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1. Introduction. For an integerm > 1, fix a primitivemth root of unity
ζm = exp(2πi/m) and let Z∗

m denote the multiplicative group of reduced
residues modulo m. Let H be a congruence group of conductor m and of
order f . It is a classical problem dating back to Gauss [4] to determine the
minimal polynomial f(x) of the Gauss periods

θv =
∑

x∈H

ζvx
m (v ∈ Z∗

m/H)(1)

corresponding to H, or equivalently its reciprocal F (X) = Xef(X−1) where
e = φ(m)/f . (It is known that the θv are distinct and f(x) is irreducible
over the rational field Q and that H has conductor m ≡ 0 (mod4) if m is
even [6, 8].)

For f = 1, the minimal polynomial is the classical cyclotomic polynomial
ψm(x) given by

ψm(x) =
∏

d|m

(1 − xm/d)µ(d) =

φ(m)
∑

k=0

bkx
k,(2)

which satisfies

ψm(x) =
ψm/p(x

p)

ψm/p(x)
(3)

for any odd prime p |m. The polynomial ψm(x) is self-reciprocal, that is,
the coefficients bk satisfy

b0 = 1, bφ(m)−i = bi for 0 ≤ i ≤ [φ(m)/2].

(Here [ ] denotes the greatest integer function, and φ and µ are the usual
Euler-phi and Möbius functions, respectively.)
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Gauss himself settled the case f = 2 when m = p is an odd prime, giving
the explicit formula (see [4])

Fp(X) =
e

∑

r=0

(−1)[r/2]

(

[e− r/2]

[r/2]

)

Xr(4)

for the reciprocal polynomial for ζp + ζ−1
p . For f > 2 it is known [5, 7] that

no such closed formula exists, but that the beginning coefficients, at least,
satisfy a predictable pattern depending polynomially on the distinct prime
factors of m.

Here I treat the general case f = 2, showing in Section 2 how to compute
the minimal polynomial F (X) for the reciprocals of the Gauss periods (1)
when m is composite. This determination is seen to rely on the special cases
H = {±1} (and H = {1,m/2 − 1} when 8 |m) of conductor m, for which
I give a closed formula generalizing (4) for F (X), expressed in terms of
the coefficients of the cyclotomic polynomial ψm′(x) in (2), where m′ is the
product of the distinct primes dividing m. The details appear in Section 2.
Later in Section 3, I give analogous formulas for quadratic twists of the
form i∗

√
l (ζm + (−1)(l−1)/2ζ−1

m ), when l |m′ with m′ odd and i∗ = i(l−1)2/4.
The latter formulas are expressed in terms of an appropriate Aurifeuille
or Schinzel factor [3, 9, 13] of ψm′((−1)(l−1)/2x). Such quadratic twists or
integer multiples of them arise classically [12] as values of Kloosterman sums
for odd prime powers pα, α > 1.

2. Minimal polynomials for Gauss periods with f = 2. My prin-
cipal aim here is to first give an explicit formula for the minimal poly-
nomial f(x) of the Gauss periods θv in (1) when H = {±1} (and for
H = {1,m/2−1} when 8 |m). Then I will show how to employ it to compute
f(x) in general when f = 2. It will be more convenient to express the results
in terms of the reciprocal polynomial

F (X) =
∏

v∈Z∗

m/H

(1 − θvX) = 1 + c1X + · · · + ceX
e(5)

where e = φ(m)/2. Then logF (X) = −∑∞
n=1 SnX

n/n as a formal power se-
ries, with nth power sums Sn =

∑

v∈Z∗

m/H θn
v (n ≥ 1) satisfying the Newton

identities

Sr + c1Sr−1 + · · · + cr−1S1 + crr = 0 (1 ≤ r ≤ e),

Sn + c1Sn−1 + · · · + ceSn−e = 0 (n > e).
(6)

I first consider the case H = {±1} with corresponding Gauss period
θ1 = ζm + ζ−1

m in (1), and denote its minimal polynomial by fm(x) and
corresponding reciprocal polynomial by Fm(X). The following result will be
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crucial to the determination of the minimal polynomials here as well as quite
useful later in Section 3.

Proposition 1. The reciprocal polynomials

Cd(X) =
d

∏

v=1, v 6=(d+1)/2

(1 − (ζ2v−1
4d + ζ−2v+1

4d )X) for d ≥ 1(7)

of degree 2[d/2] are equivalently given by the closed formula

Cd(X) =

(

1 +
√

1 − 4X2

2

)d

+

(

1 −
√

1 − 4X2

2

)d

(d ≥ 1),(8)

by the recursion

(9) C0 = 2, C1(X) = 1, Cd(X) = Cd−1(X) −X2Cd−2(X)

for d > 1,

by the generating function
∞
∑

d=0

Cd(X)T d =
2 − T

1 − T +X2T 2
,(10)

by the expansion

Cd(X) =

[d/2]
∑

n=0

(−1)n d

d− n

(

d− n

n

)

X2n,(11)

or the power sums

Sn = d

(

n

n/2

)

or 0 for 1 ≤ n ≤ 2[d/2],(12)

according as n is even or odd.

Proof. The argument follows that of Gupta and Zagier’s in the proof of
Theorem 2 in [5], first establishing the equivalence of (8)–(12). With Cd(X)
defined by (8),

∞
∑

d=0

Cd(X)T d =
1

1 + (1 +
√

1 − 4X2)T/2
+

1

1 − (1 −
√

1 − 4X2)T/2

=
2 − T

1 − T +X2T 2
,

which gives (10). The recursion (9) follows by multiplying both sides of (10)
by 1− T +X2T 2 and then comparing corresponding coefficients of T d. The
formula (11) follows by expanding the right-hand side of (10) as a geometric
series and using the binomial theorem. Specifically,

2 − T

1 − T +X2T 2
= (1 + (1 − T ))

∞
∑

n=0

(−1)nT 2nX2n

(1 − T )n−1
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=
∞
∑

n=0

(−1)nT 2nX2n

(1 − T )n+1
+

∞
∑

n=0

(−1)nT 2nX2n

(1 − T )n

= 1+
∞

∑

n=0

Tn+
∞

∑

n=1

(−1)nT 2nX2n

( ∞
∑

j=0

(

n+ j

j

)

T j +
∞
∑

j=0

(

n+ j − 1

j

)

T j

)

= 1 +
∞
∑

n=0

Tn +
∞
∑

n=1

∞
∑

j=0

(−1)n

{(

n+ j

j

)

+

(

n+ j − 1

j

)}

X2nT 2n+j

= 1 +
∞
∑

n=0

Tn +
∞
∑

n=1

∞
∑

j=0

(−1)n 2n+ j

n+ j

(

n+ j

n

)

X2nT 2n+j

= 2 +
∞

∑

d=1

T d

( [d/2]
∑

n=0

(−1)n d

d− n

(

d− n

n

)

X2n

)

.

To establish (12), write Cd(X) in (8) as

Cd(X) =

(

1 +
√

1 − 4X2

2

)d(

1 +

(

1 −
√

1 − 4X2

2X

)2d)

.

Then

logCd(X) = d log

(

1 +
√

1 − 4X2

2

)

(13)

−
∞

∑

ν=1

(−1)νX2dν

ν

( ∞
∑

n=0

(

2n

n

)

X2n

n+ 1

)2dν

since

A(X) =
1 −

√
1 − 4X2

2X
= X ·

∞
∑

n=0

(

2n

n

)

X2n

n+ 1
(14)

from the expansion

E(X) =
1 +

√
1 − 4X2

2
= 1 −

∞
∑

n=0

(

2n

n

)

X2n+2

n+ 1
(15)

given in [5]. Thus, from (6) and (13) (see also (17)), the power sums

Sn =

{

0 if n is odd,

d
( n
n/2

)

if n is even
for 1 ≤ n ≤ 2[d/2]

are sufficient to determine Cd(X) from Newton’s identities (6). This proves
the equivalence of (8)–(12).

It remains to show that cd(x) = xdCd(x
−1) has zeros 2 cos(πν/2d) for ν

odd and 1 ≤ ν ≤ 2d − 1 (this includes the zero 2 cos(π/2) = 0 when ν = d
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odd). But from (10), the generating function for the cd(x) is

∞
∑

d=0

cd(x)T
d =

∞
∑

d=0

Cd(x
−1)(xT )d =

2 − xT

1 − xT + T 2
.

Substituting x = z + z−1 yields
∞
∑

d=0

cd(z + z−1)T d =
2 − (z + z−1)T

1 − (z + z−1)T + T 2

= (1 − zT )−1 + (1 − z−1T )−1 =
∞

∑

d=0

(zd + z−d)T d.

Thus cd(z + z−1) = 0 iff zd + z−d = 0 iff z4d = 1 with zd = ±i iff z = ζν
4d

with ν odd iff z + z−1 = 2 cos(πν/2d) for 1 ≤ ν ≤ 2d − 1 with ν odd. But
cd(x) is monic (Cd(X) has constant term 1) and has degree d, so cd(x) =
∏2d−1

ν=1, ν odd(x− (ζν
4d + ζ−ν

4d )) is the reciprocal polynomial of Cd(X) as defined
in (7). This completes the proof of Proposition 1.

Incidentally, the power series A(X) in (14) has an important property
that will be useful later.

Lemma 1. For any positive integers n ≥ m, the coefficient of Xn in the

expansion A(X)m is m
n

(

n
(n−m)/2

)

or 0 according as n ≡ m (mod2) or not.

Proof. The proof proceeds using induction on m. With m = 1, the coef-
ficient of Xn is clearly 0 if n is even or

2

n+ 1

(

n− 1

(n− 1)/2

)

=
1

n

(

n

(n− 1)/2

)

if n is odd. With m = 2, A(X)2 = −1 +A(X)/X, so by (14),

A(X)2 = −1 +

∞
∑

k=0

(

2k

k

)

X2k

k + 1
.(16)

It follows that the coefficient of Xn is

2

n+ 2

(

n

n/2

)

=
2

n

(

n

(n− 2)/2

)

if n even or 0 if n odd. Now assume that the conclusion of the lemma holds
for all powers A(X)k up to k = j for some j ≥ 2, and consider A(X)j+1 =
−A(X)j−1 + A(X)j/X by (16). Thus the coefficient of Xn in A(X)j+1 is
the sum of the coefficient of Xn in −A(X)j−1 and of the coefficient of Xn+1

in A(X)j . By the induction hypothesis, this sum is 0 if n 6≡ j + 1 (mod2)
but equals
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−j − 1

n

(

n

(n− j + 1)/2

)

+
j

n+ 1

(

n+ 1

(n− j + 1)/2

)

=
j + 1

n

(

n

(n− j − 1)/2

)

if n ≡ j + 1 (mod2). This completes the induction so the conclusion of the
lemma is proved.

When m = 2α, α > 2, the following result is an immediate consequence
of Proposition 1 and the lemma above.

Corollary 1.

F2α(X) =
2α−3
∑

n=0

(−1)n 2α−2

2α−2 − n

(

2α−2 − n

n

)

X2n

with power sums Sn satisfying

Sn =











0 if n is odd ,

2α−2

(

n

n/2

)

+ 2α−1

[21−αn]
∑

t=1

(−1)t

(

n

(n− 2α−1t)/2

)

if n is even.

Proof. Clearly F2α(X) = C2α−2(X) by Proposition 1. Using the expan-
sion

log((1 +
√

1 − 4X2)/2) = −
∞

∑

n=1

(

2n

n

)

X2n

2n
(17)

and the lemma above, one obtains the expression for the power sums Sn

upon comparing coefficients in the expansion of logC2α−2(X) in (13).

I am now ready to describe Fm(X) in general. For d > 0 put

Bd(X) =

{
√

1 − 2X (V (X)d −W (X)d) if d is odd,√
1 − 4X2(V (X)d −W (X)d) if d is even,

where V (X) = 1
2(
√

1+2X +
√

1−2X) and W (X) = 1
2(
√

1+2X −
√

1−2X).
This sequence has initial terms B1(X) = 1−2X, B2(X) = 1−4X2, B3(X) =
(1 − 2X)(1 + X), B4(X) = 1 − 4X2, and satisfies Bn(X) = Bn−2(X) −
X2Bn−4(X) for n > 4. We have

Proposition 2.

Fm(X) =
∏

d|m

Bm/d(X)µ(d).

Proof. I assert that (i) Bd(X) has degree (d + 1)/2 with zeros (ζν
d +

ζ−ν
d )−1, 0 ≤ ν ≤ (d−1)/2, if d is odd, (ii)Bd(X) has degree d/2+1 with zeros

(ζν
d +ζ−ν

d )−1, 0 ≤ ν ≤ d/2, if 2 ‖ d, and (iii) Bd(X) has degree d/2 with zeros
(ζν

d + ζ−ν
d )−1, 0 ≤ ν ≤ d/2, ν 6= d/4, if 4 | d. Then Bm(X) =

∏

d|m Fd(X),
since the right side has constant term 1 and accounts for all zeros that are
reciprocals of the non-zero values ζν

m+ζ−ν
m with 0 ≤ ν ≤ [m/2] exactly once.

Now the statement of the proposition readily follows by Möbius inversion.
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But (i) is essentially Theorem 3 in [5] taking into account the extra
factor 1 − 2X for ν = 0. So it remains to establish (ii) and (iii) of the
claim. Now if 2 ‖ d, say d = 2d′ with d′ odd, then Bd(X) = Bd′(X)Bd′(−X).
Thus by (i), Bd(X) has distinct zeros (ζν

d′ + ζ−ν
d′ )−1 = (ζ2ν

d + ζ−2ν
d )−1 and

−(ζν
d′ +ζ

−ν
d′ )−1 = (ζ2ν+d′

d +ζ−2ν−d′

d )−1 for 0 ≤ ν ≤ (d′−1)/2, or equivalently
zeros (ζν

d + ζ−ν
d )−1 for 0 ≤ ν ≤ d′ = d/2, establishing assertion (ii). To

settle claim (iii) first note if 4 ‖ d, say with d = 4d′ where d′ is odd, then
Bd(X) = B2d′(X)Cd′(X) with Cd′(X) as in (7). In this case Bd(X) has zeros
(ζ2ν−1

d + ζ−2ν+1
d )−1 for 1 ≤ ν ≤ d′ = d/4, ν 6= (d+ 4)/8 from Proposition 1,

and zeros (ζ2ν
d + ζ−2ν

d )−1 for 0 ≤ ν ≤ d′ = d/4 from the above. Restated,
Bd(X) has distinct zeros (ζν

d + ζ−ν
d )−1 for 0 ≤ ν ≤ d/2, ν 6= d/4 if 4 ‖ d.

Arguing similarly using Proposition 1 and the above statement, one obtains
(iii) in general when 8 | d by an induction involving the exact power of 2
dividing d. The proof of the proposition is now complete.

I should remark that the statement of Proposition 2 is not new, and was
first noted by Watkins and Zeitlin [16] in reciprocal form using the properties
of the Chebyshev polynomials Tm(x), which are defined by

Tm(cos θ) = cos(mθ)

for positive integers m and all real θ. Indeed, defining

bm(x) = 2(T[m/2]+1(x/2) − T[(m−1)/2](x/2))

they essentially show bm(x) has zeros 2 cos(2πv/m) for 0 ≤ v ≤ [m/2]. Here
Bm(X) = X [m/2]+1bm(X−1).

I now give the main result of this section.

Theorem 1. For m 6= 2α,

Fm(X) = bφ(m′)/2X
φ(m)/2 +

φ(m′)/2−1
∑

j=0

bjX
mj/m′

C m

m′
(φ(m′)/2−j)(X)

where the bj are the coefficients for ψm′(x) given in (2) and the polynomials

Cd(X) are as in (11).

The power sums Sn satisfy

(18) Sn =







































∑

d|m

µ(d)
m

d

[nd/m]
∑

t=1, mt/d odd

(

n

(n−mt/d)/2

)

if n is odd ,

φ(m)

2

(

n

n/2

)

+
∑

d|m

µ(d)
m

d

[nd/m]
∑

t=1, mt/d even

(

n

(n−mt/d)/2

)

if n is even.
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The coefficients cr of Fm(X) are given for 1 ≤ r < φ(m)/2 by

cr =

[m′r/m]
∑

j=0, jm/m′≡r (mod 2)

(−1)tjbj(19)

×
m
m′

(φ(m′)
2 − j

)

m
m′

(φ(m′)
2 − j

)

− tj

( m
m′

(φ(m′)
2 − j

)

− tj
tj

)

and

cφ(m)/2 =

{
(

−2
p

)

if m′ = p an odd prime,

1 otherwise,

where tj = (r − jm/m′)/2.

Proof. I first note that if Fm(X) is expressed in terms of the coefficients
of ψm′(x) and the polynomials Cd(X) as given in the initial statement of
the theorem, then formula (19) for the coefficients cr is deduced in routine
fashion upon collecting like powers of X. The value of cφ(m)/2 is seen to be

bφ(m′)/2 + 2

φ(m′)/2−1
∑

j=0

bj =

φ(m′)
∑

j=0

bj = ψm′(1) = 1

if m′ is even (and hence composite since m 6= 2α), or

bφ(m′)/2 + (−1)[(φ(m′)+2)/4]

φ(m′)/2−2
∑

j=0

(−1)[(j+1)/2]2bj

if m′ is odd. The latter expression is

(−1)φ(m′)/4

φ(m′)/2−1
∑

j=0

(−1)jb2j = (−1)φ(m′)/4(ψm′(i) + ψm′(−i))/2

if 4 |φ(m′), or

(−1)(p−3)/4

φ(p)/2−2
∑

j=0

(−1)jb2j+1 = (−1)(p−3)/4(ψp(i) − ψp(−i))/2i

if m′ = p ≡ 3 (mod4) a prime. Noting that for odd primes p,

ψp(i) =

{

1 if p ≡ 1 (mod4),

i if p ≡ 3 (mod4),

and using (3), one finds ψm′(i) = (−1)φ(m′)/4 whenever m′ is odd and com-
posite. It now follows readily for m 6= 2α that cφ(m)/2 is

(

−2
p

)

if m′ = p, an
odd prime, and 1 otherwise.
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Now I assert that

Fm(X) = E(X)φ(m)/2
∏

d|m

(1 −A(X)m/d)µ(d).(20)

Then

logFm(X) =
φ(m)

2
logE(X) +

∑

d|m

µ(d) log(1 −A(X)m/d)

= −φ(m)

2

∞
∑

n=1

(

2n

n

)

X2n

2n
−

∑

d|m

µ(d)
∞

∑

v=1

A(X)mv/d

v

again by using the formal Taylor series for log(1 − T ) about T = 0. By
Lemma 1 the coefficient of Xn in

∑∞
v=1A(X)mv/d/v is

[nd/m]
∑

t=1, mt/d≡n (mod 2)

m

dn

(

n

(n−mt/d)/2

)

,

and so the statements about the power sums Sn in the theorem would follow.

In addition, if (20) holds then

Fm(X) = E(X)φ(m)/2ψm′(A(X)m/m′

)

= (E(X)m/m′

)φ(m′)/2

φ(m′)
∑

j=0

bjA(X)mj/m′

= bφ(m′)/2X
φ(m)/2 +

φ(m′)/2−1
∑

j=0

bjX
mj/m′

E(X)
m

m′
(φ(m′)/2−j)

+

φ(m′)/2−1
∑

j=0

bφ(m′)−jX
mφ(m′)/2m′

A(X)
m

m′
(φ(m′)/2−j),

since E(X)A(X) = X, or

bφ(m′)/2X
φ(m)/2+

φ(m′)/2−1
∑

j=0

bjX
mj/m′

(E(X)
m

m′
(φ(m′)/2−j)+E(X)

m

m′
(φ(m′)/2−j))

where E(X) = (1−
√

1 − 4X2)/2, since ψm′(x) is self-reciprocal and XA(X)
= E(X). But E(X)d+E(X)d is just the polynomial Cd(X) in Proposition 1,
so the expression for Fm(X) in the theorem would follow.

It remains to prove assertion (20). If m is odd then from Proposition 3,

Fm(X) =
∏

d|m

(
√

1 − 2X (V (X)m/d −W (X)m/d))µ(d)
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= V (X)φ(m)
∏

d|m

(1 −A(X)m/d)µ(d)

= E(X)φ(m)/2
∏

d|m

(1 −A(X)m/d)µ(d)

as asserted, since A(X) = (
√

1 + 2X −
√

1 − 2X)/(
√

1 + 2X +
√

1 − 2X).
For even m we have 4 |m, so from Proposition 3,

Fm(X) =
∏

d|m

(
√

1 − 4X2 (V (X)m/d −W (X)m/d))µ(d)

again equaling E(X)φ(m)/2
∏

d|m(1−A(X)m/d)µ(d). Thus the assertion (20)
is verified so the proof of the theorem is now complete.

I wish to remark that direct calculation of the power sums using the
binomial theorem

(21) (ζm + ζ−1
m )n =



























(

n

n/2

)

+

n/2−1
∑

j=0

(

n

j

)

(ζn−2j
m + ζ2j−n

m ) if n is even,

(n−1)/2
∑

j=0

(

n

j

)

(ζn−2j
m + ζ2j−n

m ) if n is odd,

and the fact that the trace (see equation (16) in [3]) satisfies

TrK/Q(ζv
m + ζ−v

m ) =
∑

x∈Z∗

m

ζvx
m = µ(d)

φ(m)

φ(d)
(22)

if (v,m) = m/d, where K = Q(ζm + ζ−1
m ), yield a variant form for the Sn in

(18). Namely,

(23) Sn =











































∑

d|m

µ(d)
φ(m)

φ(d)

[nd/m]
∑

t=1, (t,d)=1, mt/d odd

(

n

(n−mt/d)/2

)

if n is odd,

φ(m)

2

(

n

n/2

)

+
∑

d|m

µ(d)
φ(m)

φ(d)

[nd/m]
∑

t=1, mt/d even

(

n

(n−mt/d)/2

)

if n is even.

However, these are seen to be equivalent using the alternative expression
ψm′(x) =

∏

v∈Z∗

m′

(1 − ζv
m′x) to evaluate ψm′(Am/m′

) in (20) before taking

logarithms.

Here are a couple of examples to illustrate Theorem 1.

Example 1. Consider θ1 = ζ27 + ζ−1
27 in (1). Here m = 27, m′ = 3 and

ψ3(x) = 1 + x + x2 in (2). Direct calculation of the power sums Sn yields
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S1 = S3 = S5 = S7 = 0, S9 = −9, S2 = 18, S4 = 54, S6 = 180 and S8 = 630
with F27(X) = 1− 9X2 + 27X4 − 30X6 + 9X8 +X9 in agreement with the
formulas in Theorem 1.

Example 2. Now consider θ1 = ζ15 + ζ−1
15 in (1). Here m = m′ = 15

and ψ15(x) = 1 − x + x3 − x4 + x5 − x7 + x8 in (2). Direct calculation of
the power sums Sn yields S1 = 1, S2 = 9, S3 = 1, S4 = 29 with F15(X) =
1 −X − 4X2 + 4X3 +X4 again in agreement with Theorem 1.

The case m = pα, p an odd prime, warrants special consideration.

Corollary 2. For an odd prime p,

Fpα(X) = Xφ(pα)/2 +

(p−3)/2
∑

j=0

Xpα−1jCpα−1(p−1−2j)/2(X)

with nth power sums Sn equal to

pα

[np−α]
∑

t=1, t odd

(

n

(n− pαt)/2

)

− pα−1

[np1−α]
∑

t=1, t odd

(

n

(n− pα−1t)/2

)

if n is odd , or

φ(pα)

2

(

n

n/2

)

+ pα

[np−α/2]
∑

t=1

(

n

n/2 − pαt

)

− pα−1

[np1−α/2]
∑

t=1

(

n

n/2 − pα−1t

)

if n is even. The coefficients cr of Fpα(X) are given for 1 ≤ r < φ(pα)/2 by

cr =

[rp1−α]
∑

j=0, j≡r (mod 2)

(−1)tj
pα−1

(p−1
2 − j

)

pα−1
(p−1

2 − j
)

− tj

(

pα−1
(p−1

2 − j
)

− tj
tj

)

with cφ(pα)/2 =
(

−2
p

)

, where tj = (r − pα−1j)/2.

I remark that for m = p, the above formula for the coefficients cr reduces
to that found by Gauss in (4), in view of the combinatorial identity

[r/2]
∑

t=0

(−1)t
p−1
2 − (r − 2t)

p−1
2 − (r − t)

(p−1
2 − (r − t)

t

)

= (−1)[r/2]

(

[(p− 1 − r)/2]

[r/2]

)

for 0 ≤ r < (p− 1)/2. This identity follows readily from the fact that

k
∑

t=0

(−1)t x− 2k + 2t

x− 2k + t

(

x− 2k + t

t

)

=

k
∑

t=0

(−1)t

(

x− 2k + t

t

)

+

k
∑

t=1

(−1)t

(

x− 2k + t− 1

t− 1

)
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=

k
∑

t=0

(−1)t

(

x− 2k + t

t

)

−
k−1
∑

t=0

(−1)t

(

x− 2k + t

t

)

= (−1)k

(

x− k

k

)

for x > k.

Next I consider the alternative situation when H = {1,m/2 − 1} with
8 |m, and denote F (X) in (5) by Gm(X). Now one has θ1 = ζm − ζ−1

m =

i(ζ
m/4−1
m + ζ

1−m/4
m ) in (1), so that Gm(X) = Fm(iX) with corresponding

sums S−
n = 0 if n is odd and S−

2n = (−1)nS2n. The next result now follows
immediately from Theorem 1 and Corollary 1.

Theorem 2. Let 8 |m and H = {1,m/2 − 1}. The minimal polynomial

for the reciprocals of the Gauss periods θv = ζv
m − ζ−v

m (v ∈ Z∗
m/H) is

Gm(X) = (−1)φ(m)/4bφ(m′)/2X
φ(m)/2

+

φ(m′)/2−1
∑

j=0

bjX
mj/m′

C m

m′
(φ(m′)/2−j)(iX)

when m 6= 2α, with corresponding sums S−
n = 0 if n is odd , and

S−
n = (−1)n/2 φ(m)

2

(

n

n/2

)

+ (−1)n/2
∑

d|m

µ(d)
m

d

[nd/m]
∑

t=1

(

n

(n−mt/d)/2

)

if n is even. The coefficients of Gm(X) are given for 1 ≤ r < φ(m)/2 by

cr =











(−1)[r/2]

[m′r/m]
∑

j=0

(−1)tjbj

m
m′

(φ(m′)
2 − j

)

m
m′

(φ(m′)
2 − j

)

− tj

( m
m′

(φ(m′)
2 − j

)

− tj
tj

)

,

0

according as r is even or odd , respectively , with cφ(m)/2 = 1. If m = 2α

(α > 2), then

G2α(X) =

2α−3
∑

n=0

2α−2

2α−2 − n

(

2α−2 − n

n

)

X2α−2−2n

with corresponding sums S−
n = 0 if n is odd , and

S−
n = (−1)n/22α−2

(

n

n/2

)

+ 2α−1

[n21−α]
∑

t=1

(−1)t+n/2

(

n

(n− 2α−1t)/2

)

if n is even.

Here is an example to illustrate Theorem 2.
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Example 3. Consider θ1 = ζ40+ζ
19
40 = ζ40−ζ−1

40 in (1) whereH = {1, 19}
modulo 40. Here m = 40 and m′ = 10 with

ψ10(x) = 1 − x+ x2 − x3 + x4

in (2). Direct calculation of the power sums Sn yields S1 = S3 = S5 = S7 = 0
and S2 = −16, S4 = 52, S6 = −184, S8 = 668 with G40(X) = 1 + 8X2 +
19X4 + 12X6 +X8 in agreement with the formulas in Theorem 2.

Now I return to the general problem to compute the minimal polynomial
F (X) for the reciprocals of the Gauss periods (1) for a given congruence
group H of conductor m and order f = 2. This determination is seen to rely
on the special cases H = {±1} and H = {1,m/2 − 1} already discussed.
For this purpose some familiarity with congruence groups is needed. (The
reader may find the discussion in Section 5 of [6] helpful here.)

Given a congruence group H of conductor m and a positive divisor d |m,
let Hd denote the congruence group defined modulo d determined by

Hd = {x ∈ Z |x ≡ x′ (modd) for some x′ ∈ H}.
If pα ‖m, where p is prime, then Hpα has conductor pα and order dividing
that of H.

The next result is critical in the determination of F (X).

Lemma 2. Let H be a congruence group of conductor m and order f=2,
say H = {1, a} modulo m for some a ∈ Z∗

m. Then m = m0m1 with

(m0,m1) = 1, where H = Hm0 ∩ Hm1 , with Hm1 = {1} (modulo m1) and

Hm0 = {±1} (modulo m0) or possibly {1,m0/2 − 1} (modulo m0) when

8 |m0. Moreover , the Gauss period ζm+ζa
m is a conjugate of ζm1(ζm0 +ζa

m0
).

Proof. Write m as a product pα1
1 · · · pαr

r of distinct prime powers, where
p1 < · · · < pr and αi > 0 (1 ≤ i ≤ r). Since H has conductor m and order
f = 2, each congruence group Hp

αi
i

has conductor pαi

i (1 ≤ i ≤ r) with order

equaling 1 or 2. Let m0 be the product of the prime powers pαi

i for which
Hp

αi
i

has order 2, and put m1 = m/m0. (Note that if p1 = 2 divides m0 then

necessarily α1 > 2.) Then a ≡ 1 (modm1) and ordp
αi
i
a = 2 for each pi |m0.

In particular, a ≡ −1 (modpαi

i ) for any odd pi |m0 and a ≡ −1 or 2α1−1 −1
(mod2α1) should p1 = 2 divide m0. (The choice a ≡ 2α1−1 + 1 (mod2α1)
would contradict the fact that H2α1 has conductor 2α1 > 4.) It follows from
the Chinese Remainder Theorem (as in (40) of [6]) that a ≡ −1 (modm0) or
a ≡ m0/2− 1 (modm0) respectively, so H = Hm0 ∩Hm1 , where Hm1 = {1}
modulo m1 and Hm0 = {±1} or {1,m0/2 − 1} modulo m0 according as
H2α1 = {±1} or {1, 2α1−1 − 1}. The last statement of the proposition now
follows readily from the Chinese Remainder Theorem, using the fact that
ζv
m1

(ζw
m0

+ ζaw
m0

), for v ∈ Z∗
m1

and w ∈ Z∗
m0
/Hm0 , comprise a complete set of

conjugates of ζm1(ζm0 + ζa
m0

).
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Using the decomposition for H in the lemma above, one can now express
the reciprocal polynomial F (X) in terms of the polynomials Fm0(X) or
Gm0(X) appearing in Theorems 1 and 2.

Proposition 3. Let H be a congruence group of conductor m and order

f = 2, say with H = Hm0 ∩ Hm1 as in Lemma 2, where m = m0m1,
(m0,m1) = 1 and Hm0 = {±1} modulo m0 (or possibly {1,m0/2 − 1} when

8 |m0). Then

F (X) =
∏

v∈Z∗

m1

Fm0(ζ
v
m1
X) or

∏

v∈Z∗

m1

Gm0(ζ
v
m1
X)

according as Hm0 = {±1} or {1,m0/2 − 1} modulo m0. The corresponding

sums Sn of nth powers satisfy

Sn = µ

(

m1

(n,m1)

)

φ(m1)

φ
(

m1
(n,m1)

) S∗
n (n > 0),

where S∗
n are the nth power sums associated with Fm0(X) in Theorem 1

(Corollary 1 if m0 = 2α1) or Gm0(X) in Theorem 2, respectively.

Proof. Much of the proposition’s assertions follow readily from Lemma 2
and its proof. To justify the formula for the power sums Sn note that from
Lemma 2,

Sn =
∑

v∈Z∗

m1
, w∈Z∗

m0
/Hm0

ζnv
m1

(ζw
m0

+ ζwa
m0

)n =
∑

v∈Z∗

m1

ζnv
m1
S∗

n (n > 0),

where S∗
n =

∑

w∈Z∗

m0
/Hm0

(ζw
m0

+ζwa
m0

)n (n > 0) are the power sums associated

with Fm0(X) or Gm0(X) according as a ≡ −1 or m0/2− 1 (modm0). From
(22),

∑

v∈Z∗

m1

ζnv
m1

= µ(d)
φ(m1)

φ(d)

where (n,m1) = m1/d, so the formula for Sn given in the proposition follows.

I conclude this section with two examples illustrating Proposition 3.

Example 4. Consider θ1 = ζ35 + ζ29
35 in (1) where H = {1, 29} mod-

ulo 35. Here m0 = 5 and m1 = 7 with Hm0 = {±1} modulo 5 and
F5(X) = 1 + X − X2 from Theorem 1 or direct calculation. One finds
θ1 = ζ3

7 (ζ2
5 + ζ−2

5 ) with minimal polynomial

F (X) =
∏

v∈Z∗

7

F (ζv
7X) = 1 −X + 2X2 − 3X3 + 5X4 − 8X5 + 13X6

+8X7 + 5X8 + 3X9 + 2X10 +X11 +X12

from Proposition 3. Direct calculation of the power sums Sn yields S1 = 1,
S2 = −3, S3 = 4, S4 = −7, S5 = 11, S6 = −18, S7 = −174, S8 = −47,
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S9 = 76, S10 = −123, S11 = 199 and S12 = −322 in agreement with the
formula in Proposition 3.

Example 5. Next consider θ1 = ζ120 + ζ19
120 in (1) where H = {1, 19}

modulo 120. Here m0 = 40 and m1 = 3 from Lemma 2 with Hm0 = {1, 19}
modulo 40. From Example 3, G40(X) = 1 + 8X2 + 19X4 + 12X6 +X8. One
finds θ1 = ζ3(ζ

27
40 + ζ19·27

40 ) with minimal polynomial

F (X) = G40(ζ3X)G40(ζ
2
3X) = 1 − 8X2 + 45X4 − 128X6

+264X8− 212X10+ 125X12− 12X14 +X16

from Proposition 3.

3. Minimal polynomial for quadratic twists of ζm + ζ−1
m . Here I

consider certain twisted Gauss periods for odd m of the form θ = i∗
√
l (ζm+

(−1)(l−1)/2ζ−1
m ), where l |m′ with again m′ =

∏

p|m p as in the previous

section and i∗ = i(l−1)2/4. It is easy to see that θ generates K = Q(ζm +ζ−1
m )

since θ = TrQ(ζm)/K(i∗
√
l ζm) and

θ2 = (−1)(l−1)/2l(ζ2
m + ζ−2

m + (−1)(l−1)/22)(24)

already generates K. Now I wish to give formulas analogous to those in The-
orem 1 for such quadratic twists, which ultimately depend on the Aurifeuille
and Schinzel factors [3, 9, 13] of the cyclotomic polynomial ψm′ of the form

ψm′((−1)(l−1)/2z2) = a0 + a2z
2 + · · · + aφ(m′)z

φ(m′)

+
√
l (a1z + a3z

3 + · · · + aφ(m′)−1z
φ(m′)−1).

The conjugates of θ are

θv =

(

v

l

)

i∗
√
l (ζv

m + (−1)(l−1)/2ζ−v
m ) (v ∈ Z∗

m/(±1))(25)

with power sums Sn equaling

(26) l(n−1)/2m+

[nm′/m]
∑

t=1, (t,l)=1, t odd

(−1)(l−1)(1+m+t/m′)/4

× δm,l(t)

(

n

(n−mt/m′)/2

)

,

if n is odd, where

δm,l(t) =

(

lt/m′

l

)

µ

(

m−

(mt/m′,m−)

)

φ(m−)

φ
( m−

(mt/m′,m−)

) ,

or

ln/2

(

φ(m)

2

(

n

n/2

)

+
∑

d|m

µ(d)
φ(m)

φ(d)

[dn/2m]
∑

t=1, (t,d)=1

(−1)(l−1)t/2

(

n

n/2 −mt/d

))
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if n is even. Here m is uniquely expressed in the form m = m+m− where
(m−, l) = 1 and m+ > 0 is divisible only by primes dividing l. The above
formulas for Sn are readily obtained directly as in (23) using the expansions

θn
1 = ln/2

(

n

n/2

)

+ ln/2

n/2−1
∑

j=0

(−1)(l−1)(n+2j)/4

(

n

j

)

(ζn−2j
m + ζ2j−n

m )(27)

if n is even, or

(−1)(l−1)(n−1)/4l(n−1)/2i∗
√
l

(n−1)/2
∑

j=0

(

n

j

)

(−1)(l−1)j/2

× (ζn−2j
m + (−1)(l−1)/2ζ2j−n

m )

if n is odd, from the binomial theorem together with equation (22), the fact
that

∑

v∈Z∗

m/(±1)

((

v

l

)

ζtv
m + (−1)(l−1)/2ζ−tv

m

)

=
∑

v∈Z∗

m

(

v

l

)

ζtv
m ,

and the lemma below. Details of the calculation, similar to that in estab-
lishing (23), are left to the reader.

Lemma 3. With notation as above,
∑

x∈Z∗

m

(

x

l

)

ζtx
m = i∗

√
l
m+

l

(

lt/m

l

)

µ

(

m−

(t,m−)

)

φ(m−)

φ
( m−

(t,m−)

)

if (m+, t) = m+/l and 0 otherwise.

Proof. First note that
∑

x∈Z∗

m

ζtx
m = µ(d)

φ(m)

φ(d)

where (t,m) = m/d from (22). Applying the result of problem 4, p. 336, in
[2] with m = m+m−, one finds

∑

x∈Z∗

m

(

x

l

)

ζtx
m =

(

m−

l

)

∑

x∈Z∗

m+

(

x

l

)

ζtx
m+

·
∑

x∈Z∗

m
−

ζtx
m−
.

The first sum in the product on the right is non-vanishing only when (t,m+)
= m+/l, since otherwise in the factorization of

∑

x∈Z∗

m+

(

x
l

)

ζtx
m+

as a product

of Gauss sums defined modulo the distinct prime powers dividing m+, at
least one such component will be zero (by problem 4, p. 336 in [2] again, and
the fact that any imprimitive Gauss sum defined modulo a prime power van-
ishes). If (t,m+)=m+/l, say t=m+v/l with (v, l) = 1, then

∑

x∈Z∗

m+

(

x
l

)

ζtx
m+

is just m+/l copies of
∑

x∈Z∗

l

(

x
l

)

ζvx
l , so equals i∗

√
l m+

l

( lt/m+

l

)

. The second
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sum in the product equals

µ

(

m−

(t,m−)

)

φ(m−)

φ
( m−

(t,m−)

)

by my initial observation. The result of the lemma now follows since
(

m−

l

)(

lt/m+

l

)

=

(

lt/m

l

)

.

My aim here is to find a formula for the minimal polynomial of θ, or
more precisely for the reciprocal polynomial Pm,l(X), analogous to that for
Fm(X) in Section 2, whose zeros are the reciprocals of θv in (25). To this end
I first find an expression for the polynomial P (X) with zeros {±θ−1

v | v ∈
Z∗

m/(±1)}. From (24), one has (ζ2
m + ζ−2

m )−1 = (−1)(l−1)/2lθ−2/(1− 2lθ−2),
a zero of Fm(X), so

P (X) = (1 − 2lX2)φ(m)/2Fm((−1)(l−1)/2lX2/(1 − 2lX2))

=

(

1 − 2lX2 +
√

1 − 4lX2

2

)φ(m)/2

×ψm′

((

1 − 2lX2 −
√

1 − 4lX2

(−1)(l−1)/2lX2

)m/m′)

=

(

1 +
√

1 − 4lX2

2

)φ(m)

ψm′

(

(−1)(l−1)/2

(

1 −
√

1 − 4lX2

2
√
l X

)2m/m′)

from (20) since ((1 ±
√

1 − 4lX2)/2)2 = (1 − 2lX2 ±
√

1 − 4lX2)/2. For
convenience I write

P (X) = El(X)φ(m)ψm′((−1)(l−1)/2Al(X)2m/m′

)(28)

where El(X) = (1+
√

1 − 4lX2)/2, El(X) = (1−
√

1 − 4lX2)/2 andAl(X) =

(1 −
√

1 − 4lX2)/(2
√
l X). Now P (X) = Pm,l(X) · Pm,l(−X) over Z[X], so

the strategy is to find the correct factor of P (X) in (28).

Suppose ψm′((−1)(l−1)/2z2) factors in Q(
√
l) as gm′,l(z)gm′,l(−z) with

gm′,l(z) self-reciprocal and of the form

gm′,l(z) = a0 + a2z
2 + · · · + aφ(m′)z

φ(m′)(29)

+
√
l (a1z + a3z

3 + · · · + aφ(m′)−1z
φ(m′)−1)

for integers aj (0 ≤ j ≤ φ(m′)). Then aφ(m′)−j = aj (0 ≤ j ≤ φ(m′)/2)

and El(X)φ(m)/2 · gm′,l(Al(X)m/m′

) is a polynomial in Z[X]. In fact, since

El(X)Al(X) =
√
l X and

√
l XAl(X) = El(X), this polynomial is
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El(X)
m

m′

φ(m′)
2

×
(

φ(m′)/2
∑

j=0

a2j(Al(X)m/m′

)2j +

φ(m′)/2
∑

j=1

a2j−1

√
l (Al(X)m/m′

)2j−1
)

,

which equals

(30) aφ(m′)/2l
[(φ(m)+2)/4]Xφ(m)/2

+

[(φ(m′)−2)/4]
∑

j=0

a2j(lX
2)mj/m′

C m

m′
(φ(m′)/2−2j)(

√
l X)

+

[φ(m′)/4]
∑

j=1

a2j−1l
(m(2j−1)/m′+1)/2Xm(2j−1)/m′

C m

m′
(φ(m′)/2−2j+1)(

√
l X).

To find such a factor gm′,l(z) first consider

g(x) =
∏

v∈Z∗

m′

(

1 −
(

v

l

)

ζv
m′X

)

,

a polynomial over Q(i∗
√
l) with power sums given by (see Lemma 3)

(31)
∑

v∈Z∗

m′

(

v

l

)

ζvn
m′

=







i∗
√
l

(

ln/m′

l

)

µ

(

m′/l

(n,m′/l)

)

φ((n,m′/l)) if (n, l) = 1,

0 if (n, l) 6= 1

when n is odd, or by
∑

v∈Z∗

m′

ζvn
m′ = µ(d)φ(m′/d)

when n is even, where (n,m′) = m′/d. I assert that gm′,l(z) = g(εz), where

ε = (−1)(l−1)(1−m/m′)/4i∗ =

{

1 if l ≡ 1 (mod4),

(−1)(1−m/m′)/2i if l ≡ 3 (mod4),
(32)

has the desirable characteristics in (29). From (31) its associated power sums
for odd n are

Sn =







i∗εn

(

ln/m′

l

)

µ

(

m′/l

(n,m′/l)

)

φ((n,m′/l))
√
l if (n, l) = 1,

0 otherwise,
(33)

and

Sn = (−1)(l−1)n/4µ(d)φ(m′/d) if n is even,
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where (n,m′) = m′/d. From Newton’s identities (6) one readily finds that
gm′,l(z) has the form (29) with aj satisfying a polynomial dependence on
l of degree ≤ [j/2]. Furthermore, aφ(m′)−j = aj since gm′,l(z) is seen to be
self-reciprocal. In fact, gm′,m′(z) is just the polynomial Lm′(z) or Lm′(−z)
in equation (24) in [3], so is expressible in terms of the Aurifeuille factors
of ψm′((−1)(m

′−1)/2z). More generally, gm′,l(z) is seen to be expressible in

terms of the Schinzel factors [13] of ψm′((−1)(l−1)/2z). Brent [3] gives an
efficient algorithm to compute gm′,m′(z) from Newton’s identities, basically
due to Dirichlet, that readily generalizes to compute gm′,l(z) here.

I assert that Pm,l(X) = El(X)φ(m)/2gm′,l(Al(X)m/m′

) is the correct
choice with zeros θ−1

v for θv in (25). Indeed:

Theorem 3. Let gm′,l(z) be the self-reciprocal polynomial of the form

(29) and of degree φ(m′) over Q(
√
l) determined from the power sums in

(33). Then Pm,l(X) is given by (30) with coefficients cr for Xr satisfying

cr = l[(r+1)/2]

[m′r/m]
∑

j=0, j≡r (mod 2)

(−1)tjaj(34)

×
m
m′

(φ(m′)
2 − j

)

m
m′

(φ(m′)
2 − j

)

− tj

( m
m′

(φ(m′)
2 − j

)

− tj
tj

)

for 1 ≤ r < φ(m)/2, and

cφ(m)/2 = l[(φ(m)+2)/4]

×
(

aφ(m′)/2 + (−1)[(φ(m′)+2)/4]

φ(m′)/2−2
∑

j=0, j≡φ(m)/2 (mod 2)

(−1)[(j+1)/2]2aj

)

,

where tj = (r −mj/m′)/2.

Proof. In view of the remarks already made it suffices to show that
El(X)φ(m)/2gm′,l(Al(X)m/m′

), which yields the polynomial expression in
(30) above, has associated power sums matching those in (26). Again, ex-
panding log(1−T ) about T = 0, one finds logEl(X)φ(m)/2gm′,l(Al(X)m/m′

)
equals

φ(m)

2
logEl(X) +

∑

w∈Z∗

m′

log

(

1 −
(

w

l

)

εζw
m′Al(X)m/m′

)

= −φ(m)

2

∞
∑

n=1

(

2n

n

)

lnX2n

2n
−

∑

w∈Z∗

m′

∞
∑

v=1

εv

v

(

w

l

)

ζwv
m′Al(X)mv/m′
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= −φ(m)

2

∞
∑

n=1

(

2n

n

)

lnX2n

2n
−

∞
∑

v=1

εv

v
Al(X)mv/m′

∑

w∈Z∗

m′

(

w

l

)v

ζwv
m′ .

In view of (31) and Lemma 1, this last expression is seen to have the coeffi-
cient of Xn equal to

−φ(m)

2n

(

n

n/2

)

ln/2 − 1

n

∑

d|m′

µ(d)

× φ(m′)

φ(d)

[dn/2m]
∑

t=1, (t,d)=1

(−1)(l−1)t/2ln/2 m

m′

(

n

n/2 −mt/d

)

if n is even, or

− l
(n−1)/2

n

[m′n/m]
∑

t=1, (t,l)=1, t odd

i∗εt

(

lt/m′

l

)

µ

(

m′/l

(t,m′/l)

)

φ(m′/l)

φ
( m′/l

(t,m′/l)

)

× lm

m′

(

n

n/2 −mt/2m′

)

if n is odd. Since for (t, l) = 1,

(mt/m′,m−) =

(

m−t

m′/l
,m−

)

=
m−

m′/l
(t,m′/l),

one finds

m′/l

(t,m′/l)
=

m−

(mt/m′,m−)
and

φ(m′/l)

φ
( m′/l

(t,m′/l)

)

=
m′/l

m−

φ(m−)

φ
( m−

(mt/m′,m−)

) ,

so this last expression for odd n equals

− l
(n−1)/2m+

n

[nm′/m]
∑

t=1, (t,l)=1, t odd

i∗εtδm,l(t)

(

n

(n−mt/m′)/2

)

,

with δm,l(t) as in (26). But for t odd, i∗εt = (−1)(l−1)(1+mt/m′)/4 from (32),

so the polynomial El(X)φ(m)/2gm′,l(Al(X)m/m′

) has associated power sums
as in (26).

The formulas for the coefficients cr are obtained in a straightforward
fashion from the expression (30). This completes the proof of the theorem.

Next I give a few examples to illustrate Theorem 3.

Example 6. Consider θ1 = i
√

15 (ζ15 − ζ−1
15 ) in (25). Here l = m+ =

m = m′ = 15 and m− = 1 with ψ15(x) = 1 − x + x3 − x4 + x5 − x7 + x8.
One finds

g15,15(z) = 1 + 8z2 + 13z4 + 8z6 + z8 +
√

15 (z + 3z3 + 3z5 + z7)
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is the correct “Aurifeuille” factor of ψ15(−z2) satisfying (32). Indeed direct
computation of P15,15(X) yields

P15,15(X) = 1 + 15X + 60X2 − 225X4,

whose coefficients agree with those obtained from (34). Note that θ =
i
√

15 (ζ45 − ζ−1
45 ) with l = m′ = 15, m+ = m = 45 and m− = 1 requires the

conjugate factor

g15,15(z) = 1 + 8z2 + 13z4 + 8z6 + z8 −
√

15 (z + 3z3 + 3z5 + z7)

in the computation of

P45,15(X) = 1 − 180X2 − 225X3 + 54 · 152x4 + 9 · 153X5 − 104 · 153X6

− 27 · 154X7+ 57 · 154X8 + 27 · 155X9 + 36 · 155X10 − 156X12.

Example 7. Next consider θ1 = i
√

3 (ζ45 − ζ−1
45 ) in (25) with m = 45,

l = 3, m+ = 9, m′ = 15 and m− = 5, and again ψ15(x) = 1 − x+ x3 − x4 +
x5 − x7 + x8. One finds here that

g15,3(z) = 1 + 2z2 + z4 + 2z6 + z8 −
√

3 (z + z3 + z5 + z7)

is the correct “Schinzel” factor of ψ15(−z2) satisfying (32). Direct compu-
tation of the power sums Sn yields S1 = 0, S2 = 72, S3 = 27, S4 = 34 · 8,
S5 = 34 · 5, S6 = 34 · 79, S7 = 36 · 7, S8 = 35 · 272, S9 = 37 · 28, S10 = 38 · 107,
S11 = 38 · 110 and S12 = 38 · 1159, with

P45,3(X) = 1 − 36X2 − 9X3 + 35 · 2X4 + 35X5 − 33 · 110X6

− 37X7 + 34 · 93X8 + 35 · 29X9 − 37 · 2X10 − 37 · 2X11 − 36X12

in agreement with the formulas in Theorem 3. If instead one takes θ1 =√
5 (ζ45 + ζ−1

45 ) in (25) so m = 45, l = m+ = 5, m′ = 15 and m− = 9, then
the correct “Schinzel” factor of ψ15(z

2) satisfying (32) is

g15,5(z) = 1 + 2z2 + 3z4 + 2z6 + z8 −
√

5 (z + z3 + z5 + z7).

Direct computation yields

P45,5(X) = 1 − 60X2 − 25X3+ 52 · 54X4+ 53 · 9X5− 54 · 22X6− 54 · 27X7

+ 54 · 93X8 + 55 · 29X9 − 55 · 18X10 − 56 · 6X11 + 56X12,

whose coefficients agree with those determined from (34).

Example 8. Now consider θ1 =
√

21 (ζ21 + ζ−1
21 ) in (25). Here l = m+ =

m = m′ = 21 and m− = 1, with ψ21(x) = 1 − x+ x3 − x4 + x6 − x8 + x9 −
x11 + x12. One finds here that

g21,21(z) = 1 + 10z2 + 13z4 + 7z6 + 13z8 + 10z10 + x12

−
√

21 (x+ 3x3 + 2x5 + 2x7 + 3x9 + x11)
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is the correct “Aurifeuille” factor of ψ21(z
2) satisfying (32). Direct compu-

tation yields

P21,21(X) = 1 − 21X + 84X2 + 882X3 − 7938X4 + 18522X5 − 9261X6,

whose coefficients agree with those found from (34).
If one considers instead θ1 = i

√
7 (ζ21 − ζ−1

21 ) in (25), so l = m+ = 7,
m′ = m = 21 and m− = 3, one finds that

g21,7(x) = 1 + 4z2 − z4 − 7z6 − z8 + 4z10 + z12

+
√

7 (z + z3 − 2z5 − 2z7 + z9 + z11)

is the correct “Schinzel” factor of ψ21(−z2) satisfying (32) with

P21,7(X) = 1 + 7X − 14X2 − 72 · 4X3 − 72 · 8X4 + 73X6

from (34).

The special case m = pα warrants special consideration. Here I simply
write Ppα(X) for Ppα,p(X).

Corollary 3. For an odd prime p, Ppα(X) has the form

a(p−1)/2p
pα−1[(p+1)/4]Xpα−1(p−1)/2

+

[(p−3)/4]
∑

j=0

a2j(pX
2)pα−1jCpα−1( p−1

2
−2j)(

√
pX)

+

[(p−1)/4]
∑

j=1

a2j−1p
(pα−1(2j−1)+1)/2Xpα−1(2j−1)Cpα−1( p−1

2
−2j+1)(

√
pX),

with coefficient cr for Xr satisfying

cr = p[(r+1)/2]

[rp1−α]
∑

j=0, j≡r (mod 2)

(−1)tjaj

× pα−1
(p−1

2 − j
)

pα−1
(p−1

2 − j
)

− tj

(

pα−1
(p−1

2 − j
)

− tj
tj

)

for 1 ≤ r < φ(pα)/2, where tj = (r − pα−1j)/2, and with

cφ(pα)/2 =















(

2

p

)

pφ(pα)/4 if p ≡ 1 (mod4),

(−1)N

(

2

p

)

(−p)(φ(pα)+2)/4 if p ≡ 3 (mod4),

where N is the number of quadratic non-residues of p in (0, p/2).

Proof. I need only justify the determination of the last coefficient cφ(pα)/2

= (−1)φ(pα)/2NK/Q(i∗
√
p (ζpα + (−1)(p−1)/2ζ−1

pα )), where K = Q(ζpα + ζ−1
pα ).
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For p ≡ 1 (mod4), one immediately has cφ(pα)/2 =
(

2
p

)

pφ(pα)/4 since

NK/Q(ζpα + ζ−1
pα ) =

(

2
p

)

from (19). For p ≡ 3 (mod4), one notes that (see

problem 14, p. 355 in [2]; see also (35) below)

[pα/2]
∏

v=1, p ∤ v

(ζv
pα − ζ−v

pα ) =

[p/2]
∏

v=1

(ζp − ζ−v
p ) = i

√
p

(−2

p

)

,

so that

cφ(pα)/2 = −
[pα/2]
∏

v=1, p ∤ v

i
√
p

(

v

p

)

(ζv
pα − ζ−v

pα ) =

(

2

p

)

(−1)N (−p)(φ(pα)+2)/4,

where N counts the number of times
(

v
p

)

= −1 for 1 ≤ v ≤ (p− 1)/2.

Actually it is no more difficult to determine the last coefficient cφ(m)/2

for the polynomial Pm,l(X) in Theorem 3 in general. For odd compos-

ite m′, cφ(m)/2 is the norm of θ1 in (25) so equals ±lφ(m)/4 since i∗(ζm +

(−1)(l−1)/2ζ−1
m ) is a unit of K. The correct sign is given by

Proposition 4. For odd composite m′ in Theorem 3,

cφ(m)/2 = (−1)N lφ(m)/4,

where N counts the number of reduced residues v modulo m′ in (0,m′/2)
with

(

v
l

)

= −1.

Proof. First note that for any integer a with (a,m′) = 1,

∏

v∈Z∗

m, v≡a (modm′)

(ζv
m±ζ−v

m ) =

m/m′−1
∏

λ=0

(ζλ
m/m′ζ

a
m±ζ−λ

m/m′
ζ−a
m ) = ζa

m′±ζ−a
m′(35)

since ζa+λm′

m = ζλ
m/m′ · ζa

m for 0 ≤ λ < m/m′. Moreover, I assert here that

(m′−1)/2
∏

v=1, (v,m′)=1

2 sin
2πv

m′
=

(m′−1)/2
∏

v=1, (v,m′)=1

2 cos
2πv

m′
= 1(36)

since m′ is odd and composite. To verify (36) observe that up to sign
∏

2 sin(2πv/m′) is the norm from K to Q of the unit i(ζm′ − ζ−1
m′ ), so it

equals ±1. But 2 sin(2πv/m′) > 0 for 1 ≤ v ≤ (m′ − 1)/2, so that the prod-
uct must be 1 and hence also the product of its conjugates 2 sin(4πv/m′)
for 1 ≤ v ≤ (m′ − 1)/2. Since

2 cos(2πv/m′) =
2 sin(4πv/m′)

2 sin(2πv/m′)
,
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the product of cosines must also equal 1. Now from (35),

cφ(m)/2 =

[m/2]
∏

v=1, (v,m′)=1

i∗
√
l

(

v

l

)

(ζv
m + (−1)(l−1)/2ζ−v

m )

= ((−1)(l−1)/2l)φ(m)/4

[m′/2]
∏

v=1, (v,m′)=1

(

v

l

)

(ζv
m′ + (−1)(l−1)/2ζ−v

m′ )

or just

((−1)(l−1)/2l)φ(m)/4(−1)N (−1)
l−1
2

φ(m′)
4 = (−1)N lφ(m)/4

by (36), where N counts the number of reduced residues v modulo m′ in the
interval (0,m′/2) with

(

v
l

)

= −1. This completes the proof of the proposi-
tion.

Before concluding this section I wish to remark that one obtains a variant
for the sums Sn in (26) when n is even using the fact that P (X) = Pm,l(X) ·
Pm,l(−X), so that Sn = 1

2S
′

n, where S
′

n is the nth power sum associated to
P (X) with n even. Now from (28),

logP (X) = φ(m) logEl(X) +
∑

d|m′

µ(d) log(1 − (−1)(l−1)/2Al(X)2m/m′

)

= −φ(m)
∞
∑

n=1

(

2n

n

)

lnX2n

2n

−
∑

d|m′

µ(d)

∞
∑

v=1

(−1)(l−1)v/2

v
Al(X)2mv/m′

.

Thus if n is even,

Sn = ln/2 φ(m)

2

(

n

n/2

)

+ ln/2
∑

d|m

µ(d)
m

d

[nd/2m]
∑

t=1

(−1)(l−1)t/2

(

n

n/2 −mt/d

)

as an alternative expression for Sn in (26).
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