by Lemma[4.2] Thus we may assume k < |G/H| — 1. Since k > n/q — 1, we
have 1 < |H| < ¢q. Since ¢ is the minimal divisor of n with ¢ > 2, we have
|H| =2 and 2| n.

Consider the quotient group G/H which is a cyclic group of order n/2
and the image sequence @ (5) € F(G/H). It is easy to see that h(®y(S)) <
k|H| = 2k and ), (Pu(S)) = o(Pu(S)) — >, (Pu(S)) is aperiodic. Ap-
plying Lemma to @p(S), we have o(Py(S)) € > .(Pu(S)) and 0 €
Yn(@u(S)) = o(Pu(S)) — > 1(Pu(S)). Since >, (S) is H-periodic, we
have 0 € > (5). =

REMARK. It follows that Conjecture holds for the cyclic group of

order p or 2p with all £ when p is a prime. However, Conjecture [1.2] is not
always true. The following examples show that the bound for k in Theorem

is sharp for large n:
Let n be a sufficiently large integer not of the form p or 2p, G the cyclic
group of order n and g € G with ord(g) = n. Let ¢ be the least divisor
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of n with ¢ > 2, k =n/q—2 > 2and H = (n/q)G < G the subgroup
of G of order ¢q. Let S = UV be a sequence with h(S) = k, |S| = n + £k,
Ue FH),V e Flg+ H), and |V| = an/q — 1 for some a > 1. Since
2kq— (n/qg—1)— (n+k) =n—2n/q—4qg+ 3 > 0 for sufficiently large n,
such a structure of S is possible. Note that o(S) € (n/q — 1)g + H and
S(8) 1 (n/g — 1)g + H) = 0, 50 0(S) & () and 0 ¢ 3°,(5).
For example, let n = 60 and k = 18. Let S = 0% - (209)* - (40¢)3

(21g)* - (41g)® be the sequence of length n + k = 78. An easy calculation
shows that > (S) = G\ {0,20g,40g}.

Proof of Lemma [4.4. We divide the proof into some claims and then
deduce the result.
Let IT = {g € K :vy(S') > k} and I» = {g € K : v4(S5’) < k}. Let

U= H g;gQ(sl) and T = H U

ga€la g1€h
Then

(4.1) > k(8) =22 (T).

Hence it remains to consider the construction of 7. Since ) ,(S5’) is
aperiodic, it follows that |T| < m+k—1, otherwise the DGM Theorem would
imply that |Y . (T)| > |T|—k+1>mand ) (T) = K. Let m =tk +r
where r € [0,k — 1].

CLamM 4.1. || =t+1>2 and max{0,2r — k} < |U| <r —2.

Proof of Claim 4.1. If |I;| > t + 2, then |T| > k(t +2) > m + k, a
contradiction. If |I1] < ¢, then |U| > |S’| — 2k|[1| and |T| = k|| + |U| >
|S"| — k|| > |S'| — tk =tk +2r + k > m + k, a contradiction. Therefore
|| =t+1.

It is easy to see that |U| = |T| — (t + 1)k <r —1.If 0 > 2r — k, then it
is trivial that |U| > 0. If 2r — k > 0, then |U| > |S’| — 2k|I;| = 2r — k. This
completes the proof of Claim 4.1.

Let S,
U=bi-bu =[] » 3!

g2€l2
Consider the setpartition A = Ay - - - Ay, where A; = I U{b;} for i € [1, |U]]
and A; = I for j > |U|. Since |U| < r — 2 < k, the structure of A is as
desired. We have

(4.2) (1) =0(A) = Z A;.

Cram 4.2. I} + I is aperiodic and |11 + I| = 2| 1| — 1.
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Proof of Claim 4.2. By the definition of A, A; = I for j > |U|. By
Claim 4.1, k > r 4+ 1 > |U| 4 3, which implies Ay_o = A1 = A = I1.
Since ) . (T) = Zle A; is aperiodic, I1 + 11 = Ax_1+ Ay, is aperiodic. Thus
Kneser’s Theorem implies that |Iy + I1| > 2|I;| — 1.

Suppose to the contrary that |I; + 11| > 2|I;|. Let § = 0 when k — |U] is
even and § = 1 when k — |U| is odd. Then

|U|+0

k
=1

= (k—|U|-8)/2

Since Z’i A; is aperiodic, we have

|U|+0

\ZA)> Z 4+ Al |Il+zly_(w|+5+k:—ll2{|—5_1>

k+|U|+6
>|U|(|I]| +1) +6|I] + (k= |U| = 6)| 11| — <|2’_1>
_ —1
:k:|.71|+‘U| 2k: 5+12tk+|U|+2k+1
>tk+’]":m

by Kneser’s Theorem and Claim 4.1, a contradiction. This completes the
proof of Claim 4.2.

Let gy, be the minimal divisor of m with ¢, > 1. Since k > 2m/q — 1
and ¢ is the minimal divisor of 2m with ¢ > 2, we have k > m/g,, — 1 and
equality holds if and only if ¢, = 2, ¢ = 4 and k£ = m/2 — 1. By Claim
4.1, we have r > 2 and |I;| = t + 1. Thus if ¢ # 4 or kK # m/2 — 1, then
t = (m —r)/k implies that t < g, — 1 and |[1| =t + 1 < ¢, Since (I1,11)
is a critical pair such that I; 4+ I; is aperiodic, we can use KST to deduce
the structure of I.

CrLaM 4.3. 11 is one of the following forms:

(i) I1 is an arithmetic progression.
(i) g=4, k=m/2—1 and I; = go+{0, g1, 92} for some go, g1, g2 € K
with ord(g2) = 2. In this case, [U| =0 and A; = I for alli € [1,k].

Proof of Claim 4.3. Since (I, I1) is a critical pair such that I; + I
is aperiodic, the KST implies that there is a quasi-periodic decomposition
I = I' U I" with quasi-period L < K such that I' + L =1', I" C g + L for
some g € K and (I”, I") is an elementary pair.

First, we consider the case when I’ = (), that is, (I1,I1) = (I”,1") is an
elementary pair. By Claim 4.1, [I;| =t+1 > 2, so (I3, 1) is not of the form
(I) of the elementary pair (Definition[3.4). By Claim 4.1, k > r+1 > |U|+3,
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which implies Ag_o = Ar_1 = A = I;. Since Zle A; is aperiodic, I1 + 1
and Iy + I; + I are both aperiodic, and so (I1, 1) is not of the form (IIT)
or (IV) of the elementary pair. Therefore (I3, 1) is of the form (II), so I; is
an arithmetic progression.

Next, we assume I’ # (). Since Iy = I' U 1", we have t + 1 = |[1| >
|L| +1 > gm + 1. By the discussion before the claim, we have ¢ = 4 and
k =m/2—1. Thus m = 2k+2, which implies that ¢ = 2 and r = 2. Moreover
|[I'l = |L| = gm =t =2 and |I"| = 1. Thus L = {0, g2} with ord(g2) = 2,
I'=go+ L and I = go + {0,491, 92} for some gy, g1 € K. In this case,
|U| <r—2=0 by Claim 4.1, so A; = I; for all i € [1,k]. This completes
the proof of Claim 4.3.

Now that we have more information about the structure of I;, we are
going to get the conclusion of the lemma.

For the case of Claim 4.3(ii), we have

CLAaM 4.4. Let g =4, k=m/2—1 and I, = go + {0, g1, 92} for some
90,91, 92 € K with ord(g2) = 2. Then 0 € >, (5"), so o(S") € >, (5").

Proof of Claim 4.4. Let S” be another sequence such that S” = S’. Then
0€>,,(8) ifand only if 0 € >, (5”) and o(S5') € >°,(9) if and only if
o(5") € 32, (S”). Thus it is sufficient to prove the claim for some equivalent
form of S’.

Without loss of generality, we may assume gy = 0. By Claim 4.3, we
have A; = I; = {0, g1, g2} for all i € [1,k] and |U| = 0.

We first show that vy4(S") > m/2 4 1 for all g € I;. Suppose to the
contrary that v,(S") < m/2 for some g € I;. Then

bm/2—1=2m+k=|S'| < 2k-2+vy(S) < 4k +m/2 = bm/2 — 4,
a contradiction. Thus v4(S’) > m/2+ 1 for all g € I;.

If (m/2)g1 = 0 in K, we choose a subsequence

o= g o |
where
1= 2]vg,(5")/2].

It is easy to see that the above structure of Sy is possible. Also we have
|So| = 2m and o(Sp) = 0.

If (m/2)g1 = m/2 in K, we choose a subsequence

Sy = g7ln/2<92)103m/24 1S,

Vg, (S') — 1

=5

Similarly, we have |Sy| = 2m and o(Sy) = 0.
This completes the proof of Claim 4.4.

where
zsz{
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For the case of Claim 4.3(i), we have the following claims.

CLAM 4.5. Let I be an arithmetic progression with difference d. Then
A; is an arithmetic progression with difference d for all i € [|k/2] + 1, k]
(reorder if necessary), so at least half the A;’s are arithmetic progressions
with common difference.

Proof of Claim 4.5. Recall that U = by --- by and A = A; - -+ Ay, where
A; :IlLJ{bZ} for i € [1,|U|] and Aj =1 for j > |U‘

If |U| < |k/2], we are done.

If |[U| > |k/2], choose arbitrarily k — |U| terms of AjAz--- Ay, say

Aji - Aj - Let J o= {1,k b I A + L = [Aj ]+ 1] for all
€ [1,k — |U]], then
k k—|U|
A= (A FAu)+ Y, A
i=1 i=1 i€[L|UN\J
and

k k

’ZA,- > S A = (k= U]+ U] = (k= [U) + L= k(t + 1)+ 1> m,

i=1 i=1
a contradiction. Thus [A;, + I1| = |A;,| + |[1| — 1 for some j;, which implies
that Aj, is an arithmetic progression with difference d for such j;. Since the
choice of Aj, Aj, --- Aj, _, is arbitrary, there are at most k — |U|—1 terms of
A1 Ay - -+ Ag such that A; is not an arithmetic progression with difference d.
Since |U| > |k/2], we have k — |U| — 1 < |k/2]. This completes the proof
of Claim 4.5.

CLAIM 4.6. Let I be an arithmetic progression with difference d. Then
ord(d) = m.

Proof of Claim 4.6. By Claim 4.5, A; is an arithmetic progression with
difference d for all i € [|k/2] +1, k]. It follows that Zf: kj2)+1 Ai is an arith-
metic progression with difference d. Notice that Ele A; aperiodic implies
that Zf:Lk/2J+1 A; is aperiodic. Hence

k
ord(d) > ‘ Z A;
i=|k/2)+1
If t > 2, then ord(d) > k + 1 > m/qym,, where gy, is the minimal divisor
of m with ¢, > 1. It follows that ord(d) = m.
Ift =1, then |1| =t+1=2, m=k+r and ord(d) > [k/2] +1 > m/4.
We consider two cases.
If ord(d) = m/3, we may assume that I; = {0,d} (equivalent form).
By Claim 4.1, k > r+1 > |U|4+3 > 3, s0 3k — 3 > 2k > m. Thus

> t[k/2] + 1.
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25;12 I = (d), as otherwise ord(d) > | Zf;f Ii| = k—1>m/3. If there are
at least two terms (say by, b2) of U = by - -- by such that by,be & (d), then
Ele A; ©{0,b1}+{0, bg}—i—Zf:_f I = K, a contradiction. If there is exactly
one term (say by) of U such that by ¢ (d), then S2F | A; = (d) U (by + (d)),
a contradiction to Zle A; being aperiodic. If b; € (d) for any term of U,
then Zle A; = (d), a contradiction. This shows that ord(d) # m/3.

If ord(d) = m/2, we may assume that I; = {0,d}. It is easy to see that
Z,’f;ll I = (d), as otherwise ord(d) > k > m/2. If there is some term (say b; )
of U such that by & (d), then S-F  4; 5 {0,b1} + ¥ I} = K, a contra-
diction. If b; € (d) for any term of U, then Zle A; = (d), a contradiction.
This shows that ord(d) # m/2.

This completes the proof of Claim 4.6.

Now we complete the proof of the lemma by the following claim.

CLAaM 4.7. Let I be an arithmetic progression with difference d. Then

o(5') € 2 (5).

Proof of Claim 4.7. By Claim 4.6, we have ord(d) = m. We may assume
I ={0,d,2d,...,td}. For any g = ld € K wherel € [0, m—1], we say g is on
the leftif I € [|(m+t)/2]4+1,m—1] and on the rightifl € [t+1, |(m-+t)/2]].
If g = Id is on the left, we call m —1 its left distance, and if g is on the right,
we call [ — ¢ its right distance. We call it the distance for short if we do not
care about left or right.

If there is one term (say by = [;d) of U whose distance is greater than
r—1,sot+r <ly <m-—r, then Zle A; 0 {0,d,...,td, bl}—i—Zf:_ll L =K,
a contradiction. Thus the distance of b; is at most r — 1 for any term
of U.

If there are two terms (say by = l1d, by = lad) of U whose distances are
both greater than r/2, then S_F_ | A; 5 {0,d, ..., td, b1} +{0,d,. .. td, by} +
Zf:_f I) = K, a contradiction. Thus, there is at most one term (say by if
such a term exists) whose distance is greater than r/2.

By Claim 4.5, A; is an arithmetic progression with common difference d
for all i € [|k/2]| + 1,k]. Hence Zf:Lk/2j+1 A; is an arithmetic progression
of length |Z§:Lk/2j+1 Ail > k/2+ 1 > r/2. Since the distance of b; is at
most 7/2 for any 2 < i < |U]|, Zf:2 A; is an arithmetic progression of length
|Zf:2 A;| > k > r. Since the distance of by is at most r — 1, Zle A; is an
arithmetic progression.

Let u; and u, denote the numbers of terms of U which are on the left

and on the right respectively. Let s; and s, denote the sums of the distances
of the respective terms. Then u; < s, up < 8, 5+ 5 < r and
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> A ={(m—s)d,(m— s+ 1)d,...,(m—1)d,0,d,...,(kt+s,)d}.

Let Sy be such that S’Sy = I?*U. Then
o(S") +(So0) = o(IF*U) = (¢t + 1)k + (ust + 57) + (wym — s1))d.
Since m = kt +r = (t + 1)k — (k — r), we have o(S") + o(Sp) = (kt + s, —
rt + u,t — s7)d. It is easy to see that —s; < kt + s, — rt + u,t — s; < kt + sy,
which implies that o(S’) + 0(So) € 2, A;. The length of Sy is |So| =
2k| 1|+ |U|—(2m+k) = |U|+k—2r = uj+u,+k—2r > 0. It is easy to see that
(w+ur +k—2r)t <kt <mando(Sy) € {0,d,2d,..., (w+u,+k—2r)td}.
Since kt + s, — 1t +upt — s; — (up +up + k= 2r)t = rt —wt + s, — 81 > —sy,
we have
k
o(ITFU) = {0,d,2d, ..., (w + up + k — 2r)td} C Y A;

i=1

and

o(8") = o(I*U) — o(Sy) € ZA
This completes the proof of Claim 4.7 and of Lemma 4.4. =

5. Proofs of other theorems

LEMMA 5.1 ([9, Proposition 4.2.6]). Let G be a finite abelian group and
S € F(G) with |S| = |G|. Then 0 € - ,5)(S5)-

LEMMA 5.2. Let S € F(G) with |S| > |G|. Suppose there exists a de-
composition S = UV where 0 & supp(U), supp(V) = {0} and |U| > |G| — 1.
Let k € N with k > h(U). Then }_4(S) is periodic.

Proof. Let T = U - 0%. It is easy to see that > ., (S) = Y .(T) b
Lemma (.1 -

If Y~ (S) = > ,(T) is not periodic, then we apply the Devos-Goddyn—
Mohar Theorem to 7', and obtain >, (T') > |T'| — k + 1 > |G|, a contradic-
tion. =

By the definition of D(G), we have

LEMMA 5.3. Let S € F(G). Then
2.(5) € X<p(@)-1(5) U {0}
Now we are ready to give the proofs of Theorems

Proof of Theorem [1.5. By Lemma H is not trivial, otherwise By
is empty. Let @5 : G — G/H be the natural homomorphism. Let Sy =



Two conjectures on an addition theorem 407

Py (S). Since H is the maximal period of }°y,5)(5), 2 _<h(s)(SH) is aperi-
odic. N -

Let Ty|Sy be the maximal subsequence satisfying h(Tg) < h(S). It is
easy to see that

Ty = [ g™ Em) and Yy 6)(SH) = X<y (Th)-
9eG/H
By the pigeonhole principle, we have [Ty| > |G/H|. Since Yy, (SH) =
> <n(ry)(Tr) is aperiodic, we have 0 € supp(T) by Lemma
Let I1(S) = {g € G/H : vg(Su) > h(S) and g # 0} and I,(S) = {g €
G/H :vyg(Su) < h(S) and g # 0}. Then

T o Omln(h(S Vvo(SH)) H g (S) H ng(SH).
gel(9) g€l (S)

H gh(S) H gvg(SH)

g€l (9) g€l2(S)

Let

denote the subsequence of non-zero terms of Ty. Then |Uy| < |G/H| — 2
by Lemma

(i) Suppose that h(S) > |G/H| — 1.

If H = G, then }°_,5)(S) = >2(5) = G. Thus we may assume that
H < G and then }(Su) C X<\ mj—1(SH) by Lemmawith D(G/H) =
|G/H| and 0€supp(Tx) C supp(Sg). Since 3 _ g/ p)-1(SH) CDcpis)(SH)
and 5 (S) is H-periodic, 3 (S5) C 3 <p(s)(S), which is the result.

(ii) Since |G/H| = h(S)t + r, we have n = |G| = h(S)t|H| + r|H]|. It is
easy to see that the number of non-zero terms of Sy is at least

n— (|H] = 1)h(S) = t|H[h(S) + r[H| = (|H] = 1)h(S5)
> (t—=1)|H|h(S) + h(S).

If » < 1, then by the pigeonhole principle, we have |Ug| > th(S) =
|G/H| —r > |G/H|— 1, a contradiction. Therefore, r > 2.

If r > h(S) —2/(|H| — 1), then r|H| — (|H| — 1)h(S) > r — 1. Thus
by the pigeonhole principle, we have |Ug| > th(S) +r—1=|G/H| -1, a
contradiction. Therefore r < h(S) —2/(|H| —1).

(iii) We construct S as follows. Let d € G with ord(d) = n. Let tp = ¢
when r|H| — (|H| — 1)k > 0 and to =t — 1 when r|H| — (|H| — 1)k < 0. Set

to
IT ¢ 11 II ¢)
geH\{0} i=1 g€id+H

where U € F((to + 1)d + H) is any sequence of length n + k — (to + 1)k|H|
with h(U) < k. Since n+k — (to+ 1)k|H| = (t —to)k|H|+r|H|— (|H| - 1)k,
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we have 0 < n+k— (to+1)k|H| < k|H|. Thus the structure of S is possible.
It is easy to see that h(S) =k and ), (S) is H-periodic.

Let Sy, Ty, Uy, I1(S) and I5(S) be defined as above. Note that |Uy| =
tok+min{n+k—(to+1)k|H|, k}. If n+k—(to+1)k|H| > k, that is, n/|H| >
(to + 1)k, then to =t — 1 and |Ug| = (to + 1)k = |G/H| —r < |G/H| — 2
(here we use r > 2). If n+ k — (to + 1)k|H| < k, so that n/|H| < (to + 1)k,
then tg =t and

Un| = th +n+k— (t + k| H| = th+r|H| + k — k| H]|
<tk+r—-2=|G/H| -2

(here we use k > r + 2/(|H| — 1)). Therefore, |Ug| < |G/H| — 2 in both
cases. It is easy to see that

Egk(SH) = ng(TH) = {0a¢(d)> ) |UH‘@(d)}7
which implies that }_; (Sw) is aperiodic and S € By. As &((|[Un|+1)d) €
>_(Sm), we have }°_p5y(S) # >2(5). =

Proof of Theorem[1.6, Let d € G with ord(d) = n.

(i) Assume n is a prime. The sequence S = d"2(2d) satisfies > <h(s)(9)
# 2_(95), since 0 € 3 ()(59). Hence L(G) = n. On the other hand, suppose
|S| = n. By Lemma > <n(s)(9) is periodic, which implies }°_y, ) (5) =
G = > (S). Therefore, if G is a cyclic group of prime order n, then L(G) = n.

(ii) Assume n is a composite number. Let p |n be the minimal divisor of
n and let (a,b) be as in the theorem. It is easy to see that n/p —4p <n —4
and 4p —n/p < n —4, so (a,b) # (1,n).

Let H < G be a subgroup of order a. Then |G/H| =b. Let S = UV,

where
V= H gb_2 and U = H gb_2.
geH\{0} ged+H
Then |S| = |V|+|U| = (a—1)(b—2)+a(b—2) = 2n—4a — b+ 2. Also, we
can see that >y, () # >2(5), since (b—1)d+ H C 3 (S) \ Docp(s)(5)-
Therefore L(G) > 2n — 4a — b+ 3.

On the other hand, let S € F(G \ {0}) with [S| > 2n —4a — b+ 3 >
n+1. By Lemma Egh(S)(S) is periodic. Let H be the maximal period
of > ch(s)(5). Let @y : G — G/H be the natural homomorphism. Let
Sy = @y (S) and Ty be the maximal subsequence of Sy such that h(Tx) <
h(S). Then [Ty| > n/[H]| by the pigeonhole principle and >, ¢)(SH) =
Zgh(s) (TH).

If H =G, we are done. Thus we may assume that H < G.

If 0 ¢ supp(Th), then > ) (TH) is periodic by Lemma which
contradicts H being the maximal period. Thus 0 € supp(Tx) C supp(Sy).
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If h(S) > n/|H| — 1, then by Lemma [5.3] and 0 € supp(Sg), we have
>_(SH) C X cpp)-1(SH) C Xocn(s)(SH) € 22(ShH),

which implies the conclusion of theorem.

If h(S) < n/|H| -2, let n/|H| = th(S) + r with r € [0,h(S) — 1]. Let
S =UV, where U € F(G\ H) and V € F(H). Since S € F(G\ {0}), w
have |V| < (|H| — 1)h(S). Hence

U =|S|—|V|=2n—4a—-b+3—|V|
> (2n —4[H| = n/|H[+3) — ([H| — 1)h(S)
=n+(n/|H|—4—-h(S))(H|-1) -1
=th(S)|H|+ ((t — D)h(S)+2r —4)(|H| — 1) + (r — 1).

Let Ty =UrVp where O§Zsupp(UT) and supp(Vr) ={0}. Since >y, o) (Th)
is aperiodic, by Lemma we have |Up| < n/|H| — 2. If r > 2, then
|U| > th(S)|H|+r—1. By the pigeonhole principle, |[Ur| > th(S)+r—1=
n/|H| — 1, a contradiction. If » = 1, then

U] = (¢t =1Dh(S)[H| + (th(S) = 2)([H| = 1) + h(S) = (¢ = )h(S)|H|+ h(S5).

Thus |Ur| > (t — 1)h(S) + h(S) =n/|H| — 1, a contradiction. If » = 0, then
U = (t = Dh(S)|H[ + (th(S) —4)(|H| = 1) +h(S) —

Since h(S) < n/|H| — 2, we have t > 2. Since ¢ > 2 and h(S) > 2, it follows

that |U| > (t — 1)h(S)|H| + h(S) — 1. Thus |Ur| > (t = 1)h(S)+h(S) -1 =

n/|H| — 1, a contradiction.

Therefore, if G is a cyclic group of composite order n, then L(G) =
2n—4a—b+3. u

Proof of Theorem[1.7. Let d € G with ord(d) =

(i) Assume n is a prime. By Lemma > <h(s)(9) is periodic, which
implies that > _y5)(5) = G = >2(5). On the other hand, the example
S = d" implies that the restricted length h(S) is the best possible.

(ii) Assume n is a composite number. By Lemma > <on(s)—2(5)
is periodic with maximal period, say H. Let &y : G — G/H be the

natural homomorphism. Let Sy = @y (S) and Ty be the maximal sub-
sequence of Sy such that h(Tyx) < 2h(S) — 2. Then |Ty| > n/|H| and
2o <on(s)—2(SH) = D <ons)—2(Tr)- It is easy to see that 0 € supp(Ty), oth-
erwise » on(g)_o(Tw) is periodic by Lemma which contradicts H being
the maximal period.

If2h(S) —2=n/[H| =1, then 3 (Su) C 3 <y ipr1—1(SH) C X <on(s)—2(SH)
by Lemma which implies 3 oy (g)_2(5) = 22(5).
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If 2h(S) — 2 < n/|H| — 2, then 2h(S) < n/|H|. Let |G/H| = th(S) +r
where r € [0, h(S) — 1], then the number of non-zero terms of Sy is at least
n— (|H| —1)h(S) = (t — 1)|H|h(S) + r|H]| + h(S).

Since S € F(G \ {0}) with |S| = n, we have h(S) > 2. Let Ur denote
the subsequence consisting of the non-zero terms of Tx. We have |Up| <
|G/H| — 2 by Lemma [5.2]

If r =0, then n — (|H| — 1)h(S) = (t — 1)|H|h(S) + h(S) and |Ur| >
(t—1)(2h(S) —2) + h(S) > th(S) = |G/H]|, a contradiction.

If » > 1, then by the pigeonhole principle,

|Ur| > (t — 1)(2h(S) — 2) + min{r|H| + h(S), 2h(S) — 2}.
Since
(t —1)(2h(S) —2) +r|H| + h(S) > th(S) +r
and
(t—1)(2h(S) — 2) + 2h(S) —2 > th(S) +r — 1,

we have |Ur| > |G/H| — 1, a contradiction. This completes the proof. m

REMARK. The second part of Theorem is sharp in view of the fol-
lowing example. Let n = pm where p > 7 is odd and m is large. Let G be
a cyclic group of order n and H < G the subgroup of order m. Let d € G
with ord(d) =n. Let k = (p+ 1)/2 and

S = H g"- H PG
geH\{0} ged+H
where v4(S)’s satisfy vy(S) < k for all ¢ € d + H and k(|H| — 1) +
> gedrn Vg(S) = n. Since (|H|—1)k+[H|k > n for sufficiently large m, the
structure of S is possible. Note that h(S) = k = (p+ 1)/2. For such S, we

have
p—2

> <on(s)—3(8) =2<pa(S) = U (id+ H)
=0
and }_(S5) = G, therefore }° oy, g)_3(S) # >2(5).
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