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1. INTRODUCTION

We give explicit upper and lower bounds for relative class numbers of
imaginary abelian number fields and of nonabelian CM-fields K. We then
use them to obtain Brauer–Siegel type results for relative class numbers of
CM-fields. The main feature of this paper is a new method which enables
us to easily deal with the case where K contains an imaginary quadratic
subfield.

We will make use of the ideas introduced in [Lou04] to obtain in Theo-
rem 1 upper bounds on |L(1, χ)| for even and odd primitive Dirichlet charac-
ters χ, whereas our previous ideas (developed in [Lou98b] and [Lou01]) failed
to embrace the case of odd characters. These bounds depend on whether
L(s, χ) has or does not have a real zero β in the range 0 < β < 1. They will
then enable us to obtain in Theorems 18, 28 and 31 bounds for relative class
numbers h−

K of CM-fields K, especially in the case that K contains an imag-
inary quadratic subfield L. Apart from the proof of Lemma 17, which can be
found in [Lou03], this paper provides the reader with a self-contained exposi-
tion of how one can obtain (as in Corollaries 20, 21, 23 and 25 where several
footnotes clearly show that our approach is more efficient than the ones for-
merly developed by various authors) good enough explicit lower bounds for
relative class numbers to enable him to solve various class number problems
for CM-fields or to simplify the existing proofs (e.g., see [CK98], [CK00a],
[CK00b], [Lou95], [Lou97],[Lou98a], [Lou99], [MM] and [Yam]). Whereas
almost all the papers in the literature dealing with explicit lower bounds
for relative class numbers of CM-fields (or values at s = 1 of L-functions)
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use infinite products of Dedekind zeta functions (e.g., see [Bes], [HHRW],
[Lou92], [LPP] and [Sta]), our approach is different and stems from integral
representations (used to proved functional equations). We finally refer the
reader to [AD] and [LO] for conditional (i.e. only valid under the assump-
tion of GRH) lower bounds on the exponents of the ideal class groups of
CM-fields.

2. UPPER BOUNDS FOR |L(1, χ)|

Throughout this paper, we let γ = 0.577215 . . . denote Euler’s constant
and set

(1)

{
κ0 := 2 + γ − log(4π) = 0.046191 . . . ,

κ1 := 2 + γ − log π = 1.432485 . . . .

In this section we introduce a new method for proving at one stroke the
following result:

Theorem 1. Let χ be a primitive Dirichlet character modulo f > 1.

(i) We have

(2) |L(1, χ)| ≤ 1

2
(log f + κχ) where κχ :=

{
κ0 if χ is even,

κ1 if χ is odd.

(ii) Assume that χ is quadratic. Then 0 < β < 1 and L(β, χ) = 0 imply

(3) 0 < L(1, χ) ≤ 1 − β

8
log2 f.

Remarks 2. (i) O. Ramaré proved in [Ram] that (2) still holds true with
the slightly better constants κ0 = 0 and κ1 = 5 − 2 log 6 = 1.416481 . . . .

(ii) See [Lou98b, Corollaire 7B] for another proof of (3) in the case that
χ is even and quadratic, [Lou01, Theorem 7] for the case of χ even but not
necessarily quadratic, and Theorem 15 below.

Our strategy for obtaining these explicit upper bounds for |L(1, χ)| is as
follows.

First, we start with the integral representations of L-functions L(s, χ)
(used to prove their functional equations) and use inverse Mellin transforms
to obtain bounds on |L(1, χ)| as integrals on the vertical line ℜ(s) = c > 1
of the complex plane of complex-valued functions (see Proposition 5).

Second, we move these vertical lines of integration leftwards to ℜ(s) =
−1/2. In the process we pick up residues (see Lemma 7), which yields the
main part of our upper bounds.

Finally, to complete the proof of Theorem 1, we give an explicit bound
on the modulus of these integrals on the line ℜ(s) = −1/2 (see Lemma 8).
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2.1. Integral representations for bounds on L(1, χ)

Lemma 3 (see [Dav, Chapter 9] or [Kob, Chapter II, Section 4, Prob-
lems 4 and 6]). Let χ be a primitive Dirichlet character modulo f > 1. Set

A = A(χ) :=

{
0 if χ(−1) = +1, i.e. if χ is even,

1 if χ(−1) = −1, i.e. if χ is odd ,

Λ(s, χ) :=

(
f

π

)(s+A)/2

Γ

(
s + A

2

)
L(s, χ),

θ(t, χ) :=
∑

n≥1

nAχ(n)e−πn2t/f (t > 0),

W (χ) :=
τ(χ)

iA
√

f
=

1

iA
√

f

f∑

n=1

χ(n)e2πni/f .

Then |W (χ)| = 1 and

θ(1/t, χ) = W (χ)tA
√

t θ(t, χ),

and for ℜ(s) > 1 we have

(4) Λ(s, χ) =

∞\
1

{θ(t, χ)t(s+A)/2 + W (χ)θ(t, χ)t(1−s+A)/2} dt

t
.

This integral converges absolutely for all complex s and provides us with

an entire continuation of Λ(s, χ) over the whole complex plane, and Λ(s, χ)
satisfies the functional equation

(5) W (χ)Λ(1 − s, χ) = Λ(s, χ).

Lemma 4.

(i) (see [Rad, Section 21]) In any strip a ≤ σ := ℜ(s) ≤ b and |t| ≥ 1
we have

(6) |Γ (σ + it)| = O(e−π|t|/2|t|σ−1/2).

(ii) For α > 0, c > β and c > 0,

∞\
1

e−αttβ
dt

t
=

1

2iπ

c+i∞\
c−i∞

Γ (s)α−s

s − β
ds,

∞\
1

e−αttβ(log t)
dt

t
=

1

2iπ

c+i∞\
c−i∞

Γ (s)α−s

(s − β)2
ds.

Proof. Since Γ (s) =
T∞
0 e−tts−1 dt is the Mellin transform of s 7→ es, we

see that

e−x =
1

2iπ

c+i∞\
c−i∞

Γ (s)x−s ds, c > 0,
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is the inverse Mellin transform of Γ (s) (a direct proof can also be ob-
tained by shifting the vertical line of integration ℜ(s) = c > 1 leftwards
to ℜ(s) = −∞ (use (6) to justify this displacement) and by noticing that
Ress=−n(Γ (s)x−s) = (−x)n/n!). This integral is absolutely convergent,
by (6), and Fubini’s theorem yields

∞\
1

e−αttβ−1 dt =

∞\
1

(
1

2iπ

c+i∞\
c−i∞

Γ (s)(αt)−s ds

)
tβ−1 dt

=
1

2iπ

c+i∞\
c−i∞

Γ (s)α−s
(∞\

1

tβ−1−s dt
)

ds

=
1

2iπ

c+i∞\
c−i∞

Γ (s)α−s ds

s − β

for c = ℜ(s) > β. The proof of the second assertion is similar.

Proposition 5.

(i) Set

(7) IA(f) :=
1

2iπ

c+i∞\
c−i∞

hA(s) ds (c > 1)

with

hA(s) := (f/π)sζ(2s − A)Γ (s)

(
1

s − (1 + A)/2
+

1

s − A/2

)
,

and

(8) ĨA(f) :=
1

2iπ

c+i∞\
c−i∞

h̃A(s) ds (c > 1)

with

h̃A(s) := (f/π)sζ(2s − A)Γ (s)

(
1

(s − (1 + A)/2)2
− 1

(s − A/2)2

)
.

Then, for given σ1 < 0 and σ2 > 1, there exists C > 0 such that

in the range σ1 ≤ σ ≤ σ2 and |t| ≥ 1 we have |hA(σ + it)| =

O(|t|Ce−π|t|/2) and |h̃A(σ + it)| = O(|t|Ce−π|t|/2).

(ii) Let χ be a primitive Dirichlet character modulo f > 1. Then

(9) |Λ(1, χ)| ≤ IA(f).

Moreover , if χ is quadratic, then 0 < β < 1 and L(β, χ) = 0 imply

(10) |Λ(1, χ)| ≤ 1 − β

2
ĨA(f).
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Proof. The first assertion follows from (6) and (5) (see [Lou00, proof of
Lemma 12]). To prove (9), we use (4) for s = 1, and Lemma 4. To prove
(10), we notice that L(β, χ) = 0 implies Λ(β, χ) = 0 and

|Λ(1, χ)| = |Λ(1, χ) − Λ(β, χ)| ≤ (1 − β) max
β≤s≤1

|Λ′(s, χ)|.

Now, we first take the derivative of the integral representation of
Λ(s, χ) given in (4). Second, we notice that if χ is quadratic then χ = χ and
W (χ) = +1. Third, due to the functional equation (5), we may assume that
1/2 ≤ β ≤ 1. Fourth, for t ≥ 1 real the function

s 7→ t(s+A)/2−1 − t(1−s+A)/2−1

increases with s, and is nonnegative in the range s ≥ 1/2. Therefore, for
1/2 ≤ s ≤ 1 we have

(11) 2|Λ′(s, χ)| ≤
∞\
1

( ∑

n≥1

nAe−πn2t/f
)
(log t)(t(1+A)/2 − tA/2)

dt

t
,

and we use Lemma 4 to complete the proof.

Now, set

JA(f) =
1

2iπ

−1/2+i∞\
−1/2−i∞

hA(s) ds, J̃A(f) =
1

2iπ

−1/2+i∞\
−1/2−i∞

h̃A(s) ds.

According to Proposition 5(i), we are allowed to move the vertical lines of
integration ℜ(s) = c > 1 in (7) and (8) leftwards to ℜ(s) = −1/2. We pick
up residues at s = (1 + A)/2, s = A/2 and s = 0 and obtain:

Lemma 6. Let χ be a primitive Dirichlet character modulo f > 1. If χ
is even, then

√
f |L(1, χ)| = |Λ(1, χ)|

≤ I0(f) = Ress=1/2(h0(s)) + Ress=0(h0(s)) + J0(f).

If χ is odd , then

f

π
|L(1, χ)| = |Λ(1, χ)| ≤ I1(f)

= Ress=1(h0(s)) + Ress=1/2(h0(s)) + Ress=0(h0(s)) + J1(f).

If χ is even and L(β, χ) = 0 for some β ∈ (0, 1), then

√
f |L(1, χ)| ≤ 1−β

2
Ĩ0(f) =

1−β

2
(Ress=1/2(h̃0(s))+Ress=0(h̃0(s))+J̃0(f)).
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If χ is odd and L(β, χ) = 0 for some β ∈ (0, 1), then

f

π
|L(1,χ)|≤ 1 − β

2
Ĩ1(f)

=
1−β

2
(Ress=1(h̃0(s))+Ress=1/2(h̃0(s))+Ress=0(h̃0(s))+ J̃1(f)).

Now, the remainder of the proof is easy: we compute these residues (see

Lemma 7) and find explicit bounds for |JA(f)| and |J̃A(f)| (see Lemma 8).

2.2. The residues of hA(s) and h̃A(s), and bounds for JA(f) and

J̃A(f). Let κ0 and κ1 be as in (1) and set

(12)





γ(1) = lim
m→∞

( m∑

k=1

log k

k
− 1

2
log2 m

)
= −0.072815 . . . ,

κ′
0 = log(4π) − γ = 1.953808 . . . ,

κ′′
0 = π2/2 − 8 − 4γ2 − 8γ(1) = −3.815382 . . . ,

κ′
1 = log π − γ = 0.567514 . . . ,

κ′′
1 = π2/6 − 8 − 4γ2 − 8γ(1) = −7.105250 . . . .

Lemma 7. Let the notation be as in Proposition 5. We have




Ress=1/2(h0(s)) =
1

2

√
f (log f + κ0),

Ress=0(h0(s)) = −1

2
(log f − κ0).





Ress=1(h1(s)) =
f

2π
(log f + κ1),

Ress=1/2(h1(s)) = −1

2

√
f,

Ress=0(h1(s)) =
1

4
.





Ress=1/2(h̃0(s)) =
1

4

√
f ((log f − κ′

0)
2 + κ′′

0),

Ress=0(h̃0(s)) =
1

4
((log f + κ′

0)
2 + κ′′

0).




Ress=1(h̃1(s)) =
f

4π
((log f − κ′

1)
2 + κ′′

1),

Ress=1/2(h̃1(s)) =
1

2

√
f (log f + κ′

1),

Ress=0(h̃1(s)) =
1

4
.
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Proof. Use

ζ(1 + ε) =
1

ε
+ γ − γ(1)ε + O(ε2),

ζ(ε) = −1

2
− log(2π)

2
ε −

(
log2(2π)

4
+

π2

48
− γ(1)

2
− γ2

4

)
ε2+ O(ε3),

Γ ((1 + ε)/2)

Γ (1/2)
= 1 − γ + log 4

2
ε +

(
π2

16
+

(γ + log 4)2

8

)
ε2 + O(ε3),

Γ (1 + ε) = 1 − γε +
γ2 + π2/6

2
ε2+ O(ε3),

and Γ (1/2) =
√

π, ζ(0) = −1/2 and ζ(−1) = −1/12 (use (13) below).

Lemma 8. We have

|J0(f)| ≤
√

4π

9f
K0 with K0 :=

∞\
0

√
t

(1+4t2) sinh(πt)
dt = 0.414872 . . . ,

|J1(f)| ≤ 2ζ(3)√
π5f

K1 with K1 :=

∞\
0

√
t sinh(πt)

cosh2(πt)
dt = 0.571232 . . . ,

|J̃0(f)| ≤
√

16π

9f
K̃0 with K̃0 :=

∞\
0

√
t

(1+4t2)2 sinh(πt)
dt = 0.296996 . . . ,

|J̃1(f)| ≤ 2ζ(3)√
π5f

K̃1 with K̃1 :=

∞\
0

√
t sinh(πt)

(1+t2) cosh2(πt)
dt = 0.416696 . . . .

Proof. Using Γ (s) = Γ (s) and Γ (s)Γ (1 − s) = π/sin(πs) we obtain
|Γ (1/2 + it)| =

√
π/cosh(πt). Using

1

Γ (s)
= seγs

∏

n≥1

(
1 +

s

n

)
e−s/n and sin(πs) = πs

∏

n≥1

(
1 − s2

n2

)

we obtain |Γ (it)|=
√

π/t sinh(πt) and |Γ (1+it)|= |itΓ (it)|=
√

πt/sinh(πt).
Hence, using the well known functional equation

(13) ζ(1 − s) = 2(2π)−s cos(πs/2)Γ (s)ζ(s),

we deduce that for s = −1/2 + it we have

|(f/π)sζ(2s)Γ (s)| =
1√
πf

√
t

sinh(πt)
|ζ(2 − 2it)|

and

|(f/π)sζ(2s − 1)Γ (s)| =
|1 − it|√

π3f

√
t sinh(πt)

cosh2(πt)
|ζ(3 − 2it)|,

from which the desired results follow.
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By moving the vertical lines of integration ℜ(s) = c > 1 in (7) and (8)
leftwards to ℜ(s) = −1/2 and by using Lemmas 7 and 8, we obtain the
following result which completes the proof of Theorem 1 (use Lemma 6):

Lemma 9. Let the notation be as in Lemma 8. Let θ stand for a real

number with |θ| ≤ 1. Then

I0(f) =
1

2

√
f (log f + κ0) −

1

2
(log f − κ0) + θ

√
4π

9f
K0(14)

≤ 1

2

√
f (log f + κ0) for f ≥ 5,

I1(f) =
f

2π
(log f + κ1) −

1

2

√
f +

1

4
+ θ

2ζ(3)√
π5f

K1(15)

≤ f

2π
(log f + κ1) for f ≥ 3,

Ĩ0(f) =
1

4

√
f ((log f − κ′

0)
2 + κ′′

0) +
1

4
((log f + κ′

0)
2 + κ′′

0)(16)

+ θ

√
16π

9f
K̃0

≤ 1

4

√
f log2 f for f ≥ 5,

Ĩ1(f) =
f

4π
((log f − κ′

1)
2 + κ′′

1) +
1

2

√
f (log f + κ′

1)(17)

+
1

4
+ θ

2ζ(3)√
π5f

K̃1

≤ f

4π
log2 f for f ≥ 3.

Remark 10. To prove Corollary 11 below we need the following more
complicated bound: if χ is a primitive, even Dirichlet character modulo
f > 1, then 0 < β < 1 and L(β, χ) = 0 imply

(18) 0 < L(1, χ) ≤ 1 − β

8
(log f)(2 log((

√
f − 4 +

√
f)/2))

(for the right hand side of (16) is ≤ 1
4

√
f(log f)(2 log((

√
f − 4+

√
f)/2)) for

f ≥ 5).

2.3. Corollaries to Theorem 1

Corollary 11. Let L be a quadratic number field. Let dL denote the

absolute value of the discriminant of L. Then

ζL(s) < 0 for s ∈
{

(0, 1) ∩ [1 − (8π/
√

dL log2 dL), 1) if L is imaginary ,

(0, 1) ∩ [1 − (8/
√

dL log dL), 1) if L is real.
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Proof. Let χL, hL, wL denote the quadratic primitive Dirichlet character
modulo dL associated with L, the class number of L and the number of
complex roots of unity in L, respectively. First, assume that L is imaginary.
Then 0 < β < 1 and ζL(β) = 0 imply

1 ≤ hL =
wL

√
dL

2π
L(1, χL) ≤ (1 − β)

wL

√
dL

16π
log2 dL,

by (3), hence β ≤ 1 − 16π/wL

√
dL log2 dL. Since this latter bound is ≤ 0

for dL = 3 (in which case wL = 6) and dL = 4 (in which case wL = 4), and
since wL = 2 otherwise, the desired result follows. Now, assume that L is
real and let εL = (xL + yL

√
dL)/2 > 1 denote the fundamental unit of L

(with xL ≥ 1 and yL ≥ 1 some positive integers satisfying x2
L−dLy2

L = ±4).

Then εL = (
√

dLy2
L ± 4 + yL

√
dL)/2 ≥ (

√
dL − 4 +

√
dL)/2, and 0 < β < 1

and ζL(β) = 0 imply

1 ≤ hL =

√
dL

2 log εL
L(1, χL)

≤
√

dL

2 log((
√

dL − 4 +
√

dL)/2)
L(1, χL) ≤ 1 − β

8

√
dL log dL,

by (18), hence β ≤ 1 − 8/
√

dL log dL.

Remark 12. Better results with more complicated proofs can be found
in [Bes, Theorem 17] and [Pin, (1.12)].

Corollary 13. Let K be a real abelian number field of degree n > 1. Let

XK denote the group of order n of primitive Dirichlet characters associated

with K. Then

Ress=1(ζK(s)) ≤
∏

1 6=χ∈XK

1

2
(log fχ + κ0),

and if ζL(β) = 0 for some β ∈ (0, 1) and some real quadratic subfield L of K
then

Ress=1(ζK(s)) ≤ 1 − β

4
(log fL)

∏

1 6=χ∈XK

1

2
(log fχ + κ0).

Proof. Ress=1(ζK(s)) =
∏

1 6=χ∈XK
L(1, χ).

For nonabelian number fields, we have a weaker result:

Theorem 14 (see [Lou01, Theorem 1]). Let K be a number field of degree

n > 1. Let dK denote the absolute value of the discriminant of K. Then

Ress=1(ζK(s)) ≤
(

e log dK

2(n − 1)

)n−1

,
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and if ζK(β) = 0 for some β ∈ (0, 1) then

Ress=1(ζK(s)) ≤ (1 − β)

(
e log dK

2n

)n

.

2.4. Upper bounds for |L(1, χ)|: continued

Theorem 15. Let χ be a primitive Dirichlet character modulo f > 1 if

χ is even, and modulo f > 820 if χ is odd. Then 0 < β < 1 and L(β, χ) = 0
imply

(19) |L(1, χ)| ≤ 1 − β

8
log2 f.

Proof. The proof is similar to that of Theorem 1, apart from the fact
that since in this case we do not have W (χ) = 1, we start with the bound

2|Λ′(s, χ)| ≤
∞\
1

( ∑

n≥1

nAe−πn2t/f
)
(log t)(t(1+A)/2 + tA/2)

dt

t

(slightly weaker than (11)). We obtain |Λ(1, χ)| ≤ 1−β
2 ĨA(f) where

ĨA(f) :=
1

2iπ

c+i∞\
c−i∞

h̃A(s) ds

with

h̃A(s) := (f/π)sζ(2s − A)Γ (s)

(
1

(s − (1 + A)/2)2
+

1

(s − A/2)2

)
.

With κ′
0 and κ′

1 as in (12) and setting

(20)

{
κ′′′

0 = κ′′
0 + 16 = π2/2 + 8 − 4γ2 − 8γ(1) = 12.184617 . . . ,

κ′′′
1 = κ′′

1 + 16 = π2/6 + 8 − 4γ2 − 8γ(1) = 8.8947491 . . . ,

we have

Ĩ0(f) =
1

4

√
f ((log f − κ′

0)
2 + κ′′′

0 ) − 1

4
((log f + κ′

0)
2 + κ′′′

0 ) + θ

√
16π

9f
K̃0,

Ĩ1(f) =
f

4π
((log f − κ′

1)
2 + κ′′′

1 ) − 1

2

√
f (log f + κ′

1) −
5

12
+ θ

2ζ(3)√
π5f

K̃1

(to be compared with (16) and (17)), with |θ| ≤ 1 (and where K̃0 and K̃1

are as in Lemma 8). The desired result follows.

We refer the reader to [BL] and [Lou01, Theorem 18] for an application
of this result.
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3. LOWER BOUNDS FOR RELATIVE CLASS NUMBERS

The aim of this section is to obtain, in Theorems 18, 28 and 31, explicit
lower bounds for the relative class numbers h−

K of CM-fields K. Let K be a
CM-field of degree 2n ≥ 2 and let K+ denote its maximal totally real subfield
(of degree n). The class number hK+ of K+ divides the class number hK of
K, and (see [Has] or [Was])

(21) h−
K := hK/hK+ =

QKwK

(2π)n

√
dK

dK+

Ress=1(ζK(s))

Ress=1(ζK+(s))
.

Here QK := (EK : WKEK+) ∈ {1, 2} is the Hasse unit index of K (where
EK and EK+ are the unit groups of K and K+, and WK is the group of
roots of unity in K), wK := #WK ≥ 2 is the number of roots of unity in K,
and dK and dK+ are the absolute values of the discriminants of K and K+,
respectively. In particular, if K is an imaginary abelian number field, we
obtain

(22) h−
K =

QKwK

(2π)n

√
dK

d
K+

∏

χ∈X−
K

L(1, χ),

where X−
K = {χ ∈ XK ; χ(−1) = −1} is of cardinality n. Formulae (21)

and (22) are useful for obtaining upper and lower bounds for relative class
numbers.

Theorem 16.

(i) Let K be an imaginary abelian number field of degree 2n. Then

(23) h−
K ≤ QKwK

(4π)n

√
dK/d

K+

(
1

n
log(dK/dK+) + κ1

)n

.

(ii) (see [Lou00, Corollary 3]). Let K be a CM-field of degree 2n. Then

(24) h−
K ≤ 2QKwK

√
dK/d

K+

(
e

4πn
log(dK/dK+)

)n

.

Proof. To prove (23), use (22), Theorem 1, the fact that the geometric
mean is less than or equal to the arithmetic mean, that #X−

K = n and that
dK/dK+ =

∏
χ∈X−

K
fχ.

Lemma 17 (see [Lou03, Theorem 1], cf. [Lou94, Proposition A]).

(i) Let N be a totally imaginary number field of degree 2n ≥ 4 and root

discriminant ̺N := d
1/2n
N ≥ 50.

(a) If ζN (β) ≤ 0 for some β ∈ [1 − 2/log dN , 1), then

(25) Ress=1(ζN (s)) ≥ 1
2(1 − β)d

(β−1)/2
N .
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(b) If ζN (β) ≤ 0 for some β ∈ [1 − 2/log dN , 1 − 1/log dN ], then

(26) Ress=1(ζN(s)) ≥ (1 − β)d
(β−1)/2
N .

(ii) Let K be a totally imaginary number field of degree 2n > 2 and

root discriminant ̺K ≥ 2683. Assume that ζK(β) ≤ 0 for some

β ∈ [1 − 2/log dK , 1). Then

(27) κK ≥ (1 − β)d
(β−1)/2
K .

3.1. The abelian case

Theorem 18. Let N be an imaginary abelian number field of degree

2n ≥ 4, conductor fN and root discriminant ̺N ≥ 50.

(i) If N contains an imaginary quadratic subfield L for which ζL(β) = 0
for some β ∈ [1 − 2/log dN , 1), then

(28) h−
N/hL ≥

2QNwN

√
dN/d

N+dL

e(log2 dL)
∏

1 6=χ∈X+

N

π(log fχ + κ0)
,

which implies

(29) h−
N ≥

4
√

dN/d
N+

eπn(log fN + κ0)n
· πhL√

dL log dL
.

(ii) Otherwise,

(30) h−
N ≥

QNwN

√
dN/d

N+

eπ(log dN )
∏

1 6=χ∈X+

N

π(log fχ + κ0)
,

which implies

(31) h−
N ≥

2
√

dN/d
N+

(2n − 1)eπn(log fN + κ0)n
.

Proof. (i) Since ζL(β) = 0 implies ζN (β) = 0, we have

Ress=1(ζN (s)) ≥ 1

2
(1 − β)d

(β−1)/2
N ≥ 1 − β

2e
,

by (25), and

Ress=1(ζL(s)) ≤ 1 − β

8
log2 dL,

by Theorem 1. Moreover,

Ress=1(ζN+(s)) ≤
∏

1 6=χ∈X+

N

1

2
(log fχ + κ0),
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by Corollary 13. Hence, using (21) for N and L and noticing QL = (WL : WL)
= 1, wL = 2 (for the Dedekind zeta functions ζL(s) of L = Q(

√
−1) and

L = Q(
√
−3) have no zero in (0, 1)) and Ress=1(ζL+(s)) = Ress=1(ζ(s)) = 1,

we obtain (28).
(ii) To begin with, we notice that

(32) ζN (s)

=





ζ(s)
( ∏

1 6=χ∈XN

χ2=1

L(s, χ)
)( ∏

χ∈XN

χ2 6=1

L(s, χ)
)

(s complex),

ζ(s)
( ∏

L⊆N
L quadratic

ζL(s)/ζ(s)
)( ∏

{χ,χ}⊆XN

χ2 6=1

|L(s, χ)|2
)

(s real)

(for the nonquadratic characters χ ∈ XN come in conjugate pairs {χ, χ}
with χ 6= χ, and L(s, χ)L(s, χ) = |L(s, χ)|2 ≥ 0 for s real). Recall that if
χ 6= 1 is a nontrivial primitive Dirichlet character, then L(s, χ) is entire,
and that using

∑

n≥1

(−1)n−1

ns
= (1 − 21−s)ζ(s) (ℜ(s) > 0),

we obtain ζ(s) < 0 for 0 < s < 1.

(a) Assume that N contains a real quadratic subfield L for which ζL(β)
= 0 for some β ∈ [1 − 2/log dN , 1). Then ζN+(β) = ζN (β) = 0,

Ress=1(ζN(s)) ≥ 1

2
(1 − β)d

(β−1)/2
N ≥ 1 − β

2e
by (25), and

Ress=1(ζN+(s)) ≤ 1 − β

4
(log dN )

∏

1 6=χ∈X+

N

1

2
(log fχ + κ0)

by Corollary 13 (for dN ≥ dn
L = fn

L ≥ fL for any quadratic subfield L of N).
Hence, using (21), we conclude that (30) is valid.

(b) It remains to consider the case that the Dedekind zeta functions ζL(s)
of all the quadratic subfields L of N have no real zero in [1 − 2/log dN , 1).
Then ζN (1 − 2/log dN ) ≤ 0 by (32). Hence,

Ress=1(ζN (s)) ≥ 2

e log dN

by (26). Moreover,

Ress=1(ζN+(s)) ≤
∏

1 6=χ∈X+

N

1

2
(log fχ + κ0)

by Corollary 13. Hence, using (21), we deduce that (30) is here also valid.
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Remark 19. According to the last part of this proof, we also have the
following result (see Corollary 23 below for an application): if N is an imag-
inary abelian number field and if the Dedekind zeta functions ζL(s) of all
the quadratic subfields L of N have no real zero in [1 − 2/log dN , 1), then

h−
N ≥

2QNwN

√
dN/d

N+

e(2π)nRess=1(ζN+(s))
.

Corollary 20 (1). Let N be an imaginary cyclic number field of 2-power

degree 2n = 2m ≥ 4 and root discriminant ̺N ≥ 50. Then dN/dN+ = fn
N ,

dN ≤ f2n−1
N and

(33) h−
N ≥ 2

e(2n − 1)

(
fN

π2(log fN + κ0)2

)n/2

,

which implies h−
N > 1 for fN ≥ 2500 (2).

Proof. Since N contains no imaginary quadratic subfield, (31) is valid.

Corollary 21. Let N be an imaginary cyclic field of degree 2p (p ≥ 3
an odd prime) and root discriminant ̺N ≥ 50. Let L denote its imaginary

quadratic subfield. Then dN/dN+ = fLfp−1
N , dN ≤ f2p−1

N , hL divides h−
N (see

[LOO, Theorem 5] and [Lem, Corollary 1]) and

(34) h−
N/hL ≥ εN

( √
fN

π(log fN + κ0)

)p−1

,

where

εN := min

(
4

e log2 fL

,
2
√

fL

eπhL log dN

)
.

Hence, if h−
N = 1 (3) or if hN is equal to its genus class number (4), then

h−
N/hL = 1 and fN ≤ 240 000 (5).

(1) See [Lou97, Theorem 5], [Lou99] and [CK98] for applications.

(2) K. Uchida obtained in [Uch72, Proposition 6] the worse bound h−N > 1 for 2n = 4
and fN ≥ 50 000. Whereas the lower bound (33) also implies h−N > 2 for fN ≥ 6300,
K. Hardy, R. Hudson, D. Richman and K. S. Williams obtained in [HHRW] the worse
bound h−N > 2 for 2n = 4 and fN ≥ 416 000.

(3) See [Yam] and [CK00a] for the solutions to these class number and relative class
number one problems.

(4) See [Lou98a] and [CK00a] and [CK00b] for the solution to this class number
problem.

(5) K. Uchida obtained in [Uch72, Proposition 7] the worse bound h−N > 1 for 2n = 6
and fN ≥ 8 150 000, and S. Louboutin obtained in [Lou98a, Theorem 5] the worse bound
h−N/hL ≥ 1 for fN ≥ 1 300 000.
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Proof. To obtain (34), use (28), and (30) and the class number formula
for L. Now, if h−

N = 1 then hL = 1,
√

fL/hL ≥
√

3 and

(35) 1 = h−
N/hL ≥ ε′N

( √
fN

π(log fN + κ0)

)p−1

,

where

ε′N := min

(
4

e log2 fN

,
2
√

3

(2p − 1)eπ log fN

)

(for fL ≤ fN and dN ≤ f2p−1
N ), which implies fN ≤ 240 000. In the same

way, if hN is equal to its genus class number, then h−
N/hL = 1 and hL = 2t−1,

where t denotes the number of distinct prime divisors of fL (see [Lou98a,
Proposition 3]). Hence,

√
fL/hL = 2

√
fL/4t ≥ 2

√
3/4 =

√
3 and here again

(35) is valid.

Remark 22. According to [Lou92], there exists some explicit constant
c > 0 such that

|L(1, χ)| ≥ 1

c log fχ

for all nonquadratic primitive Dirichlet characters χ, where fχ > 1 denotes
its conductor. In particular, if N is an imaginary cyclic field of degree 2p
(p ≥ 3 an odd prime) and conductor fN , then

h−
N/hL =

(wN/wL)f
(p−1)/2
N

(2π)p−1

∏

χ∈X−
N

|L(1, χ)| ≥
( √

fN

2πc log fN

)p−1

,

which for a given p is asymptotically better than the lower bound given
in Corollary 21. However, even if we use the asymptotic value c =

√
295

(respectively, c =
√

165 for p = 3) given in [Lou92, Theorem 1], we only
infer that h−

N > 1 for f ≥ 2 600 000 (respectively, h−
N > 1 for f ≥ 1 300 000

and p = 3), which is weaker than the result obtained in Corollary 21.

Corollary 23. Let p ≥ 3 be an odd prime, Np = Q(ζp) the cyclotomic

field of conductor p and h−
p its relative class number. Then

h−
p ≥ 4πp

e
√

6(p − 2)

(
3p

2π4

)(p−1)/4 1

log p
.

In particular , h−
p > 2 for p ≥ 71 (6).

(6) K. Uchida obtained in [Uch71b, Theorem 2] the worse bound h−p > 1 for p > 2400,
and in [Uch71c, proof of Theorem, p. 576] the bound h−p > 1 for p > 500. J. M. Masley
and H. L. Montgomery obtained in [MM, Section 3] the bound h−p > 1 for p > 200. See
[MM] and [Mas75] for the solutions to the class number one and two problems for the
cyclotomic fields, and [Mas76] for the determination of all the cyclotomic fields of class
number ≤ 10.
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Proof. Since dNp
= pp−2, the Dedekind zeta function of the quadratic

subfield Lp of Np has no real zero in [1 − 2/log dNp
, 1), by Corollary 11.

Now, use Remark 19, wNp
= 2p, QNp

= 1 (see [Was, Corollary 4.13]),

dNp
/d

N+
p

= p(p−1)/2 and the bound

Ress=1(ζN+
p

(s)) ≤ (π2/6)(p−3)/4

(see [Lou94, Lemma (ii)]).

Lemma 24 (see [Mur, Corollary 1]). Let N be an abelian number field of

conductor fN and degree m. Then ̺N := d
1/m
N ≥

√
fN .

Corollary 25 (7). Let N be an imaginary abelian number field of degree

2n ≥ 4. If h−
N = 1 then fN ≤ 3 · 108.

Proof. If L is an imaginary quadratic subfield of N , then hL divides
4h−

N (see [Hor] and [Oka]), hence hL divides 4. Since the class number one,
two and four problems have been solved for imaginary quadratic fields, one
can use [Low] or [Wat] to check that the Dedekind zeta functions of the
imaginary quadratic fields of class number 1, 2 or 4 have no real zero in

(0, 1). Hence, using (31),
√

dN/dN+ ≥ d
1/4
N = ̺

n/2
N ≥ f

n/4
N , by the previous

lemma, we obtain

1 = h−
N ≥ 2

(2n − 1)e

(
fN

π4(log fN + κ0)4

)n/4

,

which does imply fN ≤ 3 · 108.

We are also in a position to obtain a Brauer–Siegel like result for relative
class numbers:

Corollary 26 (8). Let N range over a set of imaginary abelian number

fields. Then log h−
N is asymptotic to 1

2 log(dN/dN+) as fN → ∞.

(7) See [Uch86] and [Yam] for the solution of the class number one problem for imag-
inary abelian number fields, and notice that K. Uchida obtained the worse bound h−N = 1
implies fN ≤ 2 · 1010 in [Uch86, Proposition 8].

(8) See [Lou96], and compare with [HH, Lemma 4] and [Nar, Chapter 8, Corollary 3,
p. 447] which assume that N ranges over a set of imaginary abelian number fields of a
given degree, hence do not even apply to cyclotomic fields which are however dealt with
in [Was, Theorem 4.20]. In fact, the proof of [Was, Theorem 4.20] applies to any family of
imaginary abelian number fields. However, it does not yield an explicit result in the case
that N contains a quadratic subfield. (Compare also with [Uch71a, Theorem 2].)
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Proof. Acccording to (23), (29) and (31),

2
√

dN/d
N+

eπn(log fN + κ0)n
min

(
1

2n − 1
,

2πhL√
dL log dL

)

≤ h−
N ≤

2wN

√
dN/d

N+

(4π)n
(log fN + κ1)

n.

We now use Siegel’s theorem according to which for any ε > 0 there exists
cε > 0 (ineffective) such that for all imaginary quadratic number fields L
we have hL/

√
dL ≥ cεd

−ε
L (see [Gold] for a simple proof), and the bound

f
n/2
N ≤

√
dN ≤ dN/dN+ (by Lemma 24), to obtain the bounds

n log(log fN + κ0) = o(log(dN/dN+)),

n log(log fN + κ1) = o(log(dN/dN+)),

n = o(log(dN/dN+)),

log wN = o(log log(dN/dN+))

(for Q(ζwN
)⊆N yields

√
wN/2 ≤ φ(wN )=[Q(ζwN

) : Q]≤ [N : Q] = 2n).

3.2. The normal case

Lemma 27 (see [Lou03, Lemma 8(1)]). Let N be a normal CM-field. Set

c = 2(
√

3 − 1)2 = 1.07 . . . . Then either

(i) there exists an imaginary quadratic subfield L of N such that

ζL(s) and ζN (s) have a common real zero in [1 − c/log dN , 1), or

(ii) ζN+(s) has a real zero in [1 − c/log dN , 1), or

(iii) ζN (s) ≤ 0 in [1 − c/log dN , 1).

Using this lemma and following the proof of Theorem 18, we obtain:

Theorem 28. Let N be a normal CM-field of degree 2n ≥ 4 and root

dicriminant ̺N ≥ 50. Set c = 2(
√

3 − 1)2 = 1.07 . . . .

(i) If N contains an imaginary quadratic subfield L for which ζL(β) =
ζN (β) = 0 for some β ∈ [1 − c/log dN , 1), then

(36) h−
N/hL ≥

2QNwN

√
dN/d

N+dL

ec/2
(

πe
n−1 log d

N+

)n−1
log2 dL

,

which implies

(37) h−
N ≥

cQNwN

√
dN/d

N+

2πec/2
(

πe
n−1 log d

N+

)n−1
log dN

· 4πnhL

c
√

dL log dL
.
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(ii) Otherwise,

(38) h−
N ≥

cQNwN

√
dN/d

N+

2πec/2
(

πe
n−1 log d

N+

)n−1
log dN

.

Proof. (i) Since ζL(β) = ζN (β) = 0, we have

Ress=1(ζN(s)) ≥ 1

2
(1 − β)d

(β−1)/2
N ≥ 1 − β

2ec/2

by (25), and

Ress=1(ζL(s)) ≤ 1 − β

8
log2 dL

by Theorem 1. Moreover,

Ress=1(ζN+(s)) ≤
(

e log dN+

2(n − 1)

)n−1

by Theorem 14. Hence, using (21) for N and L and noticing that QL = 1,
wL = 2 and Ress=1(ζL+(s)) = Ress=1(ζ(s)) = 1, we obtain (36).

(ii)(a) Assume that ζN+(s) has a real zero β ∈ [1 − c/log dN , 1). Then

Ress=1(ζN(s)) ≥ 1

2
(1 − β)d

(β−1)/2
N ≥ 1 − β

2ec/2

by (25), and

Ress=1(ζN+(s)) ≤ 1 − β

4(n − 1)

(
e log dN+

2(n − 1)

)n−1

log dN

by Theorem 14 (for ((n−1)/n)n ≤ 1/e and dN+ ≤
√

dN ). Hence, using (21),
we infer that (38) is valid.

(b) It remains to consider the case that ζN (s) ≤ 0 for s ∈ [1−c/log dN , 1).
Then ζN (1 − 2/log dN ) ≤ 0. Hence,

Ress=1(ζN (s)) ≥ 2

e log dN
,

by (26). Moreover,

Ress=1(ζN+(s)) ≤
(

e log dN+

2(n − 1)

)n−1

by Theorem 14. Hence, using (21), we conclude that (38) is here also valid.

Corollary 29 (cf. [Uch71a, Thm. 1]). Let N range over a set of normal

CM-fields such that ̺N → ∞. Then log h−
N is asymptotic to 1

2 log(dN/dN+).

3.3. The nonnormal case

Lemma 30. Let N denote the normal closure of a CM-field K of de-

gree 2n.
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(i) dN divides d
n[N :K]
K and [N : K] divides 2n−1(n − 1)!.

(ii) (see [Lou03, Lemma 8(3)]) Set c = 2(
√

2 − 1)2 = 0.343 . . .. Then

either

(a) there exists an imaginary quadratic subfield L of K such that

ζL(s) and ζK(s) have a common real zero in [1−c/log dN ,1), or

(b) ζK+(s) has a real zero in [1 − c/log dN , 1), or

(c) ζK(s) ≤ 0 for s ∈ [1 − c/log dN , 1).

Proof. Let K+
1 , . . . , K+

n be the real embeddings of K+, and α1, . . . , αn

be the conjugates of α ∈ K+ such that K = K+(
√

α). Since we have N =
K+

1 (
√

α1) · · ·K+
n (

√
αn) and d

K+

i
(
√

αi)
= dK , [Sta, Lemma 7] yields the first

assertion of (i). For the second one, notice that N = K̂+(
√

α1, . . . ,
√

αn),

where K̂+ is the normal closure of K.

Using this lemma and (27), and following the proof of Theorem 28, we
obtain:

Theorem 31. Let N denote the normal closure of a nonnormal CM-field

K of degree 2n ≥ 4 and root discriminant ̺N ≥ 2683. Set c = 2(
√

2 − 1)2

= 0.343 . . . and α = (log dK)/log dN ∈ [1/2n−1n!, 1/2].

(i) If K contains an imaginary quadratic subfield L for which ζL(β) =
ζK(β) = 0 for some β ∈ [1 − c/log dN , 1), then

(39) h−
K/hL ≥

4QKwK

√
dK/d

K+dL

ecα/2
(

πe
n−1 log d

K+

)n−1
log2 dL

,

which implies

(40) h−
K ≥

cαQKwK

√
dK/d

K+

2πecα/2
(

πe
n−1 log d

K+

)n−1
log dK

· 8πnhL

cα
√

dL log dL
.

(ii) Otherwise,

(41) h−
K ≥

cαQKwK

√
dK/d

K+

2πecα/2
(

πe
n−1 log d

K+

)n−1
log dK

.

Corollary 32. Let K range over a set of nonnormal CM-fields of a

given degree. Then log h−
K is asymptotic to 1

2 log(dK/dK+).
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lence, 1999), J. Théor. Nombres Bordeaux 12 (2000), 349–365.

[Dav] H. Davenport, Multiplicative Number Theory, 3rd ed., revised and with a pref-
ace by H. L. Montgomery, Grad. Texts in Math. 74, Springer, New York, 2000.

[Gold] D. M. Goldfeld, A simple proof of Siegel’s theorem, Proc. Nat. Acad. Sci. USA
71 (1974), 1055.

[HHRW] K. Hardy, R. Hudson, D. Richman and K. S. Williams, Determination of all

imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc.
311 (1989), 1–55.
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Institut de Mathématiques de Luminy, UMR 6206
163, avenue de Luminy, Case 907
13288 Marseille Cedex 9, France
E-mail: loubouti@iml.univ-mrs.fr

Received on 21.2.2005

and in revised form on 22.6.2005 (4937)


