Minimal polynomials for Gauss periods with \(f = 2 \)

by

S. Gurak (San Diego, CA)

1. Introduction. For an integer \(m > 1 \), fix a primitive \(m \)th root of unity \(\zeta_m = \exp(2\pi i/m) \) and let \(\mathbb{Z}_m^\ast \) denote the multiplicative group of reduced residues modulo \(m \). Let \(H \) be a congruence group of conductor \(m \) and of order \(f \). It is a classical problem dating back to Gauss [4] to determine the minimal polynomial \(f(x) \) of the Gauss periods

\[
\theta_v = \sum_{x \in H} \zeta_m^{vx} \quad (v \in \mathbb{Z}_m^\ast/H)
\]

(1)

corresponding to \(H \), or equivalently its reciprocal \(F(X) = X^e f(X^{-1}) \) where \(e = \phi(m)/f \). (It is known that the \(\theta_v \) are distinct and \(f(x) \) is irreducible over the rational field \(\mathbb{Q} \) and that \(H \) has conductor \(m \equiv 0 \pmod{4} \) if \(m \) is even [6, 8].)

For \(f = 1 \), the minimal polynomial is the classical cyclotomic polynomial \(\psi_m(x) \) given by

\[
\psi_m(x) = \prod_{d|m} (1 - x^{m/d})^{\mu(d)} = \sum_{k=0}^{\phi(m)} b_k x^k
\]

(2)

which satisfies

\[
\psi_m(x) = \frac{\psi_{m/p}(x^p)}{\psi_{m/p}(x)}
\]

(3)

for any odd prime \(p | m \). The polynomial \(\psi_m(x) \) is self-reciprocal, that is, the coefficients \(b_k \) satisfy

\[
b_0 = 1, \quad b_{\phi(m)-i} = b_i \quad \text{for} \ 0 \leq i \leq [\phi(m)/2].
\]

(Here \([\cdot] \) denotes the greatest integer function, and \(\phi \) and \(\mu \) are the usual Euler-phi and Möbius functions, respectively.)

2000 Mathematics Subject Classification: Primary 11L05, 11T22, 11T23.
Gauss himself settled the case \(f = 2 \) when \(m = p \) is an odd prime, giving the
explicit formula (see [4])

\[
F_p(X) = \sum_{r=0}^{e} (-1)^{[r/2]} \left(\left\lfloor \frac{e - r/2}{r/2} \right\rfloor \right) X^r
\]

for the reciprocal polynomial for \(\zeta_p + \zeta_p^{-1} \). For \(f > 2 \) it is known [5, 7] that
no such closed formula exists, but that the beginning coefficients, at least,
satisfy a predictable pattern depending polynomially on the distinct prime
factors of \(m \).

Here I treat the general case \(f = 2 \), showing in Section 2 how to compute
the minimal polynomial \(F(X) \) for the reciprocals of the Gauss periods (1)
when \(m \) is composite. This determination is seen to rely on the special cases
\(H = \{ \pm 1 \} \) (and \(H = \{ 1, m/2 - 1 \} \) when \(8 \mid m \) of conductor \(m \), for which
I give a closed formula generalizing (4) for \(F(X) \), expressed in terms of
the coefficients of the cyclotomic polynomial \(\psi_{m'}(x) \) in (2), where \(m' \) is the
product of the distinct primes dividing \(m \). The details appear in Section 2.
Later in Section 3, I give analogous formulas for quadratic twists of the
form \(i^* \sqrt{l} (\zeta_m + (-1)^{(l-1)/2} \zeta_m^{-1}) \), when \(l \mid m' \) with \(m' \) odd and \(i^* = i^{(l-1)^2/4} \).
The latter formulas are expressed in terms of an appropriate Aurifeuille
or Schinzel factor [3, 9, 13] of \(\psi_{m'}((-1)^{(l-1)/2} x) \). Such quadratic twists or
integer multiples of them arise classically [12] as values of Kloosterman sums
for odd prime powers \(p^\alpha \), \(\alpha > 1 \).

2. Minimal polynomials for Gauss periods with \(f = 2 \). My principal aim here is to first give an explicit formula for the minimal polynomial \(f(x) \) of the Gauss periods \(\theta_v \) in (1) when \(H = \{ \pm 1 \} \) (and for
\(H = \{ 1, m/2 - 1 \} \) when \(8 \mid m \)). Then I will show how to employ it to compute
\(f(x) \) in general when \(f = 2 \). It will be more convenient to express the results
in terms of the reciprocal polynomial

\[
F(X) = \prod_{v \in \mathbb{Z}_m^*/H} (1 - \theta_v X) = 1 + c_1 X + \cdots + c_e X^e
\]

where \(e = \phi(m)/2 \). Then \(\log F(X) = - \sum_{n=1}^{\infty} S_n X^n / n \) as a formal power
series, with \(n \)th power sums \(S_n = \sum_{v \in \mathbb{Z}_m^*/H} \theta_v^n \) \((n \geq 1) \) satisfying the Newton
identities

\[
S_r + c_1 S_{r-1} + \cdots + c_{r-1} S_1 + c_r r = 0 \quad (1 \leq r \leq e),
\quad S_n + c_1 S_{n-1} + \cdots + c_e S_{n-e} = 0 \quad (n > e).
\]

I first consider the case \(H = \{ \pm 1 \} \) with corresponding Gauss period
\(\theta_1 = \zeta_m + \zeta_m^{-1} \) in (1), and denote its minimal polynomial by \(f_m(x) \) and
corresponding reciprocal polynomial by \(F_m(X) \). The following result will be
crucial to the determination of the minimal polynomials here as well as quite useful later in Section 3.

Proposition 1. The reciprocal polynomials

\[C_d(X) = \prod_{v=1, v \neq (d+1)/2}^d (1 - (\zeta_{4d}^{2v-1} + \zeta_{4d}^{-2v+1})X) \quad \text{for } d \geq 1 \]

of degree \(2[d/2] \) are equivalently given by the closed formula

\[C_d(X) = \left(\frac{1 + \sqrt{1 - 4X^2}}{2} \right)^d \left(\frac{1 - \sqrt{1 - 4X^2}}{2} \right)^d \quad (d \geq 1), \]

by the recursion

\[C_0 = 2, \quad C_1(X) = 1, \quad C_d(X) = C_{d-1}(X) - X^2C_{d-2}(X) \quad \text{for } d > 1, \]

by the generating function

\[\sum_{d=0}^\infty C_d(X)T^d = \frac{2 - T}{1 - T + X^2T^2}, \]

by the expansion

\[C_d(X) = \sum_{n=0}^{[d/2]} (-1)^n \frac{d}{d-n} \binom{d-n}{n} X^{2n}, \]

or the power sums

\[S_n = d \binom{n}{n/2} \text{ or } 0 \quad \text{for } 1 \leq n \leq 2[d/2], \]

according as \(n \) is even or odd.

Proof. The argument follows that of Gupta and Zagier’s in the proof of Theorem 2 in [5], first establishing the equivalence of (8)–(12). With \(C_d(X) \) defined by (8),

\[\sum_{d=0}^\infty C_d(X)T^d = \frac{1}{1 + (1 + \sqrt{1 - 4X^2})T/2} + \frac{1}{1 - (1 - \sqrt{1 - 4X^2})T/2} \]

\[= \frac{2 - T}{1 - T + X^2T^2}, \]

which gives (10). The recursion (9) follows by multiplying both sides of (10) by \(1 - T + X^2T^2 \) and then comparing corresponding coefficients of \(T^d \). The formula (11) follows by expanding the right-hand side of (10) as a geometric series and using the binomial theorem. Specifically,

\[\frac{2 - T}{1 - T + X^2T^2} = (1 + (1 - T)) \sum_{n=0}^\infty \frac{(-1)^n T^{2n} X^{2n}}{(1 - T)^{n-1}} \]
\[
\begin{align*}
&= \sum_{n=0}^{\infty} \frac{(-1)^n T^{2n} X^{2n}}{(1 - T)^{n+1}} + \sum_{n=0}^{\infty} \frac{(-1)^n T^{2n} X^{2n}}{(1 - T)^n} \\
&= 1 + \sum_{n=0}^{\infty} T^n + \sum_{n=1}^{\infty} (-1)^n T^{2n} X^{2n} \left(\sum_{j=0}^{\infty} \binom{n+j}{j} T^j + \sum_{j=0}^{\infty} \binom{n+j-1}{j} T^j \right) \\
&= 1 + \sum_{n=0}^{\infty} T^n + \sum_{n=1}^{\infty} \sum_{j=0}^{\infty} (-1)^n \binom{n+j}{j} + \binom{n+j-1}{j} X^{2n} T^{2n+j} \\
&= 1 + \sum_{n=0}^{\infty} T^n + \sum_{n=1}^{\infty} \sum_{j=0}^{\infty} (-1)^n \frac{2n+j}{n+j} \binom{n+j}{n} X^{2n} T^{2n+j} \\
&= 2 + \sum_{d=1}^{\infty} T^d \left(\sum_{n=0}^{\left[\frac{d}{2}\right]} (-1)^n \frac{d}{d-n} \binom{d-n}{n} X^{2n} \right).
\end{align*}
\]

To establish (12), write \(C_d(X) \) in (8) as
\[
C_d(X) = \left(\frac{1 + \sqrt{1 - 4X^2}}{2} \right)^d \left(1 + \left(\frac{1 - \sqrt{1 - 4X^2}}{2X} \right)^{2d} \right).
\]

Then
\[
\log C_d(X) = d \log \left(\frac{1 + \sqrt{1 - 4X^2}}{2} \right) - \sum_{\nu=1}^{\infty} \frac{(-1)^\nu X^{2\nu}}{\nu} \left(\sum_{n=0}^{\infty} \binom{2n}{n} X^{2n} \right)^{2\nu}
\]

since
\[
A(X) = \frac{1 - \sqrt{1 - 4X^2}}{2X} = X \cdot \sum_{n=0}^{\infty} \binom{2n}{n} X^{2n} + 1
\]

from the expansion
\[
E(X) = \frac{1 + \sqrt{1 - 4X^2}}{2} = 1 - \sum_{n=0}^{\infty} \binom{2n}{n} X^{2n+2} + 1
\]

given in [5]. Thus, from (6) and (13) (see also (17)), the power sums
\[
S_n = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ d \binom{n}{n/2} & \text{if } n \text{ is even} \end{cases} \quad \text{for } 1 \leq n \leq 2[d/2]
\]

are sufficient to determine \(C_d(X) \) from Newton’s identities (6). This proves the equivalence of (8)–(12).

It remains to show that \(c_d(x) = x^d C_d(x^{-1}) \) has zeros \(2 \cos(\pi \nu/2d) \) for \(\nu \) odd and \(1 \leq \nu \leq 2d - 1 \) (this includes the zero \(2 \cos(\pi/2) = 0 \) when \(\nu = d \).
odd). But from (10), the generating function for the \(c_d(x) \) is
\[
\sum_{d=0}^{\infty} c_d(x)T^d = \sum_{d=0}^{\infty} C_d(x^{-1})(xT)^d = \frac{2 - xT}{1 - xT + T^2}.
\]
Substituting \(x = z + z^{-1} \) yields
\[
\sum_{d=0}^{\infty} c_d(z + z^{-1})T^d = \frac{2 - (z + z^{-1})T}{1 - (z + z^{-1})T + T^2}
= (1 - zT)^{-1} + (1 - z^{-1}T)^{-1} = \sum_{d=0}^{\infty} (z^d + z^{-d})T^d.
\]
Thus \(c_d(z + z^{-1}) = 0 \) iff \(z^d + z^{-d} = 0 \) iff \(z^{4d} = 1 \) with \(z = \pm i \) iff \(z = \zeta_{4d}^{\nu} \) with \(\nu \) odd iff \(z + z^{-1} = 2 \cos(\pi \nu/2d) \) for \(1 \leq \nu \leq 2d - 1 \) with \(\nu \) odd. But \(c_d(x) \) is monic (\(C_d(X) \) has constant term 1) and has degree \(d \), so \(c_d(x) = \prod_{\nu=1, \nu \text{ odd}}^{2d-1} (x - (\zeta_{4d}^{\nu} + \zeta_{4d}^{-\nu})) \) is the reciprocal polynomial of \(C_d(X) \) as defined in (7). This completes the proof of Proposition 1.

Incidentally, the power series \(A(X) \) in (14) has an important property that will be useful later.

Lemma 1. For any positive integers \(n \geq m \), the coefficient of \(X^n \) in the expansion \(A(X)^m \) is \(\frac{m}{n} \binom{n}{m/2} \) or 0 according as \(n \equiv m \pmod{2} \) or not.

Proof. The proof proceeds using induction on \(m \). With \(m = 1 \), the coefficient of \(X^n \) is clearly 0 if \(n \) is even or
\[
\frac{2}{n+1} \binom{n-1}{(n-1)/2} = \frac{1}{n} \binom{n}{(n-1)/2}
\]
if \(n \) is odd. With \(m = 2 \), \(A(X)^2 = -1 + A(X)/X \), so by (14),
\[
A(X)^2 = -1 + \sum_{k=0}^{\infty} \binom{2k}{k} \frac{X^{2k}}{k+1}.
\]
It follows that the coefficient of \(X^n \) is
\[
\frac{2}{n+2} \binom{n}{n/2} = \frac{2}{n} \binom{n}{(n-2)/2}
\]
if \(n \) even or 0 if \(n \) odd. Now assume that the conclusion of the lemma holds for all powers \(A(X)^k \) up to \(k = j \) for some \(j \geq 2 \), and consider \(A(X)^{j+1} = -A(X)^{j-1} + A(X)^j/X \) by (16). Thus the coefficient of \(X^n \) in \(A(X)^{j+1} \) is the sum of the coefficient of \(X^n \) in \(-A(X)^{j-1} \) and of the coefficient of \(X^{n+1} \) in \(A(X)^j \). By the induction hypothesis, this sum is 0 if \(n \not\equiv j + 1 \pmod{2} \) but equals...
\[
\frac{j - 1}{n} \binom{n - j + 1}{2} + \frac{j}{n + 1} \binom{n + 1}{n - j + 1} = \frac{j}{n} \binom{n}{n - j + 1/2}
\]
if \(n \equiv j + 1 \pmod{2}\). This completes the induction so the conclusion of the lemma is proved.

When \(m = 2^\alpha, \alpha > 2\), the following result is an immediate consequence of Proposition 1 and the lemma above.

Corollary 1.

\[
F_{2^\alpha}(X) = \sum_{n=0}^{2^\alpha-3} (-1)^n \frac{2^{\alpha-2}}{2^{\alpha-2} - n} \binom{2^{\alpha-2} - n}{n} X^{2n}
\]

with power sums \(S_n\) satisfying

\[
S_n = \begin{cases}
0 & \text{if } n \text{ is odd}, \\
2^{\alpha-2} \binom{n}{n/2} + 2^{\alpha-1} \sum_{t=1}^{[2^{\alpha-2}]} (-1)^t \binom{n}{n - 2^{\alpha-2}t/2} & \text{if } n \text{ is even.}
\end{cases}
\]

Proof. Clearly \(F_{2^\alpha}(X) = C_{2^{\alpha-2}}(X)\) by Proposition 1. Using the expansion

\[
\log((1 + \sqrt{1 - 4X^2})/2) = -\sum_{n=1}^{\infty} \left(\frac{2n}{n}\right) X^{2n}
\]

and the lemma above, one obtains the expression for the power sums \(S_n\) upon comparing coefficients in the expansion of \(\log C_{2^{\alpha-2}}(X)\) in (13).

I am now ready to describe \(F_m(X)\) in general. For \(d > 0\) put

\[
B_d(X) = \begin{cases}
\sqrt{1 - 2X} (V(X)^d - W(X)^d) & \text{if } d \text{ is odd,} \\
\sqrt{1 - 4X^2}(V(X)^d - W(X)^d) & \text{if } d \text{ is even,}
\end{cases}
\]

where \(V(X) = \frac{1}{2}(\sqrt{1+2X} + \sqrt{1-2X})\) and \(W(X) = \frac{1}{2}(\sqrt{1+2X} - \sqrt{1-2X})\). This sequence has initial terms \(B_1(X) = 1 - 2X, B_2(X) = 1 - 4X^2, B_3(X) = (1 - 2X)(1 + X), B_4(X) = 1 - 4X^2,\) and satisfies \(B_n(X) = B_{n-2}(X) - X^2B_{n-4}(X)\) for \(n > 4\). We have

Proposition 2.

\[
F_m(X) = \prod_{d|m} B_{m/d}(X)^{u(d)}.
\]

Proof. I assert that (i) \(B_d(X)\) has degree \((d + 1)/2\) with zeros \((\zeta_d^\nu + \zeta_d^{-\nu})^{-1}, 0 \leq \nu \leq (d-1)/2\), if \(d\) is odd, (ii) \(B_d(X)\) has degree \(d/2 + 1\) with zeros \((\zeta_d^\nu + \zeta_d^{-\nu})^{-1}, 0 \leq \nu \leq d/2\), if \(2 \mid d\), and (iii) \(B_d(X)\) has degree \(d/2\) with zeros \((\zeta_d^\nu + \zeta_d^{-\nu})^{-1}, 0 \leq \nu \leq d/2, \nu \neq d/4,\) if \(4 \mid d\). Then \(B_m(X) = \prod_{d|m} F_d(X)\), since the right side has constant term 1 and accounts for all zeros that are reciprocals of the non-zero values \(\zeta_m^\nu + \zeta_m^{-\nu}\) with \(0 \leq \nu \leq [m/2]\) exactly once. Now the statement of the proposition readily follows by Möbius inversion.
But (i) is essentially Theorem 3 in [5] taking into account the extra factor \(1 - 2X\) for \(\nu = 0\). So it remains to establish (ii) and (iii) of the claim. Now if \(2 \parallel d\), say \(d = 2d'\) with \(d'\) odd, then \(B_d(X) = B_{d'}(X)B_{d'}(-X)\). Thus by (i), \(B_d(X)\) has distinct zeros \((\zeta_{d'} + \zeta_{d'})^{-1} = (\zeta_d + \zeta_d)^{-1}\) and
\(- (\zeta_{d'} + \zeta_{d'})^{-1} = (\zeta_d^{2\nu} + \zeta_d^{-2\nu})^{-1}\) for \(0 \leq \nu \leq (d' - 1)/2\), or equivalently zeros \((\zeta_{d'} + \zeta_{d'})^{-1}\) for \(0 \leq \nu \leq d' = d/2\), establishing assertion (ii). To settle claim (iii) first note if \(4 \parallel d\), say with \(d = 4d'\) where \(d'\) is odd, then \(B_d(X) = B_{2d'}(X)C_{d'}(X)\) with \(C_{d'}(X)\) as in (7). In this case \(B_d(X)\) has zeros
\((\zeta_{d'}^{2\nu} + \zeta_{d'}^{-2\nu})^{-1}\) for \(1 \leq \nu \leq d' = d/4\), \(\nu \neq (d + 4)/8\) from Proposition 1, and zeros \((\zeta_d^{2\nu} + \zeta_d^{-2\nu})^{-1}\) for \(0 \leq \nu \leq d' = d/4\) from the above. Restated, \(B_d(X)\) has distinct zeros \((\zeta_{d'}^{2\nu} + \zeta_{d'}^{-2\nu})^{-1}\) for \(0 \leq \nu \leq d/2\), \(\nu \neq d/4\) if \(4 \parallel d\). Arguing similarly using Proposition 1 and the above statement, one obtains (iii) in general when \(8 \parallel d\) by an induction involving the exact power of 2 dividing \(d\). The proof of the proposition is now complete.

I should remark that the statement of Proposition 2 is not new, and was first noted by Watkins and Zeitlin [16] in reciprocal form using the properties of the Chebyshev polynomials \(T_m(x)\), which are defined by

\[
T_m(\cos \theta) = \cos(m\theta)
\]

for positive integers \(m\) and all real \(\theta\). Indeed, defining

\[
b_m(x) = 2(T_{[m/2]+1}(x/2) - T_{([m-1]/2)}(x/2))
\]

they essentially show \(b_m(x)\) has zeros \(2 \cos(2\pi v/m)\) for \(0 \leq v \leq [m/2]\). Here \(B_m(X) = X^{[m/2]+1}b_m(X^{-1})\).

I now give the main result of this section.

Theorem 1. For \(m \neq 2^n\),

\[
F_m(X) = b_{\phi(m')/2}X^{\phi(m)/2} + \sum_{j=0}^{\phi(m')/2-1} b_j X^{mj/m'} C_{m'}^{m'}(\phi(m')/2-j)(X)
\]

where the \(b_j\) are the coefficients for \(\psi_m(x)\) given in (2) and the polynomials \(C_d(X)\) are as in (11).

The power sums \(S_n\) satisfy

\[
S_n = \begin{cases}
\sum_{d|m} \mu(d) \frac{m}{d} \sum_{t=1, mt/d \text{ odd}}^{[nd/m]} \binom{n}{n - mt/d/2} & \text{if } n \text{ is odd}, \\
\phi(m) \frac{1}{2} \binom{n}{n/2} + \sum_{d|m} \mu(d) \frac{m}{d} \sum_{t=1, mt/d \text{ even}}^{[nd/m]} \binom{n}{n - mt/d/2} & \text{if } n \text{ is even}.
\end{cases}
\]

(18)
The coefficients c_r of $F_m(X)$ are given for $1 \leq r < \phi(m)/2$ by

$$c_r = \sum_{j=0}^{[m'/m]} (-1)^{t_j} b_j \times \frac{m}{m'} \left(\phi(m')/2 - j \right) - t_j$$

and

$$c_{\phi(m)/2} = \begin{cases} \left(\frac{-2}{p} \right) & \text{if } m' = p \text{ an odd prime,} \\ 1 & \text{otherwise,} \end{cases}$$

where $t_j = (r - jm/m')/2$.

Proof. I first note that if $F_m(X)$ is expressed in terms of the coefficients of $\psi_{m'}(x)$ and the polynomials $C_d(X)$ as given in the initial statement of the theorem, then formula (19) for the coefficients c_r is deduced in routine fashion upon collecting like powers of X. The value of $c_{\phi(m)/2}$ is seen to be

$$b_{\phi(m')/2} + 2 \sum_{j=0}^{\phi(m')/2-1} b_j = \sum_{j=0}^{\phi(m')/2} b_j = \psi_{m'}(1) = 1$$

if m' is even (and hence composite since $m \neq 2^\alpha$), or

$$b_{\phi(m')/2} + (-1)^{[(\phi(m')+2)/4]} \sum_{j=0}^{\phi(m')/2-2} (-1)^{[(j+1)/2]} 2b_j$$

if m' is odd. The latter expression is

$$(-1)^{\phi(m')/4} \sum_{j=0}^{\phi(m')/2-1} (-1)^j b_{2j} = (-1)^{\phi(m')/4} (\psi_{m'}(i) + \psi_{m'}(-i))/2$$

if $4 \mid \phi(m')$, or

$$(-1)^{(p-3)/4} \sum_{j=0}^{\phi(p)/2-2} (-1)^j b_{2j+1} = (-1)^{(p-3)/4} (\psi_p(i) - \psi_p(-i))/2i$$

if $m' = p \equiv 3 \pmod{4}$ a prime. Noting that for odd primes p, $\psi_p(i) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ i & \text{if } p \equiv 3 \pmod{4}, \end{cases}$

and using (3), one finds $\psi_{m'}(i) = (-1)^{\phi(m')/4}$ whenever m' is odd and composite. It now follows readily for $m \neq 2^\alpha$ that $c_{\phi(m)/2}$ is $\left(\frac{-2}{p} \right)$ if $m' = p$, an odd prime, and 1 otherwise.
Now I assert that
\[
F_m(X) = E(X)^{\phi(m)/2} \prod_{d|m} (1 - A(X)^{m/d})^{\mu(d)}.
\]

Then
\[
\log F_m(X) = \frac{\phi(m)}{2} \log E(X) + \sum_{d|m} \mu(d) \log(1 - A(X)^{m/d})
\]
\[
= -\frac{\phi(m)}{2} \sum_{n=1}^{\infty} \left(\frac{2n}{n}\right) \frac{X^{2n}}{2n} - \sum_{d|m} \mu(d) \sum_{v=1}^{\infty} \frac{A(X)^{mv/d}}{v}
\]
again by using the formal Taylor series for \(\log(1 - T)\) about \(T = 0\). By Lemma 1 the coefficient of \(X^n\) in \(\sum_{v=1}^{\infty} A(X)^{mv/d}/v\) is
\[
\sum_{t=1, mt/d \equiv n (\mod 2)}^{[nd/m]} \frac{m}{dn} \left(\frac{n}{n - mt/d/2}\right),
\]
and so the statements about the power sums \(S_n\) in the theorem would follow.

In addition, if (20) holds then
\[
F_m(X) = E(X)^{\phi(m)/2}\psi_{m'}(A(X)^{m/m'})
\]
\[
= (E(X)^{m/m'})^{\phi(m')/2} \sum_{j=0}^{\phi(m')/2-1} b_j A(X)^{mj/m'}
\]
\[
= b_{\phi(m')/2} X^{\phi(m)/2} + \sum_{j=0}^{\phi(m')/2-1} b_j X^{mj/m'} E(X)^{m/_{m'} (\phi(m')/2-j)}
\]
\[
+ \sum_{j=0}^{\phi(m')/2-1} b_{\phi(m')-j} X^{m\phi(m')/2m'} A(X)^{m/_{m'} (\phi(m')/2-j)},
\]
since \(E(X)A(X) = X\), or
\[
b_{\phi(m')/2} X^{\phi(m)/2} + \sum_{j=0}^{\phi(m')/2-1} b_j X^{mj/m'} (E(X)^{m/_{m'} (\phi(m')/2-j)} + E(X)^{m/_{m'} (\phi(m')/2-j)})
\]
where \(E(X) = (1 - \sqrt{1 - 4X^2})/2\), since \(\psi_{m'}(x)\) is self-reciprocal and \(XA(X) = E(X)\). But \(E(X)^d + E(X)^d\) is just the polynomial \(C_d(X)\) in Proposition 1, so the expression for \(F_m(X)\) in the theorem would follow.

It remains to prove assertion (20). If \(m\) is odd then from Proposition 3,
\[
F_m(X) = \prod_{d|m} (\sqrt{1 - 2X} (V(X)^{m/d} - W(X)^{m/d}))^{\mu(d)}
\]
\[= V(X)^{\phi(m)} \prod_{d|m} (1 - A(X)^{m/d})^{\mu(d)} \]
\[= E(X)^{\phi(m)/2} \prod_{d|m} (1 - A(X)^{m/d})^{\mu(d)} \]
as asserted, since \(A(X) = (\sqrt{1 + 2X} - \sqrt{1 - 2X})/(\sqrt{1 + 2X} + \sqrt{1 - 2X}) \).
For even \(m \) we have \(4 | m \), so from Proposition 3,
\[F_m(X) = \prod_{d|m} (\sqrt{1 - 4X^2} (V(X)^{m/d} - W(X)^{m/d}))^{\mu(d)} \]
again equaling \(E(X)^{\phi(m)/2} \prod_{d|m} (1 - A(X)^{m/d})^{\mu(d)} \). Thus the assertion (20) is verified so the proof of the theorem is now complete.

I wish to remark that direct calculation of the power sums using the binomial theorem
\[(\zeta_m + \zeta_m^{-1})^n = \begin{cases}
\binom{n}{n/2} + \sum_{j=0}^{n/2-1} \binom{n}{j} (\zeta_m^{n-2j} + \zeta_m^{2j-n}) & \text{if } n \text{ is even}, \\
\sum_{j=0}^{(n-1)/2} \binom{n}{j} (\zeta_m^{n-2j} + \zeta_m^{2j-n}) & \text{if } n \text{ is odd},
\end{cases} \tag{21} \]
and the fact that the trace (see equation (16) in [3]) satisfies
\[\text{Tr}_{K/Q}(\zeta_m^v + \zeta_m^{-v}) = \sum_{x \in \mathbb{Z}_m^*} \zeta_m^{ux} = \mu(d) \frac{\phi(m)}{\phi(d)} \]
if \((v, m) = m/d\), where \(K = \mathbb{Q}(\zeta_m + \zeta_m^{-1}) \), yield a variant form for the \(S_n \) in (18). Namely,
\[S_n = \begin{cases}
\sum_{d|m} \mu(d) \frac{\phi(m)}{\phi(d)} \sum_{t=1, t,d=1, mt/d \text{ odd}}^{[nd/m]} \left(\begin{array}{c} n \\ n - mt/d \end{array} \right) / 2 & \text{if } n \text{ is odd}, \\
\frac{\phi(m)}{2} \left(\begin{array}{c} n \\ n/2 \end{array} \right) + \sum_{d|m} \mu(d) \frac{\phi(m)}{\phi(d)} \sum_{t=1, t,m/d \text{ even}}^{[nd/m]} \left(\begin{array}{c} n \\ n - mt/d \end{array} \right) / 2 & \text{if } n \text{ is even}.
\end{cases} \tag{23} \]
However, these are seen to be equivalent using the alternative expression \(\psi_{m'}(x) = \prod_{v \in \mathbb{Z}_m^*} (1 - \zeta_m^{v}, x) \) to evaluate \(\psi_{m'}(A^{m/m'}) \) in (20) before taking logarithms.

Here are a couple of examples to illustrate Theorem 1.

Example 1. Consider \(\theta_1 = \zeta_{27} + \zeta_{27}^{-1} \) in (1). Here \(m = 27, m' = 3 \) and \(\psi_3(x) = 1 + x + x^2 \) in (2). Direct calculation of the power sums \(S_n \) yields...
$S_1 = S_3 = S_5 = S_7 = 0$, $S_9 = -9$, $S_2 = 18$, $S_4 = 54$, $S_6 = 180$ and $S_8 = 630$ with $F_{27}(X) = 1 - 9X^2 + 27X^4 - 30X^6 + 9X^8 + X^9$ in agreement with the formulas in Theorem 1.

Example 2. Now consider $\theta_1 = \zeta_{15} + \zeta_{15}^{-1}$ in (1). Here $m = m' = 15$ and $\psi_{15}(x) = 1 - x + x^3 - x^4 + x^5 - x^7 + x^8$ in (2). Direct calculation of the power sums S_n yields $S_1 = 1$, $S_2 = 9$, $S_3 = 1$, $S_4 = 29$ with $F_{15}(X) = 1 - X - 4X^2 + 4X^3 + X^4$ again in agreement with Theorem 1.

The case $m = p^\alpha$, p an odd prime, warrants special consideration.

Corollary 2. For an odd prime p,

$$F_{p^\alpha}(X) = X^{\phi(p^\alpha)/2} + \sum_{j=0}^{(p-3)/2} X^{p^{\alpha-1}j} C_{p^\alpha-1(p-1-2j)}/2(X)$$

with nth power sums S_n equal to

$$p^\alpha \sum_{t=1, t \text{ odd}}^{[np-\alpha]} \left(\frac{n}{n - p^\alpha t} \right) - p^{\alpha-1} \sum_{t=1, t \text{ odd}}^{[np^{\alpha-1}]} \left(\frac{n}{n - p^{\alpha-1} t} \right)$$

if n is odd, or

$$\frac{\phi(p^\alpha)}{2} \left(\frac{n}{n/2} \right) + p^\alpha \sum_{t=1}^{[np-\alpha/2]} \left(\frac{n}{n/2 - p^\alpha t} \right) - p^{\alpha-1} \sum_{t=1}^{[np^{\alpha-1}/2]} \left(\frac{n}{n/2 - p^{\alpha-1} t} \right)$$

if n is even. The coefficients c_r of $F_{p^\alpha}(X)$ are given for $1 \leq r < \phi(p^\alpha)/2$ by

$$c_r = \sum_{j=0, j \equiv r (\text{mod } 2)}^{[rp^{\alpha-1}]} (-1)^{t_j} p^{\alpha-1} \left(\frac{p^{1/2} - j}{p^{1/2} - (r - t j)} \right)$$

with $c_{\phi(p^\alpha)/2} = \left(-\frac{2}{p} \right)$, where $t_j = (r - p^{\alpha-1} j)/2$.

I remark that for $m = p$, the above formula for the coefficients c_r reduces to that found by Gauss in (4), in view of the combinatorial identity

$$\sum_{t=0}^{[r/2]} (-1)^t \frac{p^{1/2} - (r - 2t)}{p^{1/2} - (r - t)} \left(\frac{p^{1/2} - (r - t)}{t} \right) = (-1)^{[r/2]} \left(\frac{[(p-1-r)/2]}{[r/2]} \right)$$

for $0 \leq r < (p-1)/2$. This identity follows readily from the fact that

$$\sum_{t=0}^{k} (-1)^t \frac{x - 2k + 2t}{x - 2k + t} \left(\frac{x - 2k + t}{t} \right)$$

$$= \sum_{t=0}^{k} (-1)^t \left(\frac{x - 2k + t}{t} \right) + \sum_{t=1}^{k} (-1)^t \left(\frac{x - 2k + t - 1}{t - 1} \right)$$
with corresponding sums \(S \).

S. Gurak

\[\sum_{t=0}^{k} (-1)^t \binom{x-2k+t}{t} - \sum_{t=0}^{k-1} (-1)^t \binom{x-2k+t}{t} \]

\[= (-1)^k \binom{x-k}{k} \]

for \(x > k \).

Next I consider the alternative situation when \(H = \{1, m/2 - 1\} \) with \(8 | m \), and denote \(F(X) \) in (5) by \(G_m(X) \). Now one has \(\theta_1 = \zeta_m - \zeta_m^{-1} = i(\zeta_m^{m/4-1} + \zeta_m^{-m/4}) \) in (1), so that \(G_m(X) = F_m(iX) \) with corresponding sums \(S_n^- = 0 \) if \(n \) is odd and \(S_n^- = (-1)^n S_{2n} \). The next result now follows immediately from Theorem 1 and Corollary 1.

Theorem 2. Let \(8 | m \) and \(H = \{1, m/2 - 1\} \). The minimal polynomial for the reciprocals of the Gauss periods \(\theta_v = \zeta_m^v - \zeta_m^{-v} \) \((v \in \mathbb{Z}_m^*/H) \) is

\[
G_m(X) = (-1)^{\phi(m)/4} b_{\phi(m')/2} X^{\phi(m)/2} + \sum_{j=0}^{\phi(m')/2-1} b_j X^{m j/m'} C_{mj/m'}(\phi(m)/2-j)(iX)
\]

when \(m \neq 2^\alpha \), with corresponding sums \(S_n^- = 0 \) if \(n \) is odd, and

\[
S_n^- = (-1)^{n/2} \frac{\phi(m)}{2} \binom{n/2}{n} + (-1)^{n/2} \sum_{d|m} \mu(d) \frac{m}{d} \sum_{t=1}^{[nd/m]} \left(n - mt/d \right) / 2)
\]

if \(n \) is even. The coefficients of \(G_m(X) \) are given for \(1 \leq r < \phi(m)/2 \) by

\[
c_r = \begin{cases}
(-1)^{[r/2]} \sum_{j=0}^{[m'r/m]} (-1)^t_j b_j \frac{m}{m'} \left(\frac{\phi(m')}{2} - j \right) - t_j, \\
0
\end{cases}
\]

according as \(r \) is even or odd, respectively, with \(c_{\phi(m)/2} = 1 \). If \(m = 2^\alpha \) \((\alpha > 2) \), then

\[
G_{2^\alpha}(X) = \sum_{n=0}^{2^{\alpha-3}} 2^{\alpha-2} - n \left(2^{\alpha-2} - n \right) X^{2^{\alpha-2} - 2n}
\]

with corresponding sums \(S_n^- = 0 \) if \(n \) is odd, and

\[
S_n^- = (-1)^{n/2} 2^{\alpha-2} \binom{n/2}{n} + 2^{\alpha-1} \sum_{t=1}^{[n2^{1-\alpha}]} (-1)^{t+n/2} \left(n - 2^{\alpha-1} t \right) / 2)
\]

if \(n \) is even.

Here is an example to illustrate Theorem 2.
Example 3. Consider \(\theta_1 = \zeta_{40} + \zeta_{40}^{19} = \zeta_{40} - \zeta_{40}^{-1} \) in (1) where \(H = \{1, 19\} \) modulo 40. Here \(m = 40 \) and \(m' = 10 \) with
\[
\psi_{10}(x) = 1 - x + x^2 - x^3 + x^4
\]
in (2). Direct calculation of the power sums \(S_n \) yields \(S_1 = S_3 = S_5 = S_7 = 0 \) and \(S_2 = -16, S_4 = 52, S_6 = -184, S_8 = 668 \) with \(G_{40}(X) = 1 + 8X^2 + 19X^4 + 12X^6 + X^8 \) in agreement with the formulas in Theorem 2.

Now I return to the general problem to compute the minimal polynomial \(F(X) \) for the reciprocals of the Gauss periods (1) for a given congruence group \(H \) of conductor \(m \) and order \(f = 2 \). This determination is seen to rely on the special cases \(H = \{ \pm 1 \} \) and \(H = \{1, m/2 - 1\} \) already discussed. For this purpose some familiarity with congruence groups is needed. (The reader may find the discussion in Section 5 of [6] helpful here.)

Given a congruence group \(H \) of conductor \(m \) and a positive divisor \(d \mid m \), let \(H_d \) denote the congruence group defined modulo \(d \) determined by
\[
H_d = \{ x \in \mathbb{Z} \mid x \equiv x' \pmod{d} \text{ for some } x' \in H \}.
\]
If \(p^\alpha \parallel m \), where \(p \) is prime, then \(H_{p^\alpha} \) has conductor \(p^\alpha \) and order dividing that of \(H \).

The next result is critical in the determination of \(F(X) \).

Lemma 2. Let \(H \) be a congruence group of conductor \(m \) and order \(f = 2 \), say \(H = \{1, a\} \) modulo \(m \) for some \(a \in \mathbb{Z}_m^* \). Then \(m = m_0m_1 \) with \((m_0, m_1) = 1\), where \(H_1 = H_{m_0} \cap H_{m_1} \), with \(H_{m_1} = \{1\} \) modulo \(m_1 \) and \(H_{m_0} = \{\pm 1\} \) modulo \(m_0 \) or possibly \(\{1, m_0/2 - 1\} \) modulo \(m_0 \) when \(8 \mid m_0 \). Moreover, the Gauss period \(\zeta_{m_1} + \zeta_{m_0}^a \) is a conjugate of \(\zeta_{m_1}(\zeta_{m_0} + \zeta_{m_0}^a) \).

Proof. Write \(m \) as a product \(p_1^{\alpha_1} \cdots p_r^{\alpha_r} \) of distinct prime powers, where \(p_1 < \cdots < p_r \) and \(\alpha_i > 0 \) (\(1 \leq i \leq r \)). Since \(H \) has conductor \(m \) and order \(f = 2 \), each congruence group \(H_{p_i^{\alpha_i}} \) has conductor \(p_i^{\alpha_i} \) (\(1 \leq i \leq r \)) with order equaling 1 or 2. Let \(m_0 \) be the product of the prime powers \(p_i^{\alpha_i} \) for which \(H_{p_i^{\alpha_i}} \) has order 2, and put \(m_1 = m/m_0 \). (Note that if \(p_1 = 2 \) divides \(m_0 \) then necessarily \(\alpha_1 > 2 \).) Then \(a \equiv 1 \pmod{m_1} \) and ord \(p_i^{\alpha_i}, a = 2 \) for each \(p_i \mid m_0 \).

In particular, \(a \equiv -1 \pmod{p_i^{\alpha_i}} \) for any odd \(p_i \mid m_0 \) and \(a \equiv -1 \) or \(2^{\alpha_i-1} - 1 \pmod{2^{\alpha_i}} \) should \(p_1 = 2 \) divide \(m_0 \). (The choice \(a \equiv 2^{\alpha_i-1} + 1 \pmod{2^{\alpha_i}} \) would contradict the fact that \(H_{2^{\alpha_1}} \) has conductor \(2^{\alpha_1} > 4 \).) It follows from the Chinese Remainder Theorem (as in (40) of [6]) that \(a \equiv -1 \pmod{m_0} \) or \(a \equiv m_0/2 - 1 \pmod{m_0} \) respectively, so \(H = H_{m_0} \cap H_{m_1} \), where \(H_{m_1} = \{1\} \) modulo \(m_1 \) and \(H_{m_0} = \{\pm 1\} \) or \(\{1, m_0/2 - 1\} \) modulo \(m_0 \) according as \(H_{2^{\alpha_1}} = \{\pm 1\} \) or \(\{1, 2^{\alpha_1-1} - 1\} \). The last statement of the proposition now follows readily from the Chinese Remainder Theorem, using the fact that \(\zeta_{m_1}^v(\zeta_{m_0}^w + \zeta_{m_0}^{aw}) \), for \(v \in \mathbb{Z}_{m_1}^* \) and \(w \in \mathbb{Z}_{m_0}/H_{m_0} \), comprise a complete set of conjugates of \(\zeta_{m_1}(\zeta_{m_0} + \zeta_{m_0}^a) \).
Using the decomposition for H in the lemma above, one can now express the reciprocal polynomial $F(X)$ in terms of the polynomials $F_{m_0}(X)$ or $G_{m_0}(X)$ appearing in Theorems 1 and 2.

Proposition 3. Let H be a congruence group of conductor m and order $f = 2$, say with $H = H_{m_0} \cap H_{m_1}$ as in Lemma 2, where $m = m_0m_1$, $(m_0, m_1) = 1$ and $H_{m_0} = \{ \pm 1 \}$ modulo m_0 (or possibly $\{ 1, m_0/2 - 1 \}$ when $8 \mid m_0$). Then

$$F(X) = \prod_{v \in \mathbb{Z}_{m_1}^*} F_{m_0}(\zeta_{m_1}^v X) \quad \text{or} \quad \prod_{v \in \mathbb{Z}_{m_1}^*} G_{m_0}(\zeta_{m_1}^v X)$$

according as $H_{m_0} = \{ \pm 1 \}$ or $\{ 1, m_0/2 - 1 \}$ modulo m_0. The corresponding sums S_n of nth powers satisfy

$$S_n = \mu\left(\frac{m_1}{n, m_1}\right) \frac{\phi(m_1)}{\phi(m)} S_n^* (n > 0),$$

where S_n^* are the nth power sums associated with $F_{m_0}(X)$ in Theorem 1 (Corollary 1 if $m_0 = 2^{w_1}$) or $G_{m_0}(X)$ in Theorem 2, respectively.

Proof. Much of the proposition’s assertions follow readily from Lemma 2 and its proof. To justify the formula for the power sums S_n note that from Lemma 2,

$$S_n = \sum_{v \in \mathbb{Z}_{m_1}^*, w \in \mathbb{Z}_{m_0}^*/H_{m_0}} \zeta_{m_1}^{nw} (\zeta_{m_0}^w + \zeta_{m_0}^{wa})^n = \sum_{v \in \mathbb{Z}_{m_1}^*} \zeta_{m_1}^{nv} S_n^* (n > 0),$$

where $S_n^* = \sum_{w \in \mathbb{Z}_{m_0}^*/H_{m_0}} (\zeta_{m_0}^w + \zeta_{m_0}^{wa})^n (n > 0)$ are the power sums associated with $F_{m_0}(X)$ or $G_{m_0}(X)$ according as $a \equiv -1$ or $m_0/2 - 1 \pmod{m_0}$. From (22),

$$\sum_{v \in \mathbb{Z}_{m_1}^*} \zeta_{m_1}^{nv} = \mu(d) \frac{\phi(m_1)}{\phi(d)}$$

where $(n, m_1) = m_1/d$, so the formula for S_n given in the proposition follows.

I conclude this section with two examples illustrating Proposition 3.

Example 4. Consider $\theta_1 = \zeta_{35} + \zeta_{35}^{29}$ in (1) where $H = \{ 1, 29 \}$ modulo 35. Here $m_0 = 5$ and $m_1 = 7$ with $H_{m_0} = \{ \pm 1 \}$ modulo 5 and $F_5(X) = 1 + X - X^2$ from Theorem 1 or direct calculation. One finds $\theta_1 = \zeta_7^{3}(\zeta_5^2 + \zeta_5^{-2})$ with minimal polynomial

$$F(X) = \prod_{v \in \mathbb{Z}_7} F(\zeta_7^v X) = 1 - X + 2X^2 - 3X^3 + 5X^4 - 8X^5 + 13X^6 + 8X^7 + 5X^8 + 3X^9 + 2X^{10} + X^{11} + X^{12}$$

from Proposition 3. Direct calculation of the power sums S_n yields $S_1 = 1$, $S_2 = -3$, $S_3 = 4$, $S_4 = -7$, $S_5 = 11$, $S_6 = -18$, $S_7 = -174$, $S_8 = -47$,...
$S_9 = 76$, $S_{10} = -123$, $S_{11} = 199$ and $S_{12} = -322$ in agreement with the formula in Proposition 3.

Example 5. Next consider $\theta_1 = \zeta_{120} + \zeta_{120}^{19}$ in (1) where $H = \{1, 19\}$ modulo 120. Here $m_0 = 40$ and $m_1 = 3$ from Lemma 2 with $H_{m_0} = \{1, 19\}$ modulo 40. From Example 3, $G_{40}(X) = 1 + 8X^2 + 19X^4 + 12X^6 + X^8$. One finds $\theta_1, \zeta_{27}/40$ with minimal polynomial

$$F(X) = G_{40}(\zeta_3 X)G_{40}(\zeta_3^2 X) = 1 - 8X^2 + 45X^4 - 128X^6 + 264X^8 - 212X^{10} + 125X^{12} - 12X^{14} + X^{16}$$

from Proposition 3.

3. Minimal polynomial for quadratic twists of $\zeta_m + \zeta_m^{-1}$. Here I consider certain twisted Gauss periods for odd m of the form $\theta = i^* \sqrt{l} (\zeta_m + (-1)^{(l-1)/2}\zeta_m^{-1})$, where $l|m'$ with again $m' = \prod_{p|m} p$ as in the previous section and $i^* = i^{(l-1)/2}$. It is easy to see that θ generates $K = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ since $\theta = \text{Tr}_{\mathbb{Q}(\zeta_m)/K}(i^* \sqrt{l} \zeta_m)$ and

$$\theta^2 = (-1)^{(l-1)/2} l (\zeta_m^2 + \zeta_m^{-2} + (-1)^{(l-1)/2} 2)$$

already generates K. Now I wish to give formulas analogous to those in Theorem 1 for such quadratic twists, which ultimately depend on the Aurifeuille and Schinzel factors $[3, 9, 13]$ of the cyclotomic polynomial $\psi_{m'}$ of the form $\psi_{m'}((-1)^{(l-1)/2}z^2) = a_0 + a_2z^2 + \ldots + a_{\phi(m')}z^{\phi(m')}$

$$+ \sqrt{l} (a_1z + a_3z^3 + \ldots + a_{\phi(m')-1}z^{\phi(m')-1})$$

The conjugates of θ are

$$\theta_v = \left(\frac{v}{l}\right) i^* \sqrt{l} (\zeta_m^v + (-1)^{(l-1)/2}\zeta_m^{-v}) \quad (v \in \mathbb{Z}_{m'}^*/\{\pm 1\})$$

with power sums S_n equaling

$$l^{(n-1)/2}m_+ \sum_{t=1, (t,l)=1, t \text{ odd}}^{[nm'/m]} (-1)^{(l-1)(1+m+t/m')/4} \times \delta_{m,l}(t) \left(\frac{n}{n - mt/m'}\right)^{\frac{n}{2}},$$

if n is odd, where

$$\delta_{m,l}(t) = \left(\frac{lt/m'}{l}\right) \mu \left(\frac{m_-}{mt/m', m_-}\right) \frac{\phi(m_-)}{\phi\left(\frac{m_-}{mt/m', m_-}\right)},$$

or

$$l^{n/2} \left(\frac{\phi(m)}{2}\right) \left(\frac{n}{n/2}\right) + \sum_{d|m} \mu(d) \left(\frac{\phi(m)}{\phi(d)}\right) \sum_{t=1, (t,d)=1}^{[dn/2m]} (-1)^{(l-1)t/2} \left(\frac{n}{n/2 - mt/d}\right).$$
if \(n \) is even. Here \(m \) is uniquely expressed in the form \(m = m_+ m_- \) where \((m_-, l) = 1\) and \(m_+ > 0 \) is divisible only by primes dividing \(l \). The above formulas for \(S_n \) are readily obtained directly as in (23) using the expansions

\[
\theta_1^n = l^{n/2} \left(n \over n/2 \right) + l^{n/2} \sum_{j=0}^{n/2-1} (-1)^{(l-1)(n+2j)/4} \binom{n}{j} (\zeta_{m_-}^{n-2j} + \zeta_{m_-}^{2j-n})
\]

if \(n \) is even, or

\[
(-1)^{(l-1)(n-1)/4} l^{(n-1)/2} i^* \sqrt{l} \sum_{j=0}^{(n-1)/2} \binom{n}{j} (-1)^{(l-1)j/2} \times (\zeta_{m_-}^{n-2j} + (-1)^{(l-1)/2} \zeta_{m_-}^{2j-n})
\]

if \(n \) is odd, from the binomial theorem together with equation (22), the fact that

\[
\sum_{v \in \mathbb{Z}_m^*/(\pm 1)} \left(\frac{v}{l} \right)^{t \over m} + (-1)^{(l-1)/2} \zeta_{m_-}^{t \over m} = \sum_{v \in \mathbb{Z}_m^*} \left(\frac{v}{l} \right)^{t \over m},
\]

and the lemma below. Details of the calculation, similar to that in establishing (23), are left to the reader.

Lemma 3. With notation as above,

\[
\sum_{x \in \mathbb{Z}_m^*} \left(\frac{x}{l} \right)^{t \over m} = i^* \sqrt{l} \frac{m_+}{l} \left(\frac{lt/m}{l} \right) \mu \left(\frac{m_-}{(t, m_-)} \right) \phi \left(\frac{m_-}{(t, m_-)} \right)
\]

if \((m_+, t) = m_+/l\) and 0 otherwise.

Proof. First note that

\[
\sum_{x \in \mathbb{Z}_m^*} \zeta_{m}^{t \over m} = \mu(d) \frac{\phi(m)}{\phi(d)}
\]

where \((t, m) = m/d\) from (22). Applying the result of problem 4, p. 336, in [2] with \(m = m_+ m_- \), one finds

\[
\sum_{x \in \mathbb{Z}_m^*} \left(\frac{x}{l} \right)^{t \over m} = \left(\frac{m_-}{l} \right) \sum_{x \in \mathbb{Z}_{m_+}^*} \left(\frac{x}{l} \right)^{t \over m} \sum_{x \in \mathbb{Z}_{m_-}^*} \zeta_{m_-}^{t \over m}. \sum_{x \in \mathbb{Z}_{m_+}^*} \zeta_{m_+}^{t \over m}
\]

The first sum in the product on the right is non-vanishing only when \((t, m_+) = m_+/l\), since otherwise in the factorization of \(\sum_{x \in \mathbb{Z}_{m_+}^*} \left(\frac{x}{l} \right)^{t \over m} \) \(\zeta_{m_+}^{t \over m} \) as a product of Gauss sums defined modulo the distinct prime powers dividing \(m_+ \), at least one such component will be zero (by problem 4, p. 336 in [2] again, and the fact that any imprimitive Gauss sum defined modulo a prime power vanishes). If \((t, m_+) = m_+/l\), say \(t = m_+/v \) with \((v, l) = 1\), then \(\sum_{x \in \mathbb{Z}_{m_+}^*} \left(\frac{x}{l} \right)^{t \over m} \) \(\zeta_{m_+}^{t \over m} \) is just \(m_+/l \) copies of \(\sum_{x \in \mathbb{Z}_{m_+}^*} \left(\frac{x}{l} \right)^{t \over m} \) \(\zeta_{m_+}^{t \over m} \), so equals \(i^* \sqrt{l} \frac{m_+}{l} \left(\frac{lt/m_+}{l} \right) \). The second
sum in the product equals
\[
\mu\left(\frac{m_-}{(l, m_-)}\right) \frac{\phi(m_-)}{\phi\left(\frac{m_-}{(l, m_-)}\right)}
\]
by my initial observation. The result of the lemma now follows since
\[
\left(\frac{m_-}{l}\right) \left(\frac{lt/m_+}{l}\right) = \left(\frac{lt/m}{l}\right)
\]
My aim here is to find a formula for the minimal polynomial of \(\theta\), or more precisely for the reciprocal polynomial \(P_{m,l}(X)\), analogous to that for \(F_m(X)\) in Section 2, whose zeros are the reciprocals of \(\theta\), in (25). To this end I first find an expression for the polynomial \(P(X)\) with zeros \(\{\pm\theta_v^{-1} \mid v \in \mathbb{Z}_m^*/(\pm 1)\}\). From (24), one has \((\zeta_m^2 + \zeta_m^{-2})^{-1} = (-1)^{(l-1)/2}\sqrt{2}(1 - 2\theta^{-2})\), a zero of \(F_m(X)\), so
\[
P(X) = (1 - 2lX^2)^{\phi(m)/2}F_m((-1)^{(l-1)/2}lX^2/(1 - 2lX^2))
\]
\[
= \left(1 - 2lX^2 + \sqrt{1 - 4lX^2}\right)^{\phi(m)/2}
\]
\[
\times \psi_{m'}\left(\left(\frac{1 - 2lX^2 - \sqrt{1 - 4lX^2}}{(-1)^{(l-1)/2}lX^2}\right)^{m/m'}\right)
\]
\[
= \left(1 + \sqrt{1 - 4lX^2}\right)^{\phi(m)/2}\psi_{m'}\left((-1)^{(l-1)/2}\frac{1 - \sqrt{1 - 4lX^2}}{2X}\right)^{2m/m'}
\]
from (20) since \((1 \pm \sqrt{1 - 4lX^2})/2 = (1 - 2lX^2 \pm \sqrt{1 - 4lX^2})/2\). For convenience I write
\[
(28) \quad P(X) = E_l(X)^{\phi(m)/2}\psi_{m'}((-1)^{(l-1)/2}A_l(X)^{2m/m'})
\]
where \(E_l(X) = (1 + \sqrt{1 - 4lX^2})/2, E_l(X) = (1 - \sqrt{1 - 4lX^2})/2\) and \(A_l(X) = (1 - \sqrt{1 - 4lX^2})/(2\sqrt{l}X)\). Now \(P(X) = P_{m,l}(X) \cdot P_{m,l}(-X)\) over \(\mathbb{Z}[X]\), so the strategy is to find the correct factor of \(P(X)\) in (28).

Suppose \(\psi_{m'}((-1)^{(l-1)/2}z^2)\) factors in \(\mathbb{Q}(\sqrt{l})\) as \(g_{m',l}(z)g_{m',l}(-z)\) with \(g_{m',l}(z)\) self-reciprocal and of the form
\[
(29) \quad g_{m',l}(z) = a_0 + a_2z^2 + \cdots + a_{\phi(m')/2}z^\phi(m') + \sqrt{l}(a_1z + a_3z^3 + \cdots + a_{\phi(m')-1}z^{\phi(m')-1})
\]
for integers \(a_j (0 \leq j \leq \phi(m'))\). Then \(a_{\phi(m')-j} = a_j (0 \leq j \leq \phi(m')/2)\) and \(E_l(X)^{\phi(m')/2} \cdot g_{m',l}(A_l(X)^{\phi(m')})\) is a polynomial in \(\mathbb{Z}[X]\). In fact, since \(E_l(X)A_l(X) = \sqrt{l}X\) and \(\sqrt{l}XA_l(X) = E_l(X)\), this polynomial is
\[E_t(X) \frac{m}{m'} \phi(m')}{2} \times \left(\sum_{j=0}^{\phi(m')/2} a_{2j}(A_t(X)^{m'/m'})^{2j} + \sum_{j=1}^{\phi(m')/2} a_{2j-1} \sqrt{l}(A_t(X)^{m'/m'})^{2j-1} \right), \]

which equals
\[
(30) \quad a_{\phi(m')/2} l^{[(\phi(m)+2)/4]} X^{\phi(m)/2} + \sum_{j=0}^{\phi(m')/2} a_{2j}(lX^2)^{mj/m'} C_{m'/m'}(\phi(m')/2-2j)(\sqrt{l}X) + \sum_{j=1}^{\phi(m')/2} a_{2j-1} l^{(m(2j-1)/m'+1)/2} X^{m(2j-1)/m'} C_{m'/m'}(\phi(m')/2-2j+1)(\sqrt{l}X). \]

To find such a factor \(g_{m',l}(z) \) first consider
\[g(x) = \prod_{v \in \mathbb{Z}_{m'}^*} \left(1 - \left(\frac{v}{l} \right) \zeta_{m'}^v X \right), \]

a polynomial over \(\mathbb{Q}(i^* \sqrt{l}) \) with power sums given by (see Lemma 3)
\[
(31) \quad \sum_{v \in \mathbb{Z}_{m'}^*} \left(\frac{v}{l} \right) \zeta_{m'}^v = \begin{cases}
 i^* \sqrt{l} \left(\frac{ln/m'}{l} \right) \mu \left(\frac{m'/l}{(n,m'/l)} \right) \phi((n,m'/l)) & \text{if } (n,l) = 1, \\
 0 & \text{if } (n,l) \neq 1
\end{cases}
\]

when \(n \) is odd, or by
\[\sum_{v \in \mathbb{Z}_{m'}^*} \zeta_{m'}^v = \mu(d) \phi(m'/d) \]

when \(n \) is even, where \((n,m') = m'/d \). I assert that \(g_{m',l}(z) = g(\varepsilon z) \), where
\[
(32) \quad \varepsilon = (-1)^{(l-1)(1-m/m')/4} i^* = \begin{cases}
 1 & \text{if } l \equiv 1 \pmod{4}, \\
 (-1)^{(1-m/m')/2} i & \text{if } l \equiv 3 \pmod{4}
\end{cases}
\]

has the desirable characteristics in (29). From (31) its associated power sums for odd \(n \) are
\[
(33) \quad S_n = \begin{cases}
 i^* \varepsilon^n \left(\frac{ln/m'}{l} \right) \mu \left(\frac{m'/l}{(n,m'/l)} \right) \phi((n,m'/l)) \sqrt{l} & \text{if } (n,l) = 1, \\
 0 & \text{otherwise}
\end{cases}
\]

and
\[S_n = (-1)^{(l-1)n/4} \mu(d) \phi(m'/d) \quad \text{if } n \text{ is even}, \]
where \((n, m') = m'/d\). From Newton’s identities (6) one readily finds that \(g_{m', l}(z)\) has the form (29) with \(a_j\) satisfying a polynomial dependence on \(l\) of degree \(\leq [j/2]\). Furthermore, \(a_{\phi(m')-j} = a_j\) since \(g_{m', l}(z)\) is seen to be self-reciprocal. In fact, \(g_{m', m'}(z)\) is just the polynomial \(L_m(z)\) or \(L_m(-z)\) in equation (24) in [3], so is expressible in terms of the Auri feuille factors \(\psi\). More generally, \(g_{m', l}(z)\) is seen to be expressible in terms of the Schinzel factors [13] of \(\psi\). Brent [3] gives an efficient algorithm to compute \(g_{m', m'}(z)\) from Newton’s identities, basically due to Dirichlet, that readily generalizes to compute \(g_{m', l}(z)\) here.

I assert that \(P_{m,l}(X) = E_l(X)^{\phi(m)/2} g_{m', l}(A_l(X)^{m/m'})\) is the correct choice with zeros \(\theta_{\nu}^{-1}\) for \(\theta_{\nu}\) in (25). Indeed:

Theorem 3. Let \(g_{m', l}(z)\) be the self-reciprocal polynomial of the form (29) and of degree \(\phi(m')\) over \(\mathbb{Q}(\sqrt{l})\) determined from the power sums in (33). Then \(P_{m,l}(X)\) is given by (30) with coefficients \(c_r\) for \(X^r\) satisfying

\[
(34) \quad c_r = \left[\frac{r+1}{2}\right] \sum_{j=0, j \equiv r (\text{mod } 2)}^{[m'/m]} (-1)^{t_j} a_j \times \frac{m}{m'} \left(\frac{\phi(m')}{2} - j \right) \left(\frac{m}{m'} \left(\frac{\phi(m')}{2} - j \right) - t_j \right)
\]

for \(1 \leq r < \phi(m)/2\), and

\[
c_{\phi(m)/2} = \left[\frac{\phi(m)+2}{4}\right] \times \left(a_{\phi(m')/2} + (-1)^{[\phi(m')+2]/4} \sum_{j=0, j \equiv \phi(m)/2 (\text{mod } 2)}^{\phi(m')/2-2} (-1)^{[(j+1)/2]} 2a_j \right),
\]

where \(t_j = (r - mj/m')/2\).

Proof. In view of the remarks already made it suffices to show that \(E_l(X)^{\phi(m)/2} g_{m', l}(A_l(X)^{m/m'})\), which yields the polynomial expression in (30) above, has associated power sums matching those in (26). Again, expanding \(\log(1 - T)\) about \(T = 0\), one finds \(\log E_l(X)^{\phi(m)/2} g_{m', l}(A_l(X)^{m/m'})\) equals

\[
\frac{\phi(m)}{2} \log E_l(X) + \sum_{w \in \mathbb{Z}_{m'}} \log \left(1 - \left(\frac{w}{l} \right) \varepsilon_{s_{m'}} \right) A_l(X)^{m/m'}
\]

\[
= - \frac{\phi(m)}{2} \sum_{n=1}^{\infty} \left(\frac{2n}{n} \right) \frac{\ln X^{2n}}{2n} - \sum_{w \in \mathbb{Z}_{m'}} \sum_{v=1}^{\infty} \varepsilon^v \left(\frac{w}{l} \right) \varepsilon_{s_{m'}} A_l(X)^{mv/m'}
\]
\[-\frac{\phi(m)}{2n} \sum_{n=1}^{\infty} \binom{2n}{n} l^n X^{2n} \frac{m}{2n} - \sum_{v=1}^{\infty} \frac{\varepsilon^v}{v} A_l(X)^{mv/m'} \sum_{w \in \mathbb{Z}_{m'}} \left(\frac{w}{l} \right)^v \zeta_{wv}. \]

In view of (31) and Lemma 1, this last expression is seen to have the coefficient of \(X^n \) equal to
\[-\frac{\phi(m)}{2n} \binom{n}{n/2} - \frac{1}{n} \sum_{d|m'} \mu(d) \times \frac{\phi(m')}{\phi(d)} \sum_{t=1, (t,d)=1}^{[dn/2m]} (-1)^{(l-1)t/2} \frac{m}{m'} \left(\frac{n}{n/2 - mt/d} \right) \]
if \(n \) is even, or
\[-\frac{l^{(n-1)/2}}{n} \sum_{t=1, (t,l)=1, t \text{ odd}}^{[m'n/m]} i^* \varepsilon^t \left(\frac{lt/m'}{l} \right) \mu \left(\frac{m'/l}{t, m'/l} \right) \frac{\phi(m')/l}{\phi \left(\frac{m'/l}{t, m'/l} \right)} \times \frac{lm}{m'} \left(\frac{n}{n/2 - mt/2m'} \right) \]
if \(n \) is odd. Since for \((t, l) = 1, \)
\[(mt/m', m_-) = \left(\frac{m_- t}{m'/l}, m_- \right) = \frac{m_-}{m'/l} (t, m'/l), \]
on one finds
\[\frac{m'/l}{(t, m'/l)} = \frac{m_-}{mt/m', m_-} \quad \text{and} \quad \frac{\phi(m'/l)}{\phi \left(\frac{m'/l}{(t, m'/l)} \right)} = \frac{m'/l}{m_-} \frac{\phi(m_-)}{\phi \left(\frac{m_-}{mt/m', m_-} \right)}, \]
so this last expression for odd \(n \) equals
\[-\frac{l^{(n-1)/2} m_+}{n} \sum_{t=1, (t,l)=1, t \text{ odd}}^{[nm'/m]} i^* \varepsilon^t \delta_{m,l}(t) \left(\frac{n}{n - mt/m'} / 2 \right), \]
with \(\delta_{m,l}(t) \) as in (26). But for \(t \) odd, \(i^* \varepsilon^t = (-1)^{(l-1)(1+mt/m')/4} \) from (32), so the polynomial \(E_l(X)^{\phi(m)/2} g_{m', l}(A_l(X)^{m/m'}) \) has associated power sums as in (26).

The formulas for the coefficients \(c_r \) are obtained in a straightforward fashion from the expression (30). This completes the proof of the theorem.

Next I give a few examples to illustrate Theorem 3.

Example 6. Consider \(\theta_1 = i\sqrt{15} (\zeta_{15} - \zeta_{15}^{-1}) \) in (25). Here \(l = m_+ = m = m' = 15 \) and \(m_- = 1 \) with \(\psi_{15}(x) = 1 - x + x^3 - x^4 + x^5 - x^7 + x^8. \)
One finds
\[g_{15,15}(z) = 1 + 8z^2 + 13z^4 + 8z^6 + z^8 + \sqrt{15} (z + 3z^3 + 3z^5 + z^7) \]
is the correct “Aurifeuille” factor of $\psi_{15}(-z^2)$ satisfying (32). Indeed direct computation of $P_{15,15}(X)$ yields

$$P_{15,15}(X) = 1 + 15X + 60X^2 - 225X^4,$$

whose coefficients agree with those obtained from (34). Note that $\theta = i\sqrt{15}(\zeta_{45} - \zeta_{45}^{-1})$ with $l = m' = 15$, $m_+ = m = 45$ and $m_- = 1$ requires the conjugate factor

$$g_{15,15}(z) = 1 + 8z^2 + 13z^4 + 8z^6 + z^8 - \sqrt{15}(z + 3z^3 + 3z^5 + z^7)$$

in the computation of

$$P_{45,15}(X) = 1 - 180X^2 - 225X^3 + 54 \cdot 15^2X^4 + 9 \cdot 15^3X^5 - 104 \cdot 15^3X^6 - 27 \cdot 15^4X^7 + 57 \cdot 15^4X^8 + 27 \cdot 15^5X^9 + 36 \cdot 15^5X^{10} - 15^6X^{12}.$$

Example 7. Next consider $\theta_1 = i\sqrt{3}(\zeta_{45} - \zeta_{45}^{-1})$ in (25) with $m = 45$, $l = 3$, $m_+ = 9$, $m' = 15$ and $m_- = 5$, and again $\psi_{15}(x) = 1 - x + x^3 - x^4 + x^5 - x^7 + x^8$. One finds here that

$$g_{15,3}(z) = 1 + 2z^2 + z^4 + 2z^6 + z^8 - \sqrt{3}(z + z^3 + z^5 + z^7)$$

is the correct “Schinzel” factor of $\psi_{15}(-z^2)$ satisfying (32). Direct computation of the power sums S_n yields $S_1 = 0$, $S_2 = 72$, $S_3 = 27$, $S_4 = 3^4 \cdot 8$, $S_5 = 3^4 \cdot 5$, $S_6 = 3^4 \cdot 79$, $S_7 = 3^6 \cdot 7$, $S_8 = 3^5 \cdot 272$, $S_9 = 3^7 \cdot 28$, $S_{10} = 3^8 \cdot 107$, $S_{11} = 3^8 \cdot 110$ and $S_{12} = 3^8 \cdot 1159$, with

$$P_{45,3}(X) = 1 - 36X^2 - 9X^3 + 3^5 \cdot 2X^4 + 3^5X^5 - 3^3 \cdot 110X^6 - 3^7X^7 + 3^4 \cdot 93X^8 + 3^5 \cdot 29X^9 - 3^7 \cdot 2X^{10} - 3^7 \cdot 2X^{11} - 3^6X^{12}$$

in agreement with the formulas in Theorem 3. If instead one takes $\theta_1 = \sqrt{5}(\zeta_{45} + \zeta_{45}^{-1})$ in (25) so $m = 45$, $l = m_+ = 5$, $m' = 15$ and $m_- = 9$, then the correct “Schinzel” factor of $\psi_{15}(z^2)$ satisfying (32) is

$$g_{15,5}(z) = 1 + 2z^2 + 3z^4 + 2z^6 + z^8 - \sqrt{5}(z + z^3 + z^5 + z^7).$$

Direct computation yields

$$P_{45,5}(X) = 1 - 60X^2 - 25X^3 + 5^2 \cdot 54X^4 + 5^3 \cdot 9X^5 - 5^4 \cdot 22X^6 - 5^4 \cdot 27X^7 + 5^4 \cdot 93X^8 + 5^5 \cdot 29X^9 - 5^5 \cdot 18X^{10} - 5^6 \cdot 6X^{11} + 5^6X^{12},$$

whose coefficients agree with those determined from (34).

Example 8. Now consider $\theta_1 = \sqrt{21}(\zeta_{21} + \zeta_{21}^{-1})$ in (25). Here $l = m_+ = m = m' = 21$ and $m_- = 1$, with $\psi_{21}(x) = 1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^{11} + x^{12}$. One finds here that

$$g_{21,21}(z) = 1 + 10z^2 + 13z^4 + 7z^6 + 13z^8 + 10z^{10} + x^{12} - \sqrt{21}(x + 3x^3 + 2x^5 + 2x^7 + 3x^9 + x^{11})$$
is the correct “Aurifeuille” factor of \(\psi_{21}(z^2) \) satisfying (32). Direct computation yields

\[P_{21,21}(X) = 1 - 21X + 84X^2 + 882X^3 - 7938X^4 + 18522X^5 - 9261X^6, \]
whose coefficients agree with those found from (34).

If one considers instead \(\theta_1 = i\sqrt{7}(\zeta_{21} - \zeta_{21}^{-1}) \) in (25), so \(l = m_+ = 7, m' = m = 21 \) and \(m_- = 3 \), one finds that

\[
g_{21,7}(x) = 1 + 4z^2 - z^4 - 7z^6 - z^8 + 4z^{10} + z^{12} + \sqrt{7}(z + z^3 - 2z^5 - 2z^7 + z^9 + z^{11})
\]
is the correct “Schinzel” factor of \(\psi_{21}(-z^2) \) satisfying (32) with

\[P_{21,7}(X) = 1 + 7X - 14X^2 - 7^2 \cdot 4X^3 - 7^2 \cdot 8X^4 + 7^3X^6 \]
from (34).

The special case \(m = p^\alpha \) warrants special consideration. Here I simply write \(P_{p^\alpha}(X) \) for \(P_{p^\alpha,p}(X) \).

Corollary 3. For an odd prime \(p \), \(P_{p^\alpha}(X) \) has the form

\[
a_{(p-1)/2}p^{\alpha-1}(p+1)/4 X^{p^{\alpha-1}(p-1)/2} + \sum_{j=0}^{[(p-3)/4]} a_{2j}(pX^2)^{p^{\alpha-1}j} C_{p^{\alpha-1}(p-1)/4-2j}(\sqrt{p} X)
\]

\[
+ \sum_{j=1}^{[(p-1)/4]} a_{2j-1}p^{(p^{\alpha-1}(2j-1)+1)/2} X^{p^{\alpha-1}(2j-1)/2} C_{p^{\alpha-1}(p-1)/4-2j+1}(\sqrt{p} X),
\]

with coefficient \(c_r \) for \(X^r \) satisfying

\[
c_r = p^{[(r+1)/2]} \sum_{j=0, j \equiv r \pmod{2}}^{[rp^{1-\alpha}]} (-1)^j a_j \times \frac{p^{\alpha-1}(p^{1-1}/2 - j)}{p^{\alpha-1}(p^{1-1}/2 - j)} \left(p^{\alpha-1}(p^{1-1}/2 - j) - t_j \right)
\]

for \(1 \leq r < \phi(p^\alpha)/2 \), where \(t_j = (r - p^{\alpha-1}j)/2 \), and with

\[
c_{\phi(p^\alpha)/2} = \begin{cases}
 \left(\frac{2}{p} \right) p^{\phi(p^\alpha)/4} & \text{if } p \equiv 1 \pmod{4}, \\
 (-1)^N \left(\frac{2}{p} \right) (-p)^{(\phi(p^\alpha)+2)/4} & \text{if } p \equiv 3 \pmod{4},
\end{cases}
\]

where \(N \) is the number of quadratic non-residues of \(p \) in \((0, p/2)\).

Proof. I need only justify the determination of the last coefficient \(c_{\phi(p^\alpha)/2} = (-1)^{\phi(p^\alpha)/2} N_{K/\mathbb{Q}}(i^* \sqrt{p} (\zeta_{p^\alpha} + (-1)^{(p-1)/2} \zeta_{p^\alpha}^{-1})) \), where \(K = \mathbb{Q}(\zeta_{p^\alpha} + \zeta_{p^\alpha}^{-1}) \).
For $p \equiv 1 \pmod{4}$, one immediately has $c_{\phi(p^a)/2} = \left(\frac{2}{p}\right)p^{\phi(p^a)/4}$ since $N_{K/Q}(\zeta_{p^a} + \zeta_{p^a}^{-1}) = \left(\frac{2}{p}\right)$ from (19). For $p \equiv 3 \pmod{4}$, one notes that (see problem 14, p. 355 in [2]; see also (35) below)

\[
\prod_{v=1, p|v}^{[p^a/2]} (\zeta_{p^a}^v - \zeta_{p^a}^{-v}) = \prod_{v=1}^{[p/2]} (\zeta_p - \zeta_p^{-v}) = i\sqrt{p}\left(-\frac{2}{p}\right),
\]

so that

\[
c_{\phi(p^a)/2} = -\prod_{v=1, p|v}^{[p^a/2]} i\sqrt{p}\left(\frac{v}{p}\right)(\zeta_{p^a}^v - \zeta_{p^a}^{-v}) = \left(\frac{2}{p}\right)(-1)^N(-p)^{(\phi(p^a)+2)/4},
\]

where N counts the number of times $\left(\frac{v}{p}\right) = -1$ for $1 \leq v \leq (p-1)/2$.

Actually it is no more difficult to determine the last coefficient $c_{\phi(m)/2}$ for the polynomial $P_{m,l}(X)$ in Theorem 3 in general. For odd composite m', $c_{\phi(m)/2}$ is the norm of θ_1 in (25) so equals $\pm l^{\phi(m)/4}$ since $i^*(\zeta_m + (-1)^{(l-1)/2}\zeta_m^{-1})$ is a unit of K. The correct sign is given by

PROPOSITION 4. For odd composite m' in Theorem 3,

\[
c_{\phi(m)/2} = (-1)^N l^{\phi(m)/4},
\]

where N counts the number of reduced residues v modulo m' in $(0, m'/2)$ with $\left(\frac{v}{m'}\right) = -1$.

Proof. First note that for any integer a with $(a, m') = 1$,

\[
(35) \prod_{v \in \mathbb{Z}_{m'}, v \equiv a \pmod{m'}} (\zeta_m^v \pm \zeta_m^{-v}) = \prod_{\lambda=0}^{m/m'-1} (\zeta_{m/m'\lambda}^v \pm \zeta_{m/m'}^{-\lambda} \zeta_m^a \pm \zeta_{m/m'}^{-a}) = \zeta_m^a \pm \zeta_m^{-a}
\]

since $\zeta_m^a + \lambda m' = \zeta_{m/m'}^\lambda \cdot \zeta_m^a$ for $0 \leq \lambda < m/m'$. Moreover, I assert here that

\[
(36) \prod_{v=1, (v, m')=1}^{(m'-1)/2} 2\sin\frac{2\pi v}{m'} = \prod_{v=1, (v, m')=1}^{(m'-1)/2} 2\cos\frac{2\pi v}{m'} = 1
\]

since m' is odd and composite. To verify (36) observe that up to sign $\prod 2\sin(2\pi v/m')$ is the norm from K to Q of the unit $i(\zeta_{m'} - \zeta_{m'}^{-1})$, so it equals ± 1. But $2\sin(2\pi v/m') > 0$ for $1 \leq v \leq (m'-1)/2$, so that the product must be 1 and hence also the product of its conjugates $2\sin(4\pi v/m')$ for $1 \leq v \leq (m'-1)/2$. Since

\[
2\cos(2\pi v/m') = \frac{2\sin(4\pi v/m')}{2\sin(2\pi v/m')},
\]
the product of cosines must also equal 1. Now from (35),
\[
c_{\phi(m)/2} = \prod_{v=1, (v,m')=1}^{[m'/2]} i^* \sqrt{\frac{
u}{l}} \left(\zeta_{m'}^\nu + (-1)^{(l-1)/2} \zeta_{m'}^{-\nu} \right)
\]
or just
\[
((-1)^{(l-1)/2} l)^{\phi(m)/4} \prod_{v=1, (v,m')=1}^{[m'/2]} \left(\frac{
u}{l} \right)^{\phi(m)/4} \zeta_{m'}^\nu + (-1)^{(l-1)/2} \zeta_{m'}^{-\nu}
\]
by (36), where \(N\) counts the number of reduced residues \(v\) modulo \(m'\) in the interval \((0, m'/2)\) with \(\left(\frac{v}{l} \right) = -1\). This completes the proof of the proposition.

Before concluding this section I wish to remark that one obtains a variant for the sums \(S_n\) in (26) when \(n\) is even using the fact that \(P(X) = P_{m,l}(X) \cdot P_{m,l}(-X)\), so that \(S_n = \frac{1}{2} S'_n\), where \(S'_n\) is the \(n\)th power sum associated to \(P(X)\) with \(n\) even. Now from (28),
\[
\log P(X) = \phi(m) \log E_l(X) + \sum_{d|m'} \mu(d) \log(1 - (-1)^{(l-1)/2} A_l(X)^{2m/m'})
\]
\[
= -\phi(m) \sum_{n=1}^{\infty} \frac{(2n)^n X^{2n}}{2n} \frac{1}{n} + \sum_{d|m'} \mu(d) \sum_{v=1}^{\infty} \frac{(-1)^{(l-1)v/2}}{v} A_l(X)^{2mv/m'}.
\]
Thus if \(n\) is even,
\[
S_n = l^{n/2} \frac{\phi(m)}{2} \binom{n}{n/2} + l^{n/2} \sum_{d|m} \mu(d) \frac{m}{d} \sum_{t=1}^{[nd/2m]} (-1)^{(l-1)t/2} \binom{n}{n/2 - mt/d}
\]
as an alternative expression for \(S_n\) in (26).

References

Minimal polynomials for Gauss periods

University of San Diego
San Diego, CA 92110, U.S.A.
E-mail: gurak@sandiego.edu

Received on 13.6.2005

and in revised form on 4.11.2005