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On the number of m-term zero-sum subsequences
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David J. Grynkiewicz (Pasadena, CA)

1. Introduction. A sequence S of terms from an abelian group is zero-

sum if the sum of the terms of S is zero. In 1961 Erdős, Ginzburg and Ziv
proved that any sequence of 2m − 1 terms from an abelian group of order
m contains an m-term zero-sum subsequence [10]. This sparked a flurry of
generalizations, variations and extensions [1], [3], [7], [8], [11], [13]–[18], [21],
[25]–[27], [36]. Since a sequence from the cyclic group Z/mZ consisting of
only 0’s and 1’s has its m-term zero-sum subsequences in exact correspon-
dence with its m-term monochromatic subsequences, the Erdős–Ginzburg–
Ziv Theorem can be viewed as a generalization of the pigeonhole principle
for m pigeons and two boxes. In essence, the Erdős–Ginzburg–Ziv Theorem
expresses the idea that often the best way to avoid zero-sums is to consider
sequences with very few distinct terms.

For sequences whose length is greater than 2m − 1, a natural question
to ask is how many m-term zero-sum subsequences one can expect. If the
sequence S has length n and consists of at most two distinct terms, then
there will be at least

(

⌈n
2
⌉

m

)

+
(

⌊n
2
⌋

m

)

m-term monochromatic subsequences.
Thus if the best way to avoid m-term zero-sum subsequences were still to
use only two distinct residues from Z/mZ, then one would expect there to

always be at least
(

⌈n
2
⌉

m

)

+
(

⌊n
2
⌋

m

)

m-term zero-sum subsequences. This was
conjectured by Bialostocki in 1989 [2] and later appeared in [5].

Conjecture 1.1. If S is a sequence of n terms from the cyclic group

Z/mZ, then S has at least
(⌈n

2
⌉

m

)

+
(⌊n

2
⌋

m

)

m-term zero-sum subsequences.

A few years after the conjecture was made, Kisin verified it in the case
m = pα and m = pαq, where p and q are primes and α ≥ 1, and expressed
reasons why the conjecture might fail for m not of this form [30]. At the same
time, Füredi and Kleitman showed that Conjecture 1.1 held for sufficiently
large n (of order m6m), as well as for m of the form m = pq, where p and q

are distinct primes, and showed that 2
(

⌊n
2
⌋

m

)

−m2
(⌊n

2
⌋−1

m−1

)

was a general lower
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bound on the number of m-term zero-sum subsequences [12]. Their results,
contrary to those of Kisin, led them to strongly believe the conjecture of
Bialostocki to be true for n > 4m. Unfortunately, the lower bound shown
by Füredi and Kleitman, while being very nice asymptotically for large n
and fixed m, tells us very little for small n, particularly if m is also large.

The aim of this paper is to give a proof, using some recently developed
machinery from zero-sum Ramsey theory, of the following general bound on
the number of m-term zero-sum subsequences.

Theorem 1.1. If S is a sequence of n terms from an abelian group G
of order m ≥ 30, then S contains at least

min

{(

⌈n
2 ⌉

m

)

+

(

⌊n
2 ⌋

m

)

,

(

n − m

⌈2m−1
3 ⌉

)}

m-term zero-sum subsequences.

Unlike the general bound of Füredi and Kleitman, the bound given by
Theorem 1.1 is much more accurate for sequences of small length, and, as
will be shown in Section 3, verifies Conjecture 1.1 for n ≤ 61

3m. Ironically,
this confirms the conjecture of Bialostocki for those cases least thought to
be true. Theorem 1.1 also gives a bound for more general abelian groups in
addition to cyclic groups.

2. Preliminaries. Let (G, +, 0) be an abelian group. If A, B ⊆ G, then
their sumset, A + B, is the set of all possible pairwise sums, i.e. {a + b |
a ∈ A, b ∈ B}. A set A ⊆ G is Ha-periodic if it is the union of Ha-cosets for
some subgroup Ha of G (note this definition allows Ha to be trivial). We say
that A is maximally Ha-periodic if A is Ha-periodic, and Ha is the maximal
subgroup for which A is Ha-periodic; in this case, Ha = {x ∈ G | x+A = A},
and Ha is sometimes referred to as the stabilizer of A. A set A which is
maximally Ha-periodic, with Ha the trivial group, is aperiodic, and otherwise
we refer to A as periodic. An Ha-hole of A (where the subgroup Ha is usually
understood) is an element α ∈ (A+Ha) \A. For notational convenience, we
use φa : G → G/Ha to denote the natural homomorphism. If S is a sequence
of elements from G, then an n-set partition of S is a partition of the sequence
S into n nonempty subsequences, A1, . . . , An, such that the terms in each
subsequence Ai are all distinct (thus allowing each subsequence Ai to be
considered a set). Also, |S| denotes the cardinality of S, if S is a set, and
the length of S, if S is a sequence. Finally, if S′ is a subsequence of S, then
S \ S′ denotes the subsequence of S obtained by deleting all terms in S′.

We begin by stating Kneser’s Theorem [31], [28], [32], [29], [34], [23]. The
case with m prime is known as the Cauchy–Davenport Theorem [9].
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Kneser’s Theorem. Let G be an abelian group, and let A1, . . . , An

be a collection of finite, nonempty subsets of G. If
∑n

i=1 Ai is maximally

Ha-periodic, then

∣

∣

∣

n
∑

i=1

φa(Ai)
∣

∣

∣
≥

n
∑

i=1

|φa(Ai)| − n + 1.

Note that if A is maximally Ha-periodic, then φa(A) is aperiodic. Also,
observe that if A + B is maximally Ha-periodic and ̺ = |A + Ha| − |A| +
|B + Ha| − |B| is the number of holes in A and B, then Kneser’s Theorem
implies |A+B| ≥ |A|+|B|−|Ha|+̺. Consequently, if either A or B contains
a unique element from some Ha-coset, then |A + B| ≥ |A| + |B| − 1. More
generally, if ̺ =

∑n
i=1 |Ha +Ai|− |Ai| is the total number of holes in the Ai,

then
∣

∣

∣

n
∑

i=1

Ai

∣

∣

∣
≥

n
∑

i=1

|Ai| − (n − 1)|Ha| + ̺.

Hence, if |
∑n

i=1 Ai| <
∑n

i=1 |Ai| − n + 1, then ̺ < (n − 1)(|Ha| − 1).

The following characterizes when a sufficiently compressed n-set parti-
tion exists [20], [4].

Proposition 2.1. Let n1 and n0 be positive integers with n0 ≤ n1.

A sequence S of terms from G has an n1-set partition A = A1, . . . , An1
with

|Ai|= 1 for i > n0 (and | |Ai|−|Aj | | ≤ 1 for i, j ≤ n0) if and only if |S| ≥ n1,
and for every nonempty subset X ⊆ G with |X| ≤ (|S| − n1 − 1)/n0 + 1
there are at most n1 +(|X| − 1)n0 terms of S from X. In particular , S has

an n1-set partition if and only if |S| ≥ n1 and the multiplicity of every term

of S is at most n1.

The next simple proposition can often be quite useful when dealing with
n-set partitions [4].

Proposition 2.2. Let S be a finite sequence of elements from an abelian

group G, and let A = A1, . . . , An be an n-set partition of S, where |
∑n

i=1 Ai|
= r, and maxi{|Ai|} = s.

(i) There exists a subsequence S′ of S and an n′-set partition A′ =
Ai1 , . . . , Ain′

of S′, which is a subsequence of the n-set partition A =

A1, . . . , An, such that n′ ≤ r − s + 1 and |
∑n′

j=1 Aij | = r.

(ii) There exists a subsequence S′ of S of length at most n + r − 1,
and an n-set partition A′ = A′

1, . . . , A
′
n of S′, where A′

i ⊆ Ai for

i = 1, . . . , n, such that |
∑n

i=1 A′
i| = r.

The following theorem [20], [22] is a recent generalization of results of
Mann [33], Olson [35], Bollobás and Leader [6], and Hamidoune [24].
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Theorem 2.1. Let S′ be a subsequence of a finite sequence S of terms

from an abelian group G, let A = A1, . . . , An be an n-set partition of S′,
and let ai ∈ Ai for i ∈ {1, . . . , n}. Then there exists an n-set partition A′ =
A′

1, . . . , A
′
n of a subsequence S′′ of S with sumset Ha-periodic, |S′| = |S′′|,

∑n
i=1 Ai ⊆

∑n
i=1 A′

i, ai ∈ A′
i for i ∈ {1, . . . , n}, and

∣

∣

∣

n
∑

i=1

A′
i

∣

∣

∣
≥ (E(A′, Ha) + (N(A′, Ha) − 1)n + 1)|Ha|,

where

N(A′, Ha) =
1

|Ha|

∣

∣

∣

n
⋂

i=1

(A′
i + Ha)

∣

∣

∣
,

E(A′, Ha) =
n

∑

j=1

(

|A′
j | −

∣

∣

∣
A′

j ∩
n
⋂

i=1

(A′
i + Ha)

∣

∣

∣

)

.

Furthermore, if Ha is nontrivial , then φa(x)∈φa(A
′
i) for every i∈{1, . . . , n}

and every x ∈ S \ S′′.

Note that Theorem 2.1 implies |
∑n

i=1 A′
i| ≥ min{|G|, |S′|−n+1} unless

N(A′, Ha) > 0 and Ha is a proper, nontrivial subgroup. Let ̺ = Nn|Ha| −
|S′|+e, where N = N(A′, Ha) and e = E(A′, Ha), be the number of Ha-holes
contained among the sets A′

j ∩
⋂n

i=1(A
′
i + Ha), j = 1, . . . , n. Also observe

that if Theorem 2.1 does not hold with Ha trivial, then (e+(N−1)n+1)|Ha|
≤ |S′| −n, implying Nn|Ha| − |S′| ≤ n(|Ha| − 1)−|Ha| − e|Ha|, which from
the previous sentences implies

̺ < (n − 1 − e)(|Ha| − 1) ≤ (n − 1)(|Ha| − 1),

mirroring the bound obtained from Kneser’s Theorem discussed earlier.

We will need the following draining theorem for n-set partitions [19].

Theorem 2.2. Let S be a finite sequence of elements from an abelian

group G. If S has an n-set partition, A = A1, . . . , An, such that

∣

∣

∣

n
∑

i=1

Ai

∣

∣

∣
≥

n
∑

i=1

|Ai| − n + 1,

then there exists a subsequence S′ of S, with length |S′| ≤ max{|S| − n

+1, 2n}, and with an n-set partition, A′ = A′
1, . . . , A

′
n, such that |

∑n
i=1 A′

i|
≥

∑n
i=1 |Ai| − n + 1. Furthermore, if | |Ai| − |Aj | | ≤ 1 for all i and j, or if

|Ai| ≥ 3 for all i, then A′
i ⊆ Ai.

Finally, we conclude with the following well known and basic theorem
bounding the real roots of a polynomial with real coefficients.
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Theorem 2.3. Let P (x) be a polynomial with real coefficients and posi-

tive leading coefficient , and let a be a real number. If a > 0, and all nonzero

terms of P (x)/(x − a), including remainder (computed by polynomial divi-

sion), are positive, then a is an upper bound for all real roots of P (x).

Proof. Let P (x) = Q(x)(x− a) + r, with r ∈ R. Since all nonzero terms
of P (x)/(x−a), including remainder (computed by polynomial division), are
positive, it follows that r ≥ 0 and Q(x) > 0 for all real x > 0. Thus, since
for x > a > 0 we have x− a > 0, it follows that P (x) = Q(x)(x− a) + r > 0
for x > a.

3. The proof. In view of the results of Kisin [30] mentioned in the
introduction, it follows that Conjecture 1.1 is known for m < 30, as well as
for m = 25 = 32, m = 5 · 7 = 35, and m = 2 · 19 = 38. We begin by prov-
ing several lemmas relating the sizes of two different binomial coefficients.
Note that in view of the first sentence of this section, Lemma 3.2 below
and Theorem 1.1 together imply Conjecture 1.1 for n ≤ 61

3m. Both Lem-
mas 3.1 and 3.2 are straightforward computations, best done with machine
assistance, but for the benefit of the reader we include many of the details.

Lemma 3.1. If m ≥ 30 and n are integers with 2m − 1 ≤ n ≤ 3m +

⌈2m−1
3 ⌉ − 2, then

(

n − m

⌈m
2 ⌉

)

> 2

(

⌈n
2 ⌉

m

)

.

Proof. Let

R(n, m) =

(

n − m

⌈m
2 ⌉

)

/2

(n+1
2

m

)

=
(n − m) · · · (n − m − ⌈m

2 ⌉ + 1)(m) · · · (⌈m
2 ⌉ + 1)

2(n+1
2 ) · · · (n+1

2 − m + 1)
.

Since
(n+1

2
m

)

≥
(

⌈n
2
⌉

m

)

, it suffices to show R(n, m) > 1. We begin by showing

that R(n, m) ≥ R(n + 2, m).

Let

Q(n, m) =
(n − m − m+1

2 + 2)(n − m − m+1
2 + 1)(n+1

2 + 1)

(n − m + 2)(n − m + 1)(n+1
2 − m + 1)

≤ R(n, m)/R(n + 2, m).

To show R(n, m) ≥ R(n + 2, m), we will show that Q(n, m) ≥ 1, i.e. (by
multiplying out the denominator, expanding and collecting terms) that

4(m − 1)n2 − (11m2 − 12m + 17)n + (8m3 − 9m2 + 16m − 15) ≥ 0.
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This will occur if both roots of the above polynomial are imaginary, which
by the quadratic formula occurs when

(1) m4 −
8

7
m3 −

118

7
m2 −

88

7
m − 7 > 0.

However, Theorem 2.3 shows that the roots of the polynomial m4 − 8
7m3 −

118
7 m2 − 88

7 m− 7 are bounded from above by 6. Consequently, (1) holds for
m ≥ 7, and we can assume R(n, m) ≥ R(n + 2, m).

Since R(n, m) ≥ R(n + 2, m), it suffices to show R(32
3m + b, m) > 1

for b = −2 + (⌈2m−1
3 ⌉ − 2

3m) and b = −3 + (⌈2m−1
3 ⌉ − 2

3m). Note b ∈

{−5
3 ,−6

3 ,−7
3 ,−8

3 ,−9
3 ,−10

3 }. Let S(m) = R(32
3m+b, m). Next we show that

S(m + 6) ≥ S(m). Note that computing S(m) for each m ∈ {30, . . . , 35}
and both possible values for b shows that S(m) > 1 for those m. Hence the
proof will be complete once we have shown that S(m + 6) ≥ S(m).

Let

P (m) =
( 8

3
m+b+16)···( 8

3
m+b+1)(m+6)···(m+1)( 5

6
m+ b+1

2
+5)···( 5

6
m+ b+1

2
+1)

( 11

6
m+ b+1

2
+11)···( 11

6
m+ b+1

2
+1)( m+1

2
+3)···( m+1

2
+1)( 13

6
m+b+13)···( 13

6
m+b+1)

≤ S(m + 6)/S(m).

To see that S(m + 6) ≥ S(m), we will show that P (m) ≥ 1. By multiplying
out denominators, bringing all terms to the left hand side, expanding and
collecting terms, and rounding coefficients down, it follows that it suffices
to show

− 3 · 1017 − 4 · 1018m − 3 · 1019m2 − 2 · 1020m3 − 4 · 1020m4

− 7 · 1020m5 − 2 · 1021m6 − 2 · 1021m7 − 2 · 1021m8 − 2 · 1021m9

− 8 · 1020m10 − 5 · 1020m11 − 2 · 1020m12 − 8 · 1019m13 − 3 · 1019m14

− 7 · 1018m15 − 2 · 1018m16 − 4 · 1017m17 − 6 · 1016m18

− 7 · 1015m19 − 7 · 1014m20 − 5 · 1013m21 − 2 · 1012m22

− 4 · 1010m23 + 7 · 108m24 + 2 · 108m25 + 107m26 + 3 · 105m27 > 0

(the rounded polynomial just given is strictly less, for positive m, than the
corresponding polynomial for each value of b ∈ {−5

3 ,−6
3 ,−7

3 ,−8
3 ,−9

3 ,−10
3 }

obtained by algebraic manipulation). However, by Theorem 2.3, the roots of
the displayed polynomial are all bounded from above by 23, implying that
the inequality from the last sentence holds for m ≥ 24, which completes the
proof.

Lemma 3.2. If m≥ 30 and n are integers either with 2m−1≤ n≤ 61
3m,

m 6= 32, 35, 38, or else with 2m − 1 ≤ n ≤ 61
3m − 6, then

(

n − m

⌈2m−1
3 ⌉

)

> 2

(

⌈n
2 ⌉

m

)

.
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Proof. Let

R(n, m) =

(

n − m

⌈2m−1
3 ⌉

)

/2

(n+1
2

m

)

=
(n − m) · · · (n − m − ⌈2m−1

3 ⌉ + 1)(m) · · · (⌈2m−1
3 ⌉ + 1)

2(n+1
2 ) · · · (n+1

2 − m + 1)
.

Since
(n+1

2
m

)

≥
(

⌈n
2
⌉

m

)

, it suffices to show R(n, m) > 1. We begin by showing

that R(n, m) ≥ R(n + 2, m).

Let

Q(n, m) =
(n − m − 2m+1

3 + 2)(n − m − 2m+1
3 + 1)(n+1

2 + 1)

(n − m + 2)(n − m + 1)(n+1
2 − m + 1)

≤ R(n, m)/R(n + 2, m).

To show R(n, m) ≥ R(n + 2, m), we will show that Q(n, m) ≥ 1, i.e. (by
multiplying out the denominator, expanding and collecting terms) that

3(m − 1)n2 − (10m2 − 5m + 13)n + (9m3 − 3m2 + 6m − 12) ≥ 0.

This will occur if both roots of the above polynomial are imaginary, which
by the quadratic formula occurs when

(2) m4 −
11

2
m3 −

177

8
m2 −

43

4
m −

25

8
> 0.

However, by Theorem 2.3 the roots of the polynomial m4− 11
2 m3− 177

8 m2−
43
4 m− 25

8 are bounded from above by 9. Consequently, (2) holds for m ≥ 10,
and we can assume R(n, m) ≥ R(n + 2, m).

First assume that n ≤ 61
3m with m 6= 32, 35, 38. Since R(n, m) ≥

R(n + 2, m), it suffices to show R(61
3m + b, m) > 1 for b = ⌊61

3m⌋ − 61
3m

and b = −1 + (⌊61
3m⌋ − 61

3m). Note b ∈ {0,−1
3 ,−2

3 ,−3
3 ,−4

3 ,−5
3}. Let

S(m) = R(61
3m + b, m). Next we show that S(m + 6) ≥ S(m) for m ≥ 43.

Note that computing S(m) for each m ≤ 48, m 6= 32, 35, 38, and both pos-
sible values for b, shows that S(m) > 1 for such m. Hence the first part of
the lemma will be complete once we have shown that S(m + 6) ≥ S(m) for
m ≥ 43.

Let

P (m) =

( 16

3
m+b+32)···( 16

3
m+b+1)(m+6)···(m+1)( 13

6
m+ b+1

2
+13)···( 13

6
m+ b+1

2
+1)

( 19

6
m+ b+1

2
+19)···( 19

6
m+ b+1

2
+1)( 2m+1

3
+4)···( 2m+1

3
+1)( 14

3
m+b+ 1

3
+28)···( 14

3
m+b+ 1

3
+1)

.

Note that P (m) ≤ S(m+6)/S(m) for m ≥ 43. To see that S(m+6) ≥ S(m),
it suffices to show P (m) ≥ 1. The proof proceeds as in the previous lemma.
The case with n ≤ 61

3m − 6 is handled similarly.
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Lemma 3.3. Let n, m, and x be positive integers. If n ≥ 3
2m − 1, then

3x

(

n

m

)

≥

(

n + x

m

)

.

Proof. Observe that the following binomial identity holds:

(3)

(

n

m

)

=
n − m + 1

m

(

n

m − 1

)

.

Since n ≥ 3
2m − 1, (3) implies that 2

(

n+x′

m

)

≥
(

n+x′

m−1

)

for x′ ≥ 0. Hence from
the Pascal identity, it follows that

3

(

n + x′

m

)

≥

(

n + x′

m

)

+

(

n + x′

m − 1

)

=

(

n + x′ + 1

m

)

for x′ ≥ 0. Iterating the above inequality for x′ = 0, . . . , x − 1 yields
3x

(n
m

)

≥
(n+x

m

)

.

We now proceed with the proof of Theorem 1.1, which will be divided
into several steps. For our main method to work, we will need the existence
of a sufficiently compressed ⌈n

2 ⌉-set partition. Thus we will first handle sev-
eral special and highly restrictive sequences S which do not admit such a
compressed set partition.

Let Zm(S) denote the number of m-term zero-sum subsequences of S.
Note that from the Erdős–Ginzburg–Ziv Theorem it follows trivially that
Zm(S) ≥ n−2m+2. Thus Zm(S) ≥

(

⌈n
2
⌉

m

)

+
(

⌊n
2
⌋

m

)

for n ≤ 2m. Consequently,
inductively assume

Zm(S′) ≥ min

{(

⌈n
2 ⌉

m

)

+

(

⌊n
2 ⌋

m

)

,

(

n − m

⌈2m−1
3 ⌉

)}

for any sequence S′ of n′ terms from an abelian group of order m provided
n′ < n, and also assume that n ≥ 2m+1. In view of the results of Kisin [30],
we may assume that m is composite.

Step 1 (S essentially monochromatic): Suppose that there is a term x of

S with multiplicity at least ⌈n
2 ⌉. Then there will be at least

(⌈n
2
⌉−1

m−1

)

m-term

monochromatic (and hence also zero-sum) subsequences of S that include x.

By induction hypothesis there are at least min
{(⌈n−1

2
⌉

m

)

+
(⌊n−1

2
⌋

m

)

,
(n−m−1
⌈ 2m−1

3
⌉

)}

m-term zero-sum subsequences that do not include x. Hence there are in
total at least

min

{(

⌈n
2 ⌉ − 1

m − 1

)

+

(

⌈n−1
2 ⌉

m

)

+

(

⌊n−1
2 ⌋

m

)

,

(

⌈n
2 ⌉ − 1

m − 1

)

+

(

n − m − 1

⌈2m−1
3 ⌉

)}

m-term zero-sum subsequences. By the Pascal identity for binomial coeffi-
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cients,
(

⌈n
2 ⌉ − 1

m − 1

)

+

(

⌈n−1
2 ⌉

m

)

+

(

⌊n−1
2 ⌋

m

)

=

(

⌈n
2 ⌉ − 1

m − 1

)

+

(

⌈n
2 ⌉ − 1

m

)

+

(

⌊n
2 ⌋

m

)

=

(

⌈n
2 ⌉

m

)

+

(

⌊n
2 ⌋

m

)

.

Thus the proof is complete unless

(4)

(

n − m − 1

⌈2m−1
3 ⌉

)

<

(

⌈n−1
2 ⌉

m

)

+

(

⌊n−1
2 ⌋

m

)

,

and
(

⌈n
2 ⌉ − 1

m − 1

)

+

(

n − m − 1

⌈2m−1
3 ⌉

)

<

(

n − m

⌈2m−1
3 ⌉

)

.

From the above inequality and the Pascal identity, it follows that

(5)

(

⌈n
2 ⌉ − 1

m − 1

)

<

(

n − m − 1

⌈2m−1
3 ⌉ − 1

)

.

From (4) and Lemma 3.2, it follows that n − 1 > 61
3m − 6. Applying the

binomial identity given in (3) to (5) yields

(6)

(

⌈n
2 ⌉ − 1

m − 1

)

<
⌈2m−1

3 ⌉

n − m − ⌈2m−1
3 ⌉

(

n − m − 1

⌈2m−1
3 ⌉

)

,

and

(7)

(

⌈n
2 ⌉ − 1

m

)

<
⌈n

2 ⌉ − m

m
·

⌈2m−1
3 ⌉

n − m − ⌈2m−1
3 ⌉

(

n − m − 1

⌈2m−1
3 ⌉

)

.

If n is odd, then (4) implies
(n−m−1
⌈ 2m−1

3
⌉

)

<
(⌈n

2
⌉−1
m

)

+
(⌈n

2
⌉−1
m

)

, and if n is even,

then (4) and the Pascal identity imply
(

n−m−1

⌈2m−1
3 ⌉

)

<

(

⌈n
2 ⌉

m

)

+

(

⌈n
2 ⌉−1

m

)

=

(

⌈n
2 ⌉−1

m

)

+

(

⌈n
2 ⌉−1

m − 1

)

+

(

⌈n
2 ⌉−1

m

)

.

Hence from (6) and (7), it follows that
(

n − m − 1

⌈2m−1
3 ⌉

)

<

(

2 ·
⌈n

2 ⌉ − m

m
·

⌈2m−1
3 ⌉

n − m − ⌈2m−1
3 ⌉

+
⌈2m−1

3 ⌉

n − m − ⌈2m−1
3 ⌉

)(

n − m − 1

⌈2m−1
3 ⌉

)

,

which in turn implies that

1 <
2(n+1

2 − m) · 2m+1
3 + m · 2m+1

3

m · (n − m − 2m+1
3 )

.
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From the above inequality, it follows that (m−1)n < 3m2+2m+1, implying
n < 3m + 5 + 6

m−1 , which contradicts n − 1 > 61
3m − 6 and m ≥ 30. So we

may assume that the multiplicity of every term x of S is at most ⌈n
2 ⌉ − 1.

Step 2 (S essentially dichromatic): Suppose that every term of S, with
at most max{m− m

p , ⌊2m−4
3 ⌋} exceptions if n ≥ 3m + ⌈2m−1

3 ⌉− 1, and with

at most m − m
p exceptions if n ≤ 3m + ⌈2m−1

3 ⌉ − 2, is equal to one of two
elements x, y ∈ G, where p is the smallest prime divisor of m. Let nx and
ny denote the respective multiplicities of x and y in S. Rearrange the terms
of S so that all the terms equal to x precede all the terms equal to y, which
in turn precede all terms equal to neither x nor y, and let x1, . . . , xn be the
resulting sequence. For i ∈ {1, . . . , ⌊n

2 ⌋}, let Ai = {xi, xi+⌈n
2
⌉}, and if n is

odd, then let A⌈n
2
⌉ = {x⌈n

2
⌉}. Then in view of Step 1, A = A1, . . . , A⌈n

2
⌉ is

an ⌈n
2 ⌉-set partition of S such that either x ∈ Ai or y ∈ Ai for every set Ai.

There are
(

⌊n
2
⌋

m

)

ways to choose m sets Ai from A all with |Ai| = 2, and

(in case n odd) there are
(⌈n

2
⌉−1

m−1

)

ways to choose m sets Ai from A that
include the set A⌈n

2
⌉ of cardinality one. Consequently, if we can show that

any such selection Ai1 , . . . , Aim has a set Aik such that 0 ∈ z +
∑m

j=1, j 6=k Aij

for every z ∈ Aik (in which case we will say that the selection Ai1 , . . . , Aim

is good), then there will be (in case n even) at least 2
(⌊n

2
⌋

m

)

=
(⌊n

2
⌋

m

)

+
(⌈n

2
⌉

m

)

m-term zero-sum subsequences, and (in case n odd), in view of the Pascal
identity, at least

2

(

⌊n
2 ⌋

m

)

+

(

⌈n
2 ⌉ − 1

m − 1

)

=

(

⌊n
2 ⌋

m

)

+

(

⌈n
2 ⌉ − 1

m

)

+

(

⌈n
2 ⌉ − 1

m − 1

)

=

(

⌊n
2 ⌋

m

)

+

(

⌈n
2 ⌉

m

)

m-term zero-sum subsequences, whence the proof is complete. We proceed
to show this is the case, except for a highly restrictive sequence that we
handle separately afterwards.

If the selection Ai1 , . . . , Aim contains the set A⌈n
2
⌉ and n is odd, then let

Aik = A⌈n
2
⌉, and otherwise let Aik be a set Aij = {x, y} (such a set exists,

since at most max{m − m
p , ⌊2m−4

3 ⌋} < m terms of S are equal to neither x

nor y). If
∣

∣

∣

m
∑

j=1
j 6=k

Aij

∣

∣

∣
≥

m
∑

j=1
j 6=k

|Aj | − (m − 1) + 1 = m,

then for each z ∈ Aik we can select a term from each of the Aij , j 6= k, so that
the sum of the m − 1 terms so selected is the additive inverse of z, whence
the selection Ai1 , . . . , Aim is good. Otherwise, from Kneser’s Theorem it
follows that

∑m
j=1, j 6=k Aij is maximally Ha-periodic, with Ha of index a and

1 < a < m.
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Suppose that φa(x) = φa(y), i.e. x and y are from the same Ha-coset.
Hence, since every set Aij contains either x or y, it contains a representative
from the coset x + Ha. Since

∑m
j=1, j 6=k Aij is Ha-periodic, it follows that

0 ∈ Ha = mx + Ha ⊂ z +
∑m

j=1, j 6=k Aij for z ∈ Aik ⊆ {x, y}, and the proof
is again complete. So we may assume that φa(x) 6= φa(y).

If there are at most m − m
p terms of S equal to neither x nor y, then

there must be at least a − 1 sets Aij , j 6= k, with Aij = {x, y}, and hence,
since φa(x) 6= φa(y), at least a− 1 sets Aij with |φa(Aij )| = 2. On the other

hand, if there are at most ⌊2m−4
3 ⌋ terms of S equal to neither x nor y, then

either there likewise must be at least a − 1 sets Aij with |φa(Aij )| = 2, or
else |Ha| = 2, and there are at least m

2 +2 sets Aij with Aij 6= {x, y} and Aij

contained in an Ha-coset. If the former holds, then Kneser’s Theorem yields
∣

∣

∣

m
∑

j=1
j 6=k

Aj

∣

∣

∣
≥ |Ha|

(

m
∑

j=1
j 6=k

|φa(Aj)| − (m − 1) + 1
)

≥ m,

and the proof is again complete. Therefore we may instead assume the lat-
ter. Consequently, we can assume n ≥ 3m+ ⌈2m−1

3 ⌉−1, that m is even, and
that there are at least m − m

p + 1 = m
2 + 1 terms t of S with t /∈ {x, y}.

Suppose that x − y generates a proper subgroup Hb of index b. Since
there are at most ⌊2m−4

3 ⌋ terms of S equal to neither x nor y, and at least
m
2 + 1 sets Ai with Ai 6= {x, y} and Ai an Ha-coset, we can re-index the

sets Ai so that Ai = {x, y} for i ≤ ⌊n
2 ⌋ − ⌊2m−4

3 ⌋, and Ai is an Ha-coset

for ⌊n
2 ⌋ − ⌊2m−4

3 ⌋ + 1 ≤ i ≤ ⌊n
2 ⌋ − ⌊2m−4

3 ⌋ + m
2 + 1. Let Ai′

1
, . . . , Ai′m be a

selection of m sets Ai all with

i ≤

⌊

n

2

⌋

−

⌊

2m − 4

3

⌋

+
m

2
+ 1 =

⌊

n

2

⌋

−

⌊

m − 8

6

⌋

+ 1.

If Ai′j
= {x, y} for all j, then

∑m/b−1
j=1 Ai′j

is an Hb-coset, whence there

will be at least 2m−m
b

+1 ≥ 2
m
2 ways to select a term from each Ai′j

and

get an m-term zero-sum subsequence. Next suppose that at least one of
the Ai′j

, say Ai′
1
, is an Ha-coset. Since at most m

2 + 1 of the Ai′j
can be

Ha-cosets, there are at least m
2 − 1 indices j with Ai′j

= {x, y}. Re-index so

that Ai′j
= {x, y} for 2 ≤ i ≤ m

2 . Hence
∑m/2

j=1 Ai′j
is an (Ha + Hb)-coset.

Thus, since every Ai′j
contains either x or y, it is contained in the same

(Ha + Hb)-coset x + Ha + Hb, whence there will also be at least 2
m
2 ways to

select a term from each Ai′
j

and get an m-term zero-sum subsequence. Thus

there are at least

(8) 2
m
2

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + 1

m

)
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m-term zero-sum subsequences. Since n ≥ 3m + ⌈2m−1
3 ⌉ − 1, Lemma 3.3

shows that

3x

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + 1

m

)

≥

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + 1 + x

m

)

.

Hence from (8) it follows that there are at least

2
m
2

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + 1

m

)

≥ 2 · 4⌊
m−2

4
⌋

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + 1

m

)

≥ 2 · 3⌊
m−2

4
⌋

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + 1

m

)

≥ 2

(

⌊n
2 ⌋ − ⌊m−8

6 ⌋ + ⌊m−2
4 ⌋ + 1

m

)

≥ 2

(

⌈n
2 ⌉

m

)

≥

(

⌈n
2 ⌉

m

)

+

(

⌊n
2 ⌋

m

)

m-term zero-sum subsequences, whence the proof is complete. So we may
assume that x − y generates G, implying G is cyclic of order m.

Suppose nx ≤ ⌊n
2 ⌋−

m
2 . Re-index the terms xi in the sequence x1, . . . , xn

with xi /∈ {x, y} (leaving unchanged the terms xi ∈ {x, y}) so that all terms
xi with xi /∈ {x, y, y + m

2 } occur in a consecutive block at the very end of
the sequence. Then, since in a cyclic group there is a unique subgroup of
order two, it follows that either every set Ai will contain a representative
from the common Ha-coset y + Ha, or else every set Ai contained in an
Ha′-coset with |Ha′ | = 2 and i ≤ ⌊n

2 ⌋ must contain x. In the latter case,

since nx ≤ ⌊n
2 ⌋ −

m
2 , there are at most ⌊2m−4

3 ⌋ − m
2 + 1 < m

2 + 2 sets Ai

contained in an Ha′-coset with |Ha′ | = 2, which reduces to a case handled
in the fifth paragraph of Step 2. Therefore we may assume the former case
holds. From previous work, we know that any selection Ai1 , . . . , Aim is good
unless

∑m
j=1, j 6=k Aij is maximally Ha′-periodic with |Ha′ | = 2 and

∣

∣

∣

m
∑

j=1
j 6=k

Aij

∣

∣

∣
<

m
∑

j=1
j 6=k

|Aij | − (m − 1) + 1.

However, since there is a unique subgroup Ha of order two, it follows that
Ha′ = Ha. Hence, since every Ai contains a representative from the common
Ha-coset y +Ha, and

∑m
j=1 Aij is Ha-periodic, it follows that 0 ∈

∑m
j=1 Aij .

By the last displayed inequality, and since |Aij | = 2 for j 6= ik, Proposi-

tion 2.2 shows that there exists Ail with l 6= k such that |
∑m

j=1, j 6=l Aij | =

|
∑m

j=1 Aij |, whence every z ∈
∑m

j=1 Aij can be represented in at least two

different ways, including 0 ∈
∑m

j=1 Aij . Thus every selection Ai1 , . . . , Aim is
good, completing the proof. So we may assume that nx ≥ ⌊n

2 ⌋ −
m
2 + 1.
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Re-index the terms xi in the sequence x1, . . . , xn with xi /∈ {x, y} (leaving
unchanged the terms xi ∈ {x, y}) so that all terms xi with xi = x+ m

2 occur
in a consecutive block at the very end of the sequence. Since nx ≥ ⌊n

2 ⌋−
m
2 +1,

and there are at least m− m
p + 1 = m

2 + 1 terms t with t /∈ {x, y}, it follows

that Anx = {x, t} with t /∈ {x, y}. If n is odd, then modify the definition
of the set partition A1, . . . , A⌈n

2
⌉ by swapping the term equal to x in Anx

with the term equal to y in A⌈n
2
⌉. The proof now proceeds as in the above

paragraph with the roles of x and y interchanged, completing Step 2. So we
may assume that given any two elements x, y ∈ G, then there are at least
m− m

p +1 terms of S equal to neither x nor y, and if n ≥ 3m + ⌈2m−1
3 ⌉− 1,

then there are at least ⌊2m−1
3 ⌋ terms of S equal to neither x nor y.

Step 3 (|S| ≤ 3m + ⌈2m−1
3 ⌉ − 2): Suppose that n ≤ 3m + ⌈2m−1

3 ⌉ − 2.
In view of Steps 1 and 2 and Proposition 2.1 applied with n1 = n − m + 1
and n2 = ⌊m

2 ⌋, there exists an (n−m+1)-set partition P = P1, . . . , Pn−m+1

of S with |Pi| = 1 for i > ⌊m
2 ⌋. Let P ′ = P1, . . . , P⌊m

2
⌋, and let S′ be the

subsequence partitioned by the ⌊m
2 ⌋-set partition P ′. Apply Theorem 2.1 to

the subsequence S′ of S with ⌊m
2 ⌋-set partition P ′, and let A = A1, . . . , A⌊m

2
⌋

be the resulting set partition, and Ha the corresponding subgroup of index a.
Suppose that

∣

∣

∣

⌊m/2⌋
∑

i=1

Ai

∣

∣

∣
≥ m =

⌊m/2⌋
∑

i=1

|Ai| −

⌊

m

2

⌋

+ 1.

Then applying Theorem 2.2 to A and S′ yields a subsequence S′′ of S′ of

length m with an ⌊m
2 ⌋-set partition A′ = A′

1, . . . , A
′
⌊m

2
⌋ satisfying |

∑⌊m/2⌋
i=1 A′

i|

≥ m. Then given any ⌈m
2 ⌉-term subsequence T of S \ S′′, we can find a

selection of ⌊m
2 ⌋ terms from A′

1, . . . , A
′
⌊m

2
⌋ that sum to the additive inverse

of the sum of the terms from T . Consequently, there will be at least
(n−m
⌈m

2
⌉

)

m-term zero-sum subsequences. Thus, since n ≤ 3m+ ⌈2m−1
3 ⌉−2, the proof

is complete by Lemma 3.1. So we may assume that

∣

∣

∣

⌊m/2⌋
∑

i=1

Ai

∣

∣

∣
< m =

⌊m/2⌋
∑

i=1

|Ai| −

⌊

m

2

⌋

+ 1.

From Theorem 2.1 it follows that N(A′, Ha) = 1 and E(A′, Ha) ≤ a− 2,
with Ha a nontrivial, proper subgroup. Hence all but at most a − 2 terms
of S are from the same Ha-coset, say α + Ha. Let Hb be a minimal car-
dinality nontrivial, proper subgroup of index b such that all but at most
b − 2 terms of S are all from the same Hb-coset, say β + Hb, and there
exists an (n − m + 1)-set partition B = B1, . . . , Bn−m+1 of the terms of S
from β + Ha with |Bi| = 1 for i > ⌊m

2 ⌋ (such a subgroup exists in view of
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the previous two sentences, and taking Bi = A′
i ∩ (α + Ha) for i ≤ ⌊m

2 ⌋,

and appending on an additional n − m + 1 − ⌊m
2 ⌋ singleton sets using the

terms from S \ S′′). By translation we may assume β = 0. Let Sb be the
subsequence of S consisting of terms from Hb, and let S′

b be the subse-
quence of Sb partitioned by the set partition B′ = B1, . . . , B⌊m

2
⌋. Apply

Theorem 2.1 to the subsequence S′
b of Sb with ⌊m

2 ⌋-set partition B′ and
with G = Hb, and let B′′ = B′

1, . . . , B
′
⌊m

2
⌋ be the resulting set partition and

Hkb the corresponding subgroup with [Hb : Hkb] = k. If N(B′′, Hkb) = 1
and E(B′′, Hkb) ≤ k − 2, with Hkb a nontrivial, proper subgroup, then all
but at most k − 2 + b − 2 ≤ kb − 2 terms of S will be from the same
Hkb-coset, contradicting the minimality of Hb (the needed (n − m + 1)-
set partition can be induced from B′′ as was done for showing the ex-
istence of B). Therefore we may assume otherwise, whence Theorem 2.1
yields

∣

∣

∣

⌊m/2⌋
∑

i=1

B′
i

∣

∣

∣
≥ min

{

m

b
, |S′

b| −

⌊

m

2

⌋

+ 1

}

=
m

b
.

Thus applying Proposition 2.2 to B′′ shows that there exists an ⌊m
2 ⌋-set par-

tition B′′′ = B′′
1 , . . . , B′′

⌊m
2
⌋ of a subsequence S′′

b of S′
b with |S′′

b | ≤ ⌊m
2 ⌋+

m
b −1

such that |
∑⌊m/2⌋

i=1 B′′
i | = m

b . Consequently, as in the previous paragraph,
there are at least

(

n − (⌊m
2 ⌋ + m

b − 1) − (b − 2)

⌈m
2 ⌉

)

≥

(

n − m

⌈m
2 ⌉

)

m-term zero-sum subsequences. Thus, since n ≤ 3m+ ⌈2m−1
3 ⌉−2, the proof

is complete by Lemma 3.1. So we may assume that n ≥ 3m + ⌈2m−1
3 ⌉ − 1.

Step 4 (S essentially trichromatic): Suppose that every term of S, with
at most ⌊m−4

3 ⌋ exceptions, is equal to one of three elements x, y, z ∈ G. Let
nx, ny, nz be the respective multiplicities of x, y and z in S, and assume
nx ≥ ny ≥ nz. Let l ≤ ⌊m−4

3 ⌋ be the number of terms t of S with t /∈
{x, y, z}. In view of Steps 2 and 3, for w ∈ {x, y, z} there are at least

⌊2m−1
3 ⌋ − ⌊m−4

3 ⌋ ≥ ⌊m−4
3 ⌋ + 2 ≥ l + 2 terms of S equal to w.

Claim 1. If nx ≤ ⌊n
2 ⌋ − l, then for each w ∈ {x, y, z} there exists an

⌈n
2 ⌉-set partition A(w) = A1, . . . , A⌈n

2
⌉ of S into cardinality at most two sets

such that if either t ∈ Aj with t /∈ {x, y, z}, or if |Aj | = 1, then w ∈ Aj.

Since nw ≥ l+2, for i with ⌊n
2 ⌋− l+1 ≤ i ≤ ⌊n

2 ⌋, let Ai = {w, ti}, where
the ti are the terms with ti /∈ {x, y, z}, and if n is odd, then let A⌈n

2
⌉ = {w}.

Let S′ be the subsequence of S obtained by deleting all terms contained in
the Ai with i ≥ ⌊n

2 ⌋ − l + 1. To show the claim it suffices to show S′ has
an (⌊n

2 ⌋ − l)-set partition with all sets of cardinality at most two. However,
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in view of Proposition 2.1, this will be the case provided no term of S′ has
multiplicity at least ⌈n

2 ⌉ − l + 1, which we have by assumption of Claim 1.

Thus the claim is established.

Claim 2. If nx ≥ ⌊n
2 ⌋ − l + 1, then for each w ∈ {y, z} there exists an

⌈n
2 ⌉-set partition A(w) = A1, . . . , An of S into cardinality at most two sets

such that : either x ∈ Aj or w ∈ Aj for all j; if |Aj | = 1, then Aj = {w};
and Aj 6= {y, z} for all j.

Let w′ be the remaining element in {y, z}\{w}. Rearrange the sequence S
so that all the terms equal to x precede all the terms equal w, which precede
all the terms equal to w′, which precede all the terms t with t /∈ {x, y, z},

and let x1, . . . , xn be the resulting sequence. Let Ai = {xi, xi+⌈n
2
⌉} for i ≤ n

2 ,

and if n is odd, then let A⌈n
2
⌉ = {x⌈n

2
⌉}. In view of Step 1, nx ≤ ⌈n

2 ⌉ − 1.

Hence, since nw ≥ ⌊m−4
3 ⌋ + 2 ≥ l + 2 and nx ≥ ⌊n

2 ⌋ − l + 1, the partition

A(w) = A1, . . . , A⌈n
2
⌉ satisfies the claim.

Let A(w) = A1, . . . , A⌈n
2
⌉ be the ⌈n

2 ⌉-set partition constructed using w

from Claim 1 (if nx ≤ ⌊n
2 ⌋ − l) or from Claim 2 (if nx ≥ ⌊n

2 ⌋ − l + 1),

and re-index A(w) so that if n is odd, then |A⌈n
2
⌉| = 1, and Aj  {x, y, z}

precisely for j satisfying ⌊n
2 ⌋ − l + 1 ≤ j ≤ ⌊n

2 ⌋.
If nx ≤ ⌊n

2 ⌋ − l, then suppose that for some w ∈ {x, y, z} the difference
of the elements in {x, y, z} \ {w} generates a subgroup Hb of index b ≤ 2,
and if nx ≥ ⌊n

2 ⌋− l+1, then suppose that for some w ∈ {y, z} the difference
of the elements in {x, y, z} \ {w} generates a subgroup Hb of index b ≤ 2.
Let Ai1 , . . . , Aim be a selection of m sets Ai from A(w).

First suppose that b = 1. As seen in Step 2, it is sufficient to show that
any such selection Ai1 , . . . , Aim is good. We proceed to show this claim.
If |

∑m
j=1 Aij | ≥ m, then the selection is good in view of Proposition 2.2.

Therefore we may assume that |
∑m

j=1 Aij | < m. Then Kneser’s Theorem

implies that
∑m

j=1 Aij is maximally Ha-periodic for some proper, nontrivial

subgroup Ha of index a, and |Aij | > |φa(Aij )| for at least m − 1 − (a − 2)

sets Aij . Since there are at most ⌊m−1
3 ⌋ < m − a + 1 sets Ai with either

|Ai| = 1 or Ai  {x, y, z}, it follows that |Aij′ | < |φa(Aij′ )| for some Aij′

with Aij′ ⊆ {x, y, z} and |Aij′ | = 2. Hence w ∈ Aij′ , since the difference of

the pair from {x, y, z} not containing w generates G. Thus the pigeonhole
principle and the definition of A(w) show that every set Aij will contain a
representative from the common Ha-coset w + Ha (the representative being
either w or the other element from Aij′ , which under the case of Claim 2

will be x). If n is odd, then let Aik = A⌈n
2
⌉. Otherwise, since there are at

least m − a + 1 ≥ m
a sets Aij with |Aij | > |φa(Aij )| = 1, Proposition 2.2

applied to these m
a sets yields a set Aik with |Aik | > |φa(Aik)| such that
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∑m
j=1, j 6=k Aij =

∑m
j=1 Aij . Since Aik ⊂ w + Ha, since every Aij contains

a representative from the common Ha-coset w + Ha, and since
∑m

j=1 Aij

is Ha-periodic, it follows that 0 ∈ Ha = mw + Ha ⊆ t +
∑m

j=1, j 6=k Aij for
every t ∈ Aik , whence the selection is good. So we may assume that b = 2,
and consequently from the definition of A(w) the difference of elements from
every set Ai with Ai ⊆ {x, y, z} generates a proper subgroup.

If |
∑m

j=1 Aij | ≥ m, then as seen in the previous paragraph, the selec-
tion Ai1 , . . . , Aim is good. If this is not the case, then Kneser’s Theorem
shows that

∑m
j=1 Aij is maximally Ha-periodic with Ha a nontrivial, proper

subgroup of index a. Also, if there is a set Aij ⊆ {x, y, z} with w ∈ Aij

and |Aij | > |φa(Aij )|, then, as in the previous paragraph, every set Aij will
contain a representative from the common Ha-coset w + Ha implying that
the selection Ai1 , . . . , Aim is again good. Hence if a selection is not good,
then all sets Aij with |φa(Aij )| = 1 must satisfy one of the following con-
ditions: (a) |Aij | = 1, or (b) Aij  {x, y, z}, or (c) Aij = {x, y, z} \ {w}.
Since |

∑m
j=1 Aij | < m, Kneser’s Theorem shows that there can be at most

a − 2 sets Aij with |φa(Aij )| = 2, and consequently, in view of the previ-
ous sentence, at most a − 2 sets Aij with Aij ⊆ {x, y, z}, |Aij | = 2, and
w ∈ Aij .

Since there are at most ⌊m−1
3 ⌋ < m−a+2 sets Ai satisfying (a) or (b), and

there are at least m−a+2 sets Aij with |φa(Aij )| = 1, at least one Aij must
be contained in an Ha-coset and satisfy (c). Hence |φa({x, y, z} \ {w})| = 1,
implying that the subgroup Hb generated by the difference of the elements
in {x, y, z} \ {w} is a subgroup of Ha. Hence Hb = Ha, since Ha is a proper
subgroup, and Hb has index b = 2. Consequently, as noted in the previous
paragraph, there can be at most a − 2 = b − 2 = 0 sets Aij with Aij ⊆
{x, y, z}, |Aij | = 2, and w ∈ Aij .

Since nw ≥ l + 2, there exists a subset Ak ⊆ {x, y, z} with w ∈ Ak

and |Ak| = 2. In view of the previous paragraph, any selection Ai1 , . . . , Aim

that includes Ak will be a good selection. Thus there are at least 2
(⌊n

2
⌋−1

m−1

)

=
(⌊n

2
⌋−1

m−1

)

+
(⌈n

2
⌉−1

m−1

)

in case n even, and 2
(⌊n

2
⌋−1

m−1

)

+
(⌊n

2
⌋−1

m−2

)

=
(⌊n

2
⌋−1

m−1

)

+
(⌈n

2
⌉−1

m−1

)

in case n odd, m-term zero-sum subsequences that use one of the two terms
contained in Ak. Hence by induction hypothesis there are at least

(9)

(

⌊n
2 ⌋ − 1

m − 1

)

+

(

⌈n
2 ⌉ − 1

m − 1

)

+min

{(

⌊n
2 ⌋ − 1

m

)

+

(

⌈n
2 ⌉ − 1

m

)

,

(

n − m − 2

⌈2m−1
3 ⌉

)}

m-term zero-sum subsequences. In view of the Pascal identity, it follows that
(⌊n

2
⌋−1

m−1

)

+
(⌈n

2
⌉−1

m−1

)

+
(

⌊n
2
⌋−1
m

)

+
(

⌈n
2
⌉−1
m

)

=
(

⌊n
2
⌋

m

)

+
(

⌈n
2
⌉

m

)

. Hence in view of (9),
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the proof will be complete unless

(10)

(

n − m − 2

⌈2m−1
3 ⌉

)

<

(

⌈n
2 ⌉ − 1

m

)

+

(

⌊n
2 ⌋ − 1

m

)

,

and
(

⌈n
2 ⌉ − 1

m − 1

)

+

(

⌊n
2 ⌋ − 1

m − 1

)

+

(

n − m − 2

⌈2m−1
3 ⌉

)

<

(

n − m

⌈2m−1
3 ⌉

)

.

From the above inequality and the Pascal identity, it follows that

(11)

(

⌈n
2 ⌉ − 1

m − 1

)

+

(

⌊n
2 ⌋ − 1

m − 1

)

<

(

n − m − 2

⌈2m−1
3 ⌉ − 1

)

+

(

n − m − 1

⌈2m−1
3 ⌉ − 1

)

.

From (10) it follows that n ≥ 2m + 2. Hence applying to (11) the binomial
identity given in (3), as well as the binomial identity

(

n
m

)

= n
n−m

(

n−1
m

)

,
implies

(

⌈n
2 ⌉ − 1

m − 1

)

+

(

⌊n
2 ⌋ − 1

m − 1

)

<
⌈2m−1

3 ⌉

n − m − ⌈2m−1
3 ⌉ − 1

(

1 +
n − m − 1

n − m − ⌈2m−1
3 ⌉

)(

n − m − 2

⌈2m−1
3 ⌉

)

.

Applying (3) to the above inequality yields
(

⌈n
2 ⌉ − 1

m

)

+

(

⌊n
2 ⌋ − 1

m

)

<
⌈n

2 ⌉ − m

m
·

⌈2m−1
3 ⌉

n − m − ⌈2m−1
3 ⌉ − 1

(

1 +
n − m − 1

n − m − ⌈2m−1
3 ⌉

)(

n − m − 2

⌈2m−1
3 ⌉

)

.

Hence from (10) it follows that

1 <
n+1

2 − m

m
·

2m+1
3

n − m − 2m+1
3 − 1

(

1 +
n − m − 1

n − m − 2m+1
3

)

,

implying that 3(m− 1)n2 − (10m2 + 7m + 1)n + 9m3 + 17m2 + 8m + 2 < 0.
Hence the quadratic formula yields 8m4−44m3−177m2−86m−25 ≤ 0, else
the square root of the discriminant will be imaginary. However, Theorem 2.3
shows the roots of 8m4−44m3−177m2−86m−25 are bounded from above
by 9, whence 8m4 − 44m3 − 177m2 − 86m − 25 > 0 for m > 10, a contra-
diction. So we may assume that if nx ≤ ⌊n

2 ⌋ − l, then none of x − z, x − y,
and y − z generates a subgroup Hb of index b ≤ 2, and if nx ≥ ⌊n

2 ⌋ − l + 1,

then none of x − y and x − z generates a subgroup Hb of index b ≤ 2
in G.

For t ∈ {x, y, z} if nx ≤ ⌊n
2 ⌋− l, and for t ∈ {y, z} if nx ≥ ⌊n

2 ⌋− l +1, let

Hbt
be the subgroup of index bt generated by the difference of the elements in



292 D. J. Grynkiewicz

{x, y, z}\{t}. From the conclusion of the previous paragraph, it follows that
bt > 2 for each t. Thus given any selection Ai1 , . . . , Aim with all Aij satisfying
Aij ⊆ {x, y, z} and |Aij | = 2, it follows from the pigeonhole principle that
there are at least m

bt
−1 sets Aij equal to {x, y, z}\{t} for some t. Note that

∑m/bt−1
i=1 {x, y, z} \ {t} is an Hbt

-coset, implying that
∑m

j=1 Aij is maximally
Ha-periodic with Hbt

≤ Ha. Thus Proposition 2.2 applied with elements
considered modulo Hbt

shows that there exists a re-indexing such that

(12)
∣

∣

∣

m/bt−1+bt−1
∑

j=1

Aij

∣

∣

∣
=

∣

∣

∣

m
∑

j=1

Aij

∣

∣

∣
;

furthermore, Kneser’s Theorem yields |φa(Aij )| = 1 for i > m
bt

+ bt −2, since
otherwise

∣

∣

∣
φa

(

m/bt+bt−2
∑

j=1

Aij

)∣

∣

∣
<

∣

∣

∣
φa

(

m/bt+bt−2
∑

j=1

Aij

)

+ φa

(

m
∑

j=m/bt+bt−1

Aij

)∣

∣

∣
,

implying

∣

∣

∣

m/bt+bt−2
∑

j=1

Aij

∣

∣

∣
<

∣

∣

∣

(

m/bt+bt−2
∑

j=1

Aij

)

+
m

∑

j=m/bt+bt−1

Aij

∣

∣

∣
=

∣

∣

∣

m
∑

j=1

Aij

∣

∣

∣
,

which contradicts (12). Since Aij ⊆ {x, y, z} with |Aij | = 2 for all j, and
|φbt

({x, y, z} \ {t})| = 1 implies |φa({x, y, z} \ {t})| = 1 (since Hbt
≤ Ha),

the pigeonhole principle shows that every Aij contains a representative from
{x, y, z} \ {t} + Ha, whence from (12) and the previous sentence there are

at least 2
m−m

bt
−bt+2

> 0 ways to select a term from each Aij and have the
resulting m-term sequence be zero-sum. Thus we conclude that there are at

least 2
m−m

bt
−bt+2(⌊n

2
⌋−⌊m−4

3
⌋

m

)

m-term zero-sum subsequences. If bt 6=
m
2 for

every such selection Ai1 , . . . , Aim , then in view of bt > 2,

2
m−m

bt
−bt+2

≥ 2
2

3
m−1 = 2 · 4

m
3
−1 ≥ 2 · 3⌊

m−1

3
⌋ for m ≥ 30,

whence the proof is complete in view of Lemma 3.3 and Step 3. So we may
assume bt = m

2 for some such selection Ai1 , . . . , Aim ; and it suffices to further
show that each selection Ai1 , . . . , Aim , with all Aij satisfying Aij ⊆ {x, y, z}

and |Aij | = 2, and with bt = m
2 , also has at least 2 · 3⌊

m−1

3
⌋ ways to select an

m-term zero-sum subsequence. We proceed to show this, which will complete
the proof of Step 4.

Since bt = m
2 , by translation we may assume {x, y, z} \ {t} = {0, s},

where s has order 2. Since t−0 = t does not generate a subgroup with index
b ≤ 2, implying the order of t is strictly less than m

2 , and since |G/Hbt
| = m

2 ,
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it follows that φbt
(t) generates a proper subgroup Hb′ of G/Hbt

with index
b′ ≥ 2 in G/Hbt

.
Suppose there are at least 2⌊m−1

3 ⌋ + 2 sets Aij with |φbt
(Aij )| = 1.

Then, since |Hbt
| = 2 implies that |Aij1

+ Aij2
| = |Aij1

| when |φbt
(Aij1

)| =
|φbt

(Aij2
)| = 1, it follows that we can re-index so that

∣

∣

∣

m−(2⌊(m−1)/3⌋+1)
∑

j=1

Aij

∣

∣

∣
=

∣

∣

∣

m
∑

j=1

Aij

∣

∣

∣
,

with |φbt
(Aij )| = 1 for j > m − (2⌊m−1

3 ⌋ + 1). Since there are at least

2
m−m

bt
−bt+2

> 0 ways to select an m-term zero-sum from the selection
Ai1 , . . . , Aim , it follows that 0 ∈

∑m
j=1 Aij . Thus, by the above display, there

will be at least 22⌊m−1

3
⌋+1 ≥ 2 · 3⌊

m−1

3
⌋ ways to select an m-term zero-sum

subsequence from the selection Ai1 , . . . , Aim , completing the proof as noted
earlier. So, we may assume there are at least m− (2⌊m−1

3 ⌋ + 1) ≥ ⌈m−1
3 ⌉ ≥

m
2b′ − 1 = bt

b′ − 1 sets Aij with |φbt
(Aij )| = 2.

Hence, since |φbt
({0, s})|= 1, and φbt

({0, t}) = φbt
({s, t}) (as |φbt

({0, s})|
= 1 implies φbt

(0) = φbt
(s)), it follows that there are at least bt

b′ − 1 sets
Aij that modulo Hbt

have the difference of their elements generating the

subgroup Hb′ = 〈φbt
(t)〉. Note that

∑bt/b′−1
i=1 φbt

({0, t}) = Hb′ . Hence, since

there are at least bt

b′ − 1 sets Aij with |φbt
(Aij )| = 2, and since there are

at least m
bt

− 1 sets Aij equal to {x, y, z} \ {t} = {0, s}, Proposition 2.2
applied with elements considered in (G/Hbt

)/Hb′ shows that there exists a
re-indexing such that

∣

∣

∣

m/bt−1+bt/b′−1+b′−1
∑

j=1

Aij

∣

∣

∣
=

∣

∣

∣

m
∑

j=1

Aij

∣

∣

∣
;

furthermore, Kneser’s Theorem yields |φa(Aij )| = 1 for i > m
bt
− 1+ bt

b′ − 1+

b′ − 1 = bt

b′ + b′ − 1, since otherwise

∣

∣

∣

bt/b′+b′−1
∑

j=1

Aij

∣

∣

∣
<

∣

∣

∣

(

bt/b′+b′−1
∑

j=1

Aij

)

+
m

∑

j=bt/b′+b′

Aij

∣

∣

∣
,

a contradiction. Thus, since bt

b′ + b′ − 1 ≤ m
4 + 1, and since 0 ∈

∑m
j=1 Aij ,

it follows that there will be at least 2
3

4
m−1 ≥ 2 · 3⌊

m−1

3
⌋ ways to select an

m-term zero-sum subsequence from Ai1 , . . . , Aim , completing the proof of
Step 4 as noted earlier. So we may assume that given any x, y, z ∈ G, there
are at least ⌊m−1

3 ⌋ terms of S not equal to x or y or z.

Step 5 (The general case): In view of Steps 1–4, and Proposition 2.1,
it follows that there exists an (n−m + 1)-set partition P = P1, . . . , Pn−m+1
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of S with |Pi| = 1 for i > ⌈m−1
3 ⌉. Let P ′ = P1, . . . , P⌈m−1

3
⌉, and let S′ be

the corresponding subsequence partitioned by P ′. Apply Theorem 2.1 to the
subsequence S′ of S with ⌈m−1

3 ⌉-set partition P ′, and let S′′ be the resulting
subsequence, Ha the resulting subgroup of index a, and A = A1, . . . , A⌈m−1

3
⌉

the resulting set partition of S′′.

Suppose that

∣

∣

∣

⌈(m−1)/3⌉
∑

i=1

Ai

∣

∣

∣
≥ m =

⌈(m−1)/3⌉
∑

i=1

|Ai| −

⌈

m − 1

3

⌉

+ 1.

Then applying Theorem 2.2 to A and S′′ yields a subsequence T of S′′

of length at most m with a set partition B = B1, . . . , B⌈m−1

3
⌉ such that

|
∑⌈(m−1)/3⌉

i=1 Bi| ≥ m. Then given any subsequence T ′ of S \ T of length
m − ⌈m−1

3 ⌉ = ⌈2m−1
3 ⌉, we can find a selection of ⌈m−1

3 ⌉ terms from T , one
from each of the B1, . . . , B⌈m−1

3
⌉, that sum to the additive inverse of the sum

of the terms from the ⌈2m−1
3 ⌉-term subsequence T ′. Consequently, there will

be at least
( n−m
⌈ 2m−1

3
⌉

)

m-term zero-sum subsequences, completing the proof.

So we can assume that

(13)
∣

∣

∣

⌈(m−1)/3⌉
∑

i=1

Ai

∣

∣

∣
< m =

⌈(m−1)/3⌉
∑

i=1

|Ai| −

⌈

m − 1

3

⌉

+ 1.

Theorem 2.1 then shows that Ha is a proper, nontrivial subgroup, and that
either N(A, Ha) = 1 and E(A, Ha) ≤ a− 2, or else N(A, Ha) = 2, |Ha| = 2,
and E(A, Ha) ≤ m

2 − ⌈m−1
3 ⌉ − 2 ≤ ⌊m−10

6 ⌋. The case N(A, Ha) = 1 and
E(A, Ha) ≤ a− 2 can be handled by a minor modification of the arguments
from the third paragraph of Step 3 (simply replace ⌊m

2 ⌋ by ⌈m−1
3 ⌉ where

appropriate). Therefore we may assume the latter case holds.

Since N(A, Ha) = 2, choose x, y ∈ G so that φa(x), φa(y) ∈ G/Ha

are the two elements from φa(
⋂⌈(m−1)/3⌉

i=1 (Ai + Ha)). Suppose first that
φa(x − y) generates a proper subgroup Ha′/Ha of G/Ha. If there does not
exist a set Aj′ such that {x, y} + Ha ⊆ Aj′ , then there will be at least
⌈m−1

3 ⌉ = ⌈m−1
3 ⌉(|Ha| − 1) holes contained among the sets Aij , which in

view of the comments after Theorem 2.1 implies that (13) cannot hold, a
contradiction. Therefore we may assume that there exists a set Aj′ with
{x, y} + Ha ⊆ Aj′ .

For i = j′, let Bj′ = ({x, y}+Ha)∩Aj′ = {x, y}+Ha, and for i 6= j′, let

Bi be a cardinality two subset of Ai ∩ ({x, y}+Ha) with |φa(Bi)| = 2. Since

φa(x− y) generates a proper subgroup Ha′/Ha, and ⌈m−1
3 ⌉ ≥ m

4 ≥ |G/Ha′ |,

it follows that
∑⌈(m−1)/3⌉

i=1 Bi is an Ha′-coset. Observe that all but at most
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E(A, Ha) ≤
m
2 −⌈m−1

3 ⌉− 2 terms of S are from the same Ha′-coset x+Ha′ .
Let T be the subsequence of S partitioned by B = B1, . . . , B⌈m−1

3
⌉. Since

Bi ⊆ x+Ha′ for all i, and
∑⌈(m−1)/3⌉

i=1 Bi is an Ha′-coset, it follows that given

any ⌈2m−1
3 ⌉-term subsequence T ′ of S \ T with all terms from x + Ha′ , we

can find a selection of ⌈m−1
3 ⌉ terms from T , one from each B1, . . . , B⌈m−1

3
⌉,

that sums to the additive inverse of the sum of terms from T ′. Hence, as
there are at least

n−

(

2

⌈

m−1

3

⌉

+2+E(A′, Ha)

)

≥ n−

(

2

⌈

m−1

3

⌉

+2+
m

2
−

⌈

m−1

3

⌉

−2

)

≥ n−m

terms of S \ T from x + Ha′ , it follows that there are at least
( n−m
⌈ 2m−1

3
⌉

)

m-term zero-sum subsequences, completing the proof. So we may assume
that φa(x − y) generates G/Ha.

Let x′ be the other element from x + Ha, and y′ the other element
from y + Ha. Let nx, nx′ , ny, and ny′ be the respective multiplicities of
x, x′, y, and y′ in S. Since, as noted previously, there is a set Aj′ such
that {x, y} + Ha ⊆ Aj′ , it follows that nx, nx′ , ny, ny′ ≥ 1. We may assume
that nx + nx′ ≥ ny + ny′ , nx ≥ nx′ , and ny ≥ ny′ . Remove two terms
from S, one equal to x and one equal to x′, and let the resulting sequence
be T . Let B0 be the set consisting of the two removed terms. Rearrange
the terms of T so that all terms equal to x precede all terms equal to x′,
which precede all terms equal to y, which precede all terms equal to y′,
which precede all terms t with t /∈ {x, x′, y, y′}, and let x1, . . . , xn−2 be
the resulting sequence. Let Bi = {xi, xi + ⌈n

2 ⌉ − 1} for i = 1, . . . , ⌊n
2 ⌋ − 1,

and, in case n odd, let B⌈n
2
⌉−1 = {x⌈n

2
⌉−1}. In view of Step 1, B =

B1, . . . , B⌈n
2
⌉−1 is an (⌈n

2 ⌉ − 1)-set partition of T . As seen in the ninth
paragraph of Step 4, it suffices by induction hypothesis to show that any
selection B0, Bi1 , . . . , Bim−1

containing B0 is good. We proceed to show
this.

If |
∑m−1

j=1 φa(Bij )| ≥
m
2 , then, since B0 is an Ha-coset, it follows that

|B0 +
∑m−1

j=1 Bij | ≥ m, whence the selection B0, Bi1 , . . . , Bim−1
is good by

Proposition 2.2. Hence we may assume that

(14)
∣

∣

∣

m−1
∑

j=1

φa(Bij )
∣

∣

∣
<

m

2
.

Suppose that nx +nx′ > ⌈n
2 ⌉. Then every set Bij will contain a represen-

tative from the common Ha-coset x+Ha. Since B0 is Ha-periodic, it follows
that 0 ∈ B0 +

∑m−1
j=1 Bij .
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Suppose further that |φa(Bik)| = 1 for some Bik with ik ≥ 1. Then

B0 +

m−1
∑

j=1
j 6=k

Bij = B0 +

m−1
∑

j=1

Bij ,

and it follows that either |Bik | = 1, or else there will be at least two ways

to represent every x ∈ B0 +
∑m−1

j=1 Bj . Since 0 ∈ B0 +
∑m−1

j=1 Bj, it follows

that the selection B0, Bi1 , . . . , Bim−1
is good, completing the proof as noted

earlier. So we may assume |φa(Bik)| = 2 for all ik ≥ 1.

Since |φa(Bik)| = 2 for all ik ≥ 1, and |φa({x, x′})| = 1, it follows that
there does not exist a set Bij with ij ≥ 1 and Bij = {x, x′}. Since there

are at most E(A, Ha) ≤ m−10
6 terms t with t /∈ {x, x′, y, y′}, and every Bij

contains either x or x′, it follows that there are at least m − 2 − m−10
6 ≥ m

2

sets Bij with the difference of terms in Bij equal modulo Ha to φa(x − y).
Thus, since φa(x − y) generates G/Ha, it follows that (14) cannot hold, a
contradiction. So we may assume that nx + nx′ ≤ ⌈n

2 ⌉.

Since nx + nx′ ≤ ⌈n
2 ⌉, since nx + nx′ ≥ ny + ny′ , and since all but at

most E(A′, Ha) ≤ m
2 − ⌈m−1

3 ⌉ − 2 ≤ ⌊m−10
6 ⌋ terms of S are equal to one

of x, x′, y, or y′, it follows that at least (m − 3) − m−10
6 ≥ m

2 sets Bij

have φa(Bij ) = {φa(x), φa(y)}. As φa(x)− φa(y) generates G/Ha, it follows

that |
∑m−1

j=1 φa(Bij )| ≥ m
2 , contradicting (14) again, and completing the

proof.
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Theorem, J. Combin. Theory Ser. A 100 (2002), 44–60.
[22] —, On a partition analog of the Cauchy–Davenport theorem, Acta Math. Hungar.

107 (2005), 161–174.
[23] H. Halberstam and K. F. Roth, Sequences, Springer, New York, 1983.
[24] Y. O. Hamidoune, Subsequence sums, Combin. Probab. Comput. 12 (2003), 413–

425.
[25] —, On weighted sums in abelian groups, Discrete Math. 162 (1996), 127–132.
[26] —, On weighted sequence sums, Combin. Probab. Comput. 4 (1995), 363–367.
[27] Y. O. Hamidoune, O. Ordaz, and A. Ortuño, On a combinatorial theorem of Erdős,
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