Corrigendum and addendum to the paper "Reducibility of quadrinomials"

(Acta Arith. 21 (1972), 153-171)

by
M. Fried (Irvine, CA) and A. Schinzel (Warszawa)

Page 161:

- line 3: for the second exponent $1 / 3$ read $-1 / 3$, for $64 a_{0} a_{1} a_{3}^{2}$ read $64 a_{0} a_{2} a_{3}^{2}$;
- line 5: for $a_{1} x$ read $a_{1} x^{\delta}$;
- line 9: for $-a_{3} \mathrm{read} a_{3}$, for $/ y \mathrm{read} / 4$;
- line 16: for $-a_{3}$ read a_{3}.

Page 163:

- line 9: after "and" insert "for $n_{2}>2$ ";
- line 11: before the period add "; for $n_{2}=2$ there is only one branch point $(\varepsilon=-1) " ;$
- line 13: after " $n_{1}=1$ " replace the comma by "and either";
- line 15: replace the period by the following text: ", or $n_{1}-1=1 ;-\frac{a_{1}^{2}}{4 a_{0}}=$ $-2 \sqrt{a_{2} a_{3}} ; a_{1}^{4}=64 a_{0}^{2} a_{2} a_{3}$ and $q(x, y)=a_{0} x^{2 \delta} y^{2 \varepsilon}+a_{1} x^{\delta} y^{2 \varepsilon}+a_{2} y^{4 \varepsilon}+a_{3}=$ $u^{2}-4 t u v w-t^{2} v^{4}-4 t^{2} w^{4}$, where $t=1, u=a_{0}^{1 / 2} x^{\delta} y^{\varepsilon}, v=\left(-a_{2}\right)^{1 / 4} y^{\varepsilon}$, $w=\left(-a_{3} / 4\right)^{1 / 4}$ and suitable values of the quadratic roots and quartic roots are taken. In the latter case the factors $u \pm t v^{2}-2 t v w \pm 2 t w^{2}$ are irreducible over \mathbb{C}, since they equal

$$
a_{0}^{1 / 2} x^{\delta} y^{\varepsilon} \pm\left[\left(-a_{2}\right)^{1 / 2} y^{2 \varepsilon}-2\left(-a_{2}\right)^{1 / 4}\left(-a_{3} / 4\right)^{1 / 4} y^{\varepsilon}+2\left(-a_{3} / 4\right)^{1 / 4}\right]
$$

and the expression in brackets is not a power in $\mathbb{C}\left[y_{1}\right]$. Moreover, one verifies directly that the factors are non-reciprocal."

The proof of Theorem 1 amounts to investigating factors of rational functions of the form $f(x)-g(y)$ (variables separated). When both f and g are polynomials the investigation is easier and [4] has far-reaching results.

[^0]We know of little work beyond the quadrinomial case of this paper on the investigation of factors of rational functions with variables separated.

Reference

[4] M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146. (These are the complete data of reference item [4] of the original article.)

Department of Mathematics
University of California at Irvine
Irvine, CA 92664, U.S.A.
E-mail: mfried@math.uci.edu

Institute of Mathematics
Polish Academy of Sciences
P.O. Box 137

00-950 Warszawa, Poland E-mail: schinzel@impan.gov.pl

[^0]: 2000 Mathematics Subject Classification: Primary 12D05.

