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1. Introduction and the main result. Throughout this paper, let K
be an algebraic number field, d its degree over the rational number field Q,
and M the set of all places of K. Let q ∈ K and v ∈M such that |q|v > 1.
The completion of K with respect to v is denoted by Kv. Let s be a positive
integer, and P (z) and Q(z) polynomials in K[z] satisfying

(1.1) P (0) 6= 0, t := degP ≤ s, u := degQ.

We consider the functional equation

(1.2) zsf(z) = P (z)f(qz) +Q(z),

which is a special case of the functional equations studied by Poincaré
(see [14]). A solution of (1.2) on Kv is given by

(1.3) f(z) = −
∞∑

n=1

n−1∏

i=1

(q−iz)s

P (q−iz)
· Q(q−nz)
P (q−nz)

,

which will be the object of this paper (see Subsection 1.2 for the details).
In the case where K = Q and v =∞ (the unique infinite place), Duver-

ney [7] proved the following irrationality result in an elegant way. Let q be
a rational integer with |q| > 1. Assume that f(z) in (1.3) is not a polyno-
mial. Then f(z) takes irrational values at all nonzero rational points except
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the poles of f(z). For the proof he constructed auxiliary functions by us-
ing Siegel’s lemma, and then iterated the functional equation appropriately
many times to obtain good rational approximations of f(α). Similar meth-
ods have been applied to study Mahler functions (see e.g. Nishioka [13]).

The purpose of this paper is to extend and quantify Duverney’s result
in the general setting (as at the beginning of this section) under a certain
condition on q (Theorem 1 in Subsection 1.3). We further apply this re-
sult to investigating special values of fairly general q-hypergeometric series
(Theorem 2 and its corollaries in Section 2). It is worthwhile mentioning
that Theorem 2 covers many known irrationality results and contains new
quantitative assertions. Indeed, Corollary 1 partly extends Stihl [18, Satz 1],
while Corollary 3 quantifies a special case of Bézivin [1, Corollaire 1].

There are several works which deal with the arithmetical nature of solu-
tions, not covered by (1.2), for the functional equations of Poincaré. We refer
the reader to, e.g., Bundschuh and Waldschmidt [6], Duverney [8], Matala-
Aho [11], Matala-Aho and Väänänen [12], Stihl [17], Stihl and Wallisser [19],
Töpfer [20], and Wallisser [24].

The plan of this paper is as follows. In Subsection 1.1 we recall the defi-
nition of the absolute height of algebraic numbers and the notion of the irra-
tionality measure relative to v. In Subsection 1.2 we consider the functional
equation (1.2) and obtain its solution (1.3). Our main result (Theorem 1) is
presented in Subsection 1.3. In Section 2 we state and derive Theorem 2 as
well as its corollaries. Theorem 1 is proved in the final section.

1.1. Notation. Let K, M, q, and v be as above. For any w ∈ M, we
normalize the absolute value | |w of K so that |p|w = p−1 for a finite place w
lying over the prime number p and |x|w = |x| (x ∈ Q) for an infinite place w,
where | | denotes the ordinary absolute value. We define the function δ(w)
on M to be δ(w) = 0 or 1 according as w is a finite or an infinite place.

The product formula ∏

w

|α|dww = 1

holds for all nonzero α ∈ K, where dw = [Kw : Qw]. The absolute height
h(α) of α ∈ K is defined by

h(α) =
∏

w

max(1, |α|dw/dw ).

Then, for any nonzero elements α and β of K, we have

h(α−1) = h(α), h(αβ) ≤ h(α)h(β).

The absolute height for the vector α = (α1, . . . , αk), αi ∈ K, is defined by

h(α) =
∏

w

max(1, |α|dw/dw )
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with
|α|w = max(|α1|w, . . . , |αk|w).

For any nonzero vector α, the fundamental inequality

h(α)−d/dv ≤ |α|v ≤ h(α)d/dv

holds. In fact, the second inequality follows from the definition of h(α),
while the first follows from the product formula, on writing |α|v = |αi|v
with some i:

|α|v = |αi|v =
( ∏

w 6=v
|αi|dw/dw

)−d/dv
≥
(∏

w

max(1, |α|dw/dw )
)−d/dv

.

We introduce the quantity λ defined by

(1.4) λ =
d log h(q)
dv log |q|v

.

If the estimate h(α) ≤ h(q)c holds with some positive number c, then the
fundamental inequality gives

|q|−cλv ≤ |α|v ≤ |q|cλv .
Inequalities of this type will be used in Section 3.

Remark. We always have λ ≥ 1, and λ = 1 if and only if |q|w ≤ 1 for all
w 6= v. In particular, if K is the rational or an imaginary quadratic number
field, v =∞, and q is an algebraic integer in K, then we have λ = 1.

For ω ∈ Kv \K, the irrationality measure relative to v of ω is defined to
be the infimum of the positive numbers µ for which the inequality

|ω − θ|v > h(θ)−µ

is satisfied for any θ ∈ K with sufficiently large h(θ), and it is denoted
by µ(ω;K, v). For ω ∈ R \ Q, in particular, µ(ω;Q,∞) is nothing but the
ordinary irrationality measure of ω.

The use of the absolute height makes it possible to consider simultane-
ously the numbers of Kv for every v. It also enables us to apply Siegel’s
lemma in the form given by Bombieri [2] (see Subsection 3.2). This lemma
indeed gives a better measure than that derived from the original Siegel
lemma, even in the case where K = Q and v =∞.

1.2. Solution of the functional equation. In this subsection we first show
that (1.2) has a unique solution in the formal power series ring K[[z]], which
converges in a neighbourhood of the origin. Then we will see that the solu-
tion (1.3) is obtained by extending this power series to the whole Kv using
(1.2). Though the procedure above was essentially given in Duverney [7], we
describe the details for our later purpose.
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Let us write the polynomials in (1.2) as

P (z) =
t∑

i=0

αiz
i, Q(z) =

u∑

i=0

βiz
i.

Then the power series

(1.5) f(z) =
∞∑

n=0

fnz
n

satisfies (1.2) if and only if

fn−s −
t∑

i=0

αiq
n−ifn−i − βn = 0

for all n ≥ 0, where we use the convention that fi = 0 for i < 0 and βn = 0
for n > u. This is a system of linear equations for fn, which can be solved
uniquely in K by the recursion formula

(1.6) fn =
1

α0qn

(
fn−s −

t∑

i=1

αiq
n−ifn−i − βn

)
.

Hence (1.2) has a unique solution (1.5) in K[[z]]. We claim that the power
series converges in a neighbourhood of the origin. In fact, it follows from
(1.6) with |q|v > 1 that

|fn|v ≤ (t+ 2)δ(v)|α−1
0 ξ|v max(1, |f0|v, . . . , |fn−1|v)

for all n ≥ 0, where

(1.7) ξ = (1, α0, . . . , αt, β0, . . . , βu).

This implies that

(1.8) |fn|v ≤ (t+ 2)δ(v)n|α−1
0 ξ|n+1

v ,

by which our claim holds. We denote by D the disk in Kv (with center at
z = 0) where (1.5) converges. The power series (1.5) is continued, beyond D,
to the whole Kv by using (1.2) repeatedly, and the resulting function is again
denoted by f(z). It remains to prove that f(z) coincides with (1.3). Let P
be the set defined by

P = {qkβ | P (β) = 0, k ≥ 1}.
Then, by iterating (1.2),

(1.9) f(z) =
k∏

i=1

(q−iz)s

P (q−iz)
· f(q−kz)−

k∑

i=1

i−1∏

j=1

(q−jz)s

P (q−jz)
· Q(q−iz)
P (q−iz)
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for any z ∈ Kv \ P provided that q−kz ∈ D. Since the first product on the
right-hand side tends to zero as k →∞, (1.3) holds for any z ∈ Kv \ P, as
desired.

Let P0 be the set of all elements α ∈ P at which f(z) does not have a
limit. It follows from the functional equation (1.2) that qkβ ∈ P0 implies
qnβ ∈ P0 for all n ≥ k. This shows that P0 is either empty or an infinite
set. Hence f(z) can be a rational function if and only if it is a polynomial.

1.3. Statement of the main result. The following theorem is the main
result of this paper, which extends and quantifies the result of Duver-
ney [7, Théorème 2].

Theorem 1. Let f(z) be the function given in (1.3) with P (z), Q(z)
∈ K[z] satisfying (1.1). Assume that f(z) is not a polynomial , and that
there exist positive numbers η, 1 < η < 2, and % for which

(1.10) λ < Θ(η, %) :=
Λ+ %(η − 1)

Λ+ η̃
,

where λ is the quantity defined by (1.4) and

(1.11) Λ = Λ(η, %) = (2− η + %){1 + (2− η + %)s/2}, η̃ =
η3

6(2− η)
.

Then, for any nonzero α ∈ K \P0, f(α) does not belong to K. Furthermore,

(1.12) µ(f(α);K, v) ≤ d

dv
inf

%(η − 1) + Λ

%(η − 1)− (λ− 1)Λ− λη̃ ,

where the infimum is taken over all positive numbers η, 1 < η < 2, and %
for which (1.10) holds. In particular , f(α) is not a Liouville number.

Let λ(s) = supΘ(η, %), where the supremum is taken over all positive
numbers η, 1 < η < 2, and %. Note that λ(s) depends only on s. The
following table provides fairly sharp lower bounds for λ(s) with 1 ≤ s ≤ 5.

s 1 2 3 4 5
λ(s) > 1.028 1.014 1.010 1.007 1.006

If λ = 1, then for any positive number η, 1 < η < 2, the condition
(1.10) is valid for all sufficiently large positive numbers %. Hence we have
the following corollary to Theorem 1.

Corollary. Let f(z) be as above. Assume that f(z) is not a polyno-
mial , and that λ = 1. Then, for any nonzero α ∈ K \ P0, f(α) does not
belong to K. Furthermore,

(1.13) µ(f(α);K, v) ≤ d

dv
inf

%(η − 1) + Λ

%(η − 1)− η̃ ,
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where the infimum is taken over all positive numbers η, 1 < η < 2, and %
for which %(η − 1)− η̃ > 0. In particular , f(α) is not a Liouville number.

Besides the classical case (where K is the rational or an imaginary
quadratic number field, v = ∞, and q is an algebraic integer in K), our
corollary applies for example if K = Q, q = p−k with some positive integer
k and | |v = | |p, or more generally if q is any PV-number.

Let µ(s) = inf(%(η − 1) +Λ)/(%(η − 1)− η̃), where the infimum is taken
over all positive numbers η, 1 < η < 2, and % for which %(η−1)− η̃ > 0. Note
that µ(s) depends only on s. Since the function (%(η−1)+Λ)/(%(η−1)− η̃)
attains the value (76 + 169s)/15 at (η, %) = (3/2, 6), we have

µ(s) ≤ 76 + 169s
15

.

The following table provides fairly sharp upper bounds for µ(s) with 1 ≤
s ≤ 5.

s 1 2 3 4 5
µ(s) < 15.61 26.57 37.40 48.19 58.96

When s = 1, P (z) ≡ 1, and Q(z) ≡ −1, the functional equation (1.2) is
reduced to

zf(z) = f(qz)− 1,

and the solution (1.3) to

Tq(z) =
∞∑

n=0

zn

q(
n+1

2 )
,

which is called the Tschakaloff function. The study on the arithmetical
nature of the values of Tq(z) goes back to Tschakaloff [21] in 1921, and
subsequent research has been made by many authors. Concerning our main
theorem, we quote the result which asserts that, for any nonzero α ∈ K,

µ(Tq(α);K, v) ≤ d

dv

1 +
√

5

1 +
√

5− 2λ
under the assumption

λ <
1 +
√

5
2

.

When K is an imaginary quadratic number field and v =∞, Bundschuh [4]
first obtained the result above, which is better than the assertion of Theo-
rem 1 in this particular case. Then it was proved in the general setting by
Väänänen [23]. The result of Bundschuh was extended by Stihl [17], which
quantifies Stihl and Wallisser [19, Satz 2]. He considered the functional equa-
tion of the type

(1.14) f(qz) = a0(z − a1)f(z) +Q(z),
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where q, a0, and a1 are elements of an imaginary quadratic number field K,
and Q(z) ∈ K[z]. Then, in the case of a1 = 0, his result gives the same
conclusion as in [4].

2. Application to q-hypergeometric series. In this section we apply
Theorem 1 to the function φ(z) = φ(z; s, P ) on Kv defined by

(2.1) φ(z) =
∞∑

k=0

q−s(
k
2)

P (1)P (q−1) . . . P (q−(k−1))
zk,

where s is a positive integer, and P (z) is a polynomial in K[z] satisfying
(1.1) and

(2.2) P (q−k) 6= 0 for k = 0, 1, 2, . . .

By introducing the reciprocal polynomial P̂ (z) = ztP (1/z), the definition
(2.1) can be rewritten as

(2.3) φ(z) =
∞∑

k=0

q−(s−t)(k2)

P̂ (1)P̂ (q) . . . P̂ (qk−1)
zk.

We note that φ(z) is an entire function on Kv. If P (z) in K[z] has a factor-
ization of the form

P (z) = (1− a1z) . . . (1− atz),

then φ(z) can be expressed in terms of a q-hypergeometric function 1φs,
namely

1φs(q−1; a1, . . . , at, 0, . . . , 0︸ ︷︷ ︸
s−t

; q−1, z)

=
∞∑

k=0

(q−1; q−1)k
(a1; q−1)k . . . (at; q−1)k(q−1; q−1)k

q−s(
k
2)zk,

where (x; y)0 = 1 and

(x; y)k = (1− x)(1− xy) . . . (1− xyk−1)

for k ≥ 1 (see Stihl [18]).
We now consider the connection between φ(z) and the solution of the

functional equation (1.2). For any nonzero α ∈ K, we define the function
f(z;α) on Kv by

(2.4) f(z;α) =
∞∑

k=0

q−s(
k+1

2 )zsk

P (q−1z) . . . P (q−kz)
αk,

which satisfies

(2.5) αzsf(z) = P (z)f(qz)− P (z)
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with f(z) = f(z;α), and

(2.6) φ(α) = f(q;α).

The functional equation (1.2) becomes (2.5) by replacing P (z) with
α−1P (z), and Q(z) with −α−1P (z), respectively, and the solution (1.3)
becomes (2.4) by the same replacement.

Definition. We define the set E(s, P ) associated with s and P (z) to be
the set consisting of α ∈ K for which f(z;α) is a polynomial.

If (1.10) holds for some positive numbers η, 1 < η < 2, and %, it follows
from Theorem 1 that, for any nonzero α ∈ K, f(q;α) belongs to K if and
only if α belongs to E(s, P ). Thus, in view of (2.6), we have

Theorem 2. Let φ(z) = φ(z; s, P ) be the function defined by (2.1) with
P (z) ∈ K[z] satisfying (1.1) and (2.2). Assume that there exist positive
numbers η, 1 < η < 2, and % for which (1.10) holds. Then, for nonzero
α ∈ K, φ(α) belongs to K if and only if α belongs to E(s, P ). Furthermore,
for any nonzero α ∈ K, not an element of E(s, P ), the inequality (1.12)
holds with φ(α) instead of f(α).

Remark. We see from (2.5) that f(z;α) with α 6= 0 is not a polynomial
when t = degP < s. Hence E(s, P ) = {0} in this case. On the other hand,
in the case t = s, we claim that

(2.7) E(s, P ) ⊂ {asqk | k ≥ 1},
where as is the coefficient of the leading term of P (z). For the proof, we
assume that f(z;α) is a polynomial. Note first that f(z;α) with α 6= 0
is not a constant; otherwise f(z;α) ≡ 1, and so αzs = 0 by (2.5), which
implies α = 0. Comparing the leading terms of both sides of (2.5), we find
that α = asq

k, where k is the degree of f(z;α). This shows (2.7) as desired.

We give several corollaries to Theorem 2. The following corollary in the
case t < s is a direct consequence of the first part of the remark above.

Corollary 1. Under the notation and the assumptions of Theorem 2,
assume further that t < s. Then, for any nonzero α ∈ K, φ(α) does not
belong to K, and the inequality (1.12) holds with φ(α) instead of f(α).

This corollary partly extends the main result of Stihl [18] (see also Kat-
surada [9]). Though he proved in fact the linear independence of function
values, we quote here the result by restricting it to the irrationality case.
Let s be a positive integer, K an imaginary quadratic number field, v =∞,
and P (z) a polynomial in K[z] of the form

P (z) = (1− q−ν1z) . . . (1− q−νt0 z)(1− bt0+1z) . . . (1− btz),
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where 0 ≤ t0 ≤ t < s, νi ∈ N, and bj ∈ K \{0} satisfy bj 6= qk for all integers
k ≥ 0. Then, for any nonzero α ∈ K, it follows that

µ(φ(α; s, P );K, v) ≤ γ

γ − λ(γ − 1)

under the condition
λ <

γ

γ − 1
,

where
γ =

s

2(s− t)2 (
√
γ0 + (s− t)(1 + 2s) + t2 − t0)

with

γ0 = (s+ t0 − t(1 + t))2 + 4(s− t)(1 + s)(t2 − t0) + 4(s− t)2s2.

The result above is better than the assertion of Corollary 1 in this particular
case. For the proof Stihl constructed Padé approximations for φ(z), where
the functional equation

{P (q∆)− z∆s}φ(z) = P (q)

plays a central role. Here ∆ is the q−1-difference operator acting as (∆φ)(z)
= φ(q−1z).

The following two corollaries deal with the case where s = t. We note
that the qualitative part of these results were obtained by Bézivin [1], in the
case where K is an imaginary quadratic number field and v =∞.

Corollary 2. Let the notations and the assumptions be as in Theo-
rem 2 with s = 1 and P (z) = Az + B,AB 6= 0. Then, for nonzero α ∈ K,
φ(α) belongs to K if and only if α is of the form α = Aqk with some integer
k ≥ 1. Moreover , for any α ∈ K satisfying α 6= Aqk for all integers k ≥ 1,
the inequality (1.12) holds with φ(α) instead of f(α).

Remark. The same assertion as in Corollary 2 holds for φ(z; s, P ) de-
fined with a slightly general P (z) = Azs+B, where s is any positive integer.
In fact, the general case is reduced to the case s = 1 by replacing q with qs,
while the corresponding λ in (1.4) is unchanged upon this replacement.

Proof of Corollary 2. Our task is to show that

E(1, P ) \ {0} = {Aqk | k ≥ 1}.
For any nonzero α ∈ K, let f(z) = f(z;α) be the function given by (2.4)
with s = 1 and P (z) = Az + B. Substituting (1.5) into both sides of (2.5)
and equating the coefficients, we obtain f0 = 1, f1 = (Bq)−1α, and

(2.8) fn = (Bqn)−1(α−Aqn−1)fn−1 for n ≥ 2.

This clearly implies the desired assertion. Thus the corollary is proved.
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Remark. Under the assumption in Corollary 2, by (2.8) we have

f(z;Aqk) = 1 +
k∑

n=1

fk,nz
n

for any positive integer k, where

fk,n = (A/B)nqk−(k+1
2 )

n−1∏

i=1

(qk − qi).

In view of (2.3), we see that φ(z; 1, q − z) is the q-exponential function

Eq(z) =
∞∑

n=0

zn

(q − 1)(q2 − 1) . . . (qn − 1)
,

which satisfies the functional equation

Eq(qz) = (1 + z)Eq(z).

The study on the arithmetical nature of Eq(z) goes back to Lototsky [10]
in 1943, and subsequent research has been made by various authors. Con-
cerning Corollary 2 above, we quote the result which asserts that, for any
nonzero α ∈ K with α 6= −qk (k = 1, 2, . . .),

µ(Eq(α);K, v) ≤ d

dv

7
7− 4λ

under the condition λ < 7/4. Bundschuh [3] first obtained the result when K
is an imaginary quadratic number field and v =∞. Then the same assertion
was proved for general K with an infinite place v of K by Popov [15], and in
full generality by Väänänen [22]. The result of Stihl [17] mentioned at the end
of Subsection 1.3 generalizes Bundschuh’s result above. Moreover, it gives a
better measure for φ(α) than that given in Corollary 2 in this particular case.
To see this we note that φ(z) in Corollary 2 is a solution of the functional
equation (1.14) with a0 = q/B, a1 = A, and Q(z) = 1+(qA)/B. Then Stihl’s
result implies the same conclusion as Bundschuh’s result if (qA)/B = −qk
for some integer k, while if (qA)/B 6= −qk for any integer k, with the
condition λ <

√
2, it also yields

µ(φ(α);K, v) ≤ 2

2−
√

2λ
.

We state the last corollary which is a direct consequence of Theorem 2
with (2.7).

Corollary 3. Let the notation and assumptions be as in Theorem 2
with P (z) = (z − a1) . . . (z − as) for nonzero elements ai of K. Then, for
any nonzero α ∈ K satisfying α 6= qk (k = 1, 2, . . .), φ(α) does not belong
to K, and the inequality (1.12) holds with φ(α) instead of f(α).
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We conclude this section by giving an example pertaining to Corollary 3
in the case where K = Q and v =∞. Let q be a positive integer with |q| > 1,
and set

P (z) = (z − q)(z − qν+1)

with a nonnegative integer ν. From (2.3) the function φ(z) = φ(z; 2, P )
(defined with P (z)) on R is

φ(z) =
∞∑

n=0

zn

(q; q)n(qν+1; q)n
.

We set Kq,ν(z) = φ(−z2/4). This is a q-analogue of the Siegel E-function

Kν(z) =
∞∑

n=0

(−z2/4)n

n!(ν + 1) . . . (ν + n)
,

whose arithmetical properties were studied by Siegel [16]. Let α be a nonzero
rational number. Since −α2/4 does not belong to the set {qk | k ≥ 1}, it
follows from Corollary 3 that Kq,ν(α) is an irrational number and not a
Liouville number.

3. Proof of the main theorem. In this section we prove Theorem 1.
Let f(z) be the function given by (1.3) with P (z), Q(z) ∈ K[z] satisfying
(1.1), which coincides with the power series (1.5) on D. Assume that f(z)
is not a polynomial. As was remarked in Subsection 1.2, this means that it
is not a rational function. Before going into the precise steps of the proof,
we claim that it suffices to prove Theorem 1 in the case where α ∈ D. To
show this we assume that the assertion of Theorem 1 holds for all nonzero
α ∈ K ∩ D. Let α′ be an arbitrary nonzero element of K \ P0, and let k
be the least positive integer satisfying q−kα′ ∈ D. Then for α = q−kα′ we
see that f(α) does not belong to K and (1.12) holds. An equivalent form of
(1.9) is

(3.1) f(q−kz) =
k∏

i=1

P (q−iz)
(q−iz)s

· f(z) +
k∑

i=1

k∏

j=i+1

P (q−jz)
(q−jz)s

· Q(q−iz)
(q−iz)s

,

in which we set z = α′. This shows
k∏

i=1

P (q−iα′) 6= 0;

otherwise f(α) does belong to K in view of (3.1), which is a contradiction.
Therefore f(α′) can be written as

f(α′) = Xf(α) + Y
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with some elements X 6= 0 and Y of K. This implies that f(α′) does not
belong to K and the inequality (1.12) holds with f(α′) instead of f(α), as
required.

3.1. Main proposition. Throughout the following sections let α be any
nonzero element of K. We will prove that f(α) does not belong to K and
the inequality (1.12) holds. From the reduction argument above, we may
assume that α ∈ D. Since in what follows we consider the values of f(z)
only at the points z = q−kα (k = 0, 1, 2, . . .), we treat the function f(z)
expressed as in (1.5). We denote by v0 an arbitrarily chosen element of
M which is different from v. The constants in O-notation may depend on
P,Q,K, v, v0, α, η, and %, but not on r.

We now state the main proposition which can be used to prove Theo-
rem 1.

Proposition. Let η, 1 < η < 2, and % be positive numbers, and let
Λ = Λ(η, %) and η̃ be the quantities defined in (1.11). Then, for any positive
integer r, there exist two linearly independent linear forms

Li,r = Ui,rf(α) + Vi,r, Ui,r, Vi,r ∈ K (i = 1, 2)

such that for i = 1, 2 we have

(3.2) max(|Ui,r|w, |Vi,r|w)

≤ 2δ(w)O(r) max(1, |q|w)Λr
2+O(r)|ξ|O(r)

w max(1, |α|w)O(r)

for all w ∈ M with w 6= v0, and

(3.3) max(|Ui,r|v0 , |Vi,r|v0)

≤ 2O(r) max(1, |q|v0)Λr
2+O(r)h(q)(d/dv0 )η̃r2 |ξ|O(r)

v0
max(1, |α|v0)O(r),

where ξ is the vector given by (1.7), and

(3.4) |Li,r|v ≤ |q|−%(η−1)r2+O(r)
v .

To see how Theorem 1 follows from the Proposition we define

L = f(α)− θ, θ ∈ K.
By the Proposition, there exists a linear form Lr = Urf(α) + Vr (L1,r or
L2,r) such that

∆ =
∣∣∣∣

1 −θ
Ur Vr

∣∣∣∣ 6= 0.

Note that ∆ = Lr −UrL. We now choose v0 6= v and proceed in almost the
same way as in the proof of the case ∆ 6= 0 in Bundschuh and Väänänen [5],
pp. 190–192. This gives, under the assumption Λ+ %(η− 1)− λΛ− λη̃ > 0,

|L|v > H
− d
dv

Λ+%(η−1)
Λ+%(η−1)−λΛ−λη̃−

O(1)√
logH ,
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where H = max(h(θ),H0) with some positive constant H0. Thus Theorem 1
holds. Our task is therefore reduced to proving the Proposition, which will
be done in the following subsections. We give here an outline.

In the next subsection we construct an auxiliary function of the form

L(z) = A(z)f(z) +B(z), A(z), B(z) ∈ K[z]

such that the degrees of A(z) and B(z) are at most r, and ordL(z) ≥ ηr (see
Lemma 1), where ordL(z) is the order of the zeros of L(z) at z = 0. Our
construction depends on Siegel’s lemma in the form given by Bombieri [2],
which ensures a sharp upper bound of h(x), where x is the vector whose
elements are the coefficients of A(z) and B(z). It also ensures an additional
property that |x|w ≤ 1 for all w ∈ M different from v0.

In Subsection 3.3 we introduce

L̃(z) := P (z)L(qz) = Ã(z)f(z) + B̃(z),

say, and prove that the resultant R(z) of L and L̃ with respect to f(z)
does not vanish. This gives a sharp upper bound of ordL(z), and enables
us to show the existence of a positive integer k in a certain range such that
R(q−kα) 6= 0 (see Lemma 2).

In Subsection 3.4 we consider the relation between f(α) and f(q−kα)
(see Lemma 3). In Subsection 3.5, by combining the conclusions of Subsec-
tions 3.2–3.4, the desired linear forms are constructed from L(q−kα) and
L̃(q−kα) with certain multipliers.

It is of interest to note that we follow closely the ideas of Siegel’s method.

3.2. Construction of auxiliary functions. We construct auxiliary func-
tions stated in Lemma 1 below. To this aim we employ Siegel’s lemma in
the form given by Bombieri [2]:

Siegel’s lemma (Bombieri [2]). Let γ = 4d2d|DK |1/2, where DK is the
discriminant of K. Let M and N be positive integers with M < N . Then
there is a nontrivial solution x = (x1, . . . , xN ) ∈ KN of

N∑

j=1

aijxj = 0 (i = 1, . . . ,M)

with

h(x) ≤ γ(2Nγ)M/(N−M)
( M∏

i=1

∏

w

max
1≤j≤N

|aij |dw/dw

)1/(N−M)
.

Moreover , given any place v′ of K, we may find such a solution with the
additional property

|x|w ≤ 1 for all w 6= v′.
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Lemma 1. For any positive number η, 0 < η < 2, and any positive
integer r there exist auxiliary polynomials

A(z) =
r∑

i=0

aiz
i, B(z) =

r∑

i=0

biz
i,

not both zero, with coefficients ai, bi ∈ K, such that

(3.5) σ := ordL(z) ≥ ηr
where

L(z) = A(z)f(z) +B(z),

and the following estimates are valid :

(3.6) h(x) ≤ 2O(r)h(q)η̃r
2
, x = (a0, . . . , ar, b0, . . . , br),

(3.7) |x|w ≤ 1 for all w 6= v0,

(3.8) |L(z)|v ≤ (r + 2)δ(v)cσ+1|z|σv for |z|v ≤ 1/(2c),

where c = (t+ 2)δ(v)|α−1
0 ξ|v with ξ given by (1.7).

Proof. We have

(3.9) A(z)f(z) +B(z) =
∞∑

n=0

Cnz
n,

where

Cn =
r∑

i=0

aifn−i + bn

with the conventions bn = 0 for n > r and fi = 0 for i < 0. To satisfy the
inequality (3.5) we need

Cn = 0 for n = 0, 1, 2, . . . , [ηr].

This is a system of [ηr] + 1 linear homogeneous equations with 2r + 2 un-
knowns ai, bi. We claim that, for any nonnegative integer n,

∏

w

max
0≤i≤n

|fi|dw/dw ≤ cn0h(q)(
n+1

2 )

with a positive constant c0 depending only on P and Q. In fact, it follows
from (1.6) that

|fn|w ≤ (t+ 2)δ(w)|α−1
0 ξ|w max(1, |q|−1

w )n max(1, |f0|w, . . . , |fn−1|w)

for all w ∈ M. Hence

|fn|w ≤ (t+ 2)δ(w)n|α−1
0 ξ|n+1

w max(1, |q|−1
w )(

n+1
2 ),
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which implies the desired inequality. Then, by applying Siegel’s lemma
above, there exists a nontrivial solution x such that (3.7) holds and

h(x) ≤ 2O(r)
( [ηr]∏

n=0

cn0h(q)(
n+1

2 )
)1/(2r+2−([ηr]+1))

.

Since the exponent of h(q) on the right-hand side is bounded from above by

1
(2− η)r

[ηr]∑

n=0

(
n+ 1

2

)
= η̃r2 +O(r),

(3.6) holds.
To prove (3.8) we denote the right-hand side of (3.9) by zσE(z), where

E(z) =
∞∑

n=0

Cn+σz
n.

Since

|Cn+σ|v ≤ (r + 2)δ(v) max(1, |f0|v, . . . , |fn+σ|v) ≤ (r + 2)δ(v)cn+1+σ

by (1.8), the inequality (3.8) holds. Thus the lemma is proved.

3.3. Application of resultant. We prove Lemma 2 below which gives
nonvanishing of a certain determinant and its consequences. Let A(z) and
B(z) be polynomials in K[z], and set

L(z) = A(z)f(z) +B(z).

By the functional equation (1.2) we obtain

L̃(z) := P (z)L(qz) = Ã(z)f(z) + B̃(z),

where
Ã(z) = zsA(qz), B̃(z) = P (z)B(qz)−Q(z)A(qz).

We denote by R(z) the resultant of L and L̃ with respect to f(z), that is,

R(z) =
∣∣∣∣
A(z) B(z)
Ã(z) B̃(z)

∣∣∣∣ .

Lemma 2. Let A(z) and B(z) be polynomials in K[z], not both zero, of
degree at most r. Then the resultant R(z) does not vanish, and this implies
that

(3.10) ordL(z) ≤ 2r + max(s, u),

and for any positive real % there exists a positive integer k = k(r) satisfying

(3.11) %r ≤ k ≤ (2− η + %)r + max(s, u)

such that

(3.12) R(q−kα) 6= 0.
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Proof. Assume to the contrary that R(z) vanishes. Then, using

(3.13) R(z) = A(z)L̃(z)− Ã(z)L(z),

we obtain
P (z)A(z)L(qz) = zsA(qz)L(z).

Comparing the orders of the zeros at z = 0 of both sides, we see that their
difference is s > 0, and this implies a contradiction.

The upper bound for ordL(z) follows from ordL(z) ≤ degR and

degR ≤ max(degA(z)B̃(z),deg Ã(z)B(z)) ≤ 2r + max(s, u).

The existence of k in the assertion is a direct consequence of the upper
bound above for the degree of the nonzero polynomial R(z).

3.4. Iteration of the functional equation. We show a relation between
f(α) and f(q−kα) for any positive integer k.

Lemma 3. For any positive integer k, we have

(3.14) qukzskf(q−kz) = Mk(z, q)f(z) +Nk(z, q)

with some polynomials Mk(z, q) and Nk(z, q) in K[z, q]. Moreover ,

(3.15) max(|Mk(α, q)|w, |Nk(α, q)|w)

≤ 2δ(w)O(k) max(1, |q|w)sk
2/2+O(k)|ξ|O(k)

w max(1, |α|w)O(k)

for all w ∈ M.

Proof. It follows from (3.1) that (3.14) holds with

Mk(z, q) = qs(
k+1

2 )+uk
k∏

i=1

P (q−iz)

and

Nk(z, q) =
k∑

i=1

qs{(k+1
2 )−(i2)}+ukzs(i−1)

k∏

j=i+1

P (q−jz) ·Q(q−iz),

both belonging to K[z, q]. Since

max(degzMk,degz Nk) ≤ sk + u,

max(degqMk,degq Nk) ≤ s
(
k + 1

2

)
+ uk,

(3.15) holds.

3.5. Proof of the Proposition. Let η, 1 < η < 2, and % be positive
numbers, and r a positive integer. Let A(z) and B(z) be polynomials in
K[z], not both zero, of degree at most r, which satisfy all the conditions in
Lemma 1. We choose a k satisfying (3.11) and (3.12). Note that k = O(r).
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We consider the quantities

Lr = qrkqukαskL(q−kα), L̃r = q(r+max(s,u))kqukαskL̃(q−kα).

By (3.14) we may write

Lr = Uf(α) + V, L̃r = Ũf(α) + Ṽ ,

where

U=qrkMk(α, q)A(q−kα), V =qrkNk(α, q)A(q−kα) + qrkqukαskB(q−kα),

and Ũ , Ṽ have the corresponding expressions with q(r+max(s,u))k replaced by
qrk and Ã, B̃ by A, B. Then we show that the pair (L1,r, L2,r) = (Lr, L̃r)
satisfies the conditions stated in the Proposition. Since

∣∣∣∣
U V
Ũ Ṽ

∣∣∣∣ = q(2r+max(s,u))kqukαskMk(α, q)R(q−kα) 6= 0

by an elementary operation on the determinant, Lr and L̃r are linearly
independent linear forms of 1 and f(α).

We next show that Lr and L̃r also satisfy other conditions in the Propo-
sition. Consider Lr (the consideration of L̃r is analogous). It follows from
(3.15) that

max(|U |w, |V |w)

≤ 2δ(w)O(r)|x|w max(1, |q|w)rk+sk2/2+O(r)|ξ|O(r)
w max(1, |α|w)O(r)

for all w. We have
|x|v0 ≤ 2O(r)h(q)(d/dv0)η̃r2

by (3.6) and |x|w ≤ 1 for all w 6= v0 by (3.7). We also have

rk + sk2/2 ≤ (2− η + %){1 + (2− η + %)s/2}r2 +O(r)

by (3.11), and the main term of the right-hand side is Λr2 by (1.11). Hence,
combining these estimates, we obtain (3.2) and (3.3).

For an upper bound of |Lr|v, we have

|Lr|v ≤ 2O(r)|q|rkv cσ|q−kα|σv
by (3.8). Since ηr ≤ σ ≤ 2r+max(s, u) by (3.5) and Lemma 2, this inequality
implies that

|Lr|v ≤ 2O(r)|q|−rk(η−1)
v .

Hence (3.4) follows from (3.11). This completes the proof of the Proposition,
and hence that of Theorem 1.
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