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Integers free of prime divisors from an interval, II
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1. Introduction. Let Γ (x, y, z) be the number of positive integers not
exceeding x which are free of prime divisors from the interval (z, y]. By Ψ
and Φ we denote the well-known functions given by Ψ(x, z) = Γ (x, x, z) and
Φ(x, y) = Γ (x, y, 1). See Tenenbaum [12] for an overview on results on Ψ
and Φ.

Throughout we will use the notation

u =
log x
log y

, v =
log x
log z

, r =
u

v
=

log z
log y

.

For 0 < u ≤ v, we let

η(u, v) := %(v) +
u�

0

%(tv/u)ω(u− t) dt,(1)

where % and ω denote Dickman’s function and Buchstab’s function, respec-
tively.

In [15] we have shown that, uniformly for x ≥ y ≥ z ≥ 3/2,

Γ (x, y, z) = xη(u, v) +O

(
x

log y

)
.(2)

Furthermore, we derived difference-differential equations for η(u, v), and
used these equations to study the behaviour of η(u, v) as u, respectively
v, grow unbounded.

In [13] Tenenbaum considered the more general problem of estimating
the number of positive integers not exceeding x which have exactly k prime
factors in the interval [z, y). For k = 0, his estimate in [13, Theorem C(v)]
is equivalent to (2).

In this paper, we will use the saddle-point method to sharpen the results
obtained in [15].

Let Θ(x, y, z) be the number of integers not exceeding x, all of whose
prime divisors are in the interval (z, y]. This function has been studied by
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Friedlander [5] and by Saias [9–11]. The function

σ(u, v) :=
u

v
%′(u) +

∞�

0

%

(
u− u

v
t

)
dω(t) (v ≥ u > 0, u 6= 1)

arises in the study of Θ(x, y, z) (see [5], [9]). Let σr(u) := σ(u, u/r) for
0 < r ≤ 1. The results on σ and Θ obtained by Friedlander and Saias are of
crucial importance for our estimates.

Let
Lε(t) = exp{(log t)3/5−ε}.

The conditions (Hε(x, y)) and (Vε) are defined by

(Hε(x, y)) x ≥ 3, exp{(log log x)5/3+ε} ≤ y ≤ x,
and

(Vε) z ≥ 1, y ≥ z(1 + L−1
ε (z)).

By (Gc) we denote the domain

(Gc) z ≥ 3/2, x ≥ y ≥ z1+c
√

(log(2u))/u.

Let

µy,z(u) :=
∞�

−∞
ηr(u− t) d

(
[yt]
yt

)

if x = yu is not an integer and µy,z(u) := µy,z(u+) if yu is an integer.
Throughout, c0, c1, . . . will denote some absolute positive constants. Define

W (x, y, z) := xµy,z(u)
log y
log z

∏

z<p≤y

(
1− 1

p

)
,

Hr(u) := exp(umin2(1− r, (log(2u))−1)),

E(x, y, z) := (log y)−1Hr(u)−c0 + e−u(1−ε).

The main purpose of this paper is to establish the following result.

Theorem 1.1. There exists a positive constant c such that for all ε > 0,
under the condition (Gc), we have

Γ (x, y, z)−W (x, y, z)�ε Θ(x, y, z)E(x, y, z)L−1
ε (z) in (Hε(x, y)),(i)

Γ (x, y, z)− x
∏

z<p≤y

(
1− 1

p

)
� Θ(x, y, z) elsewhere.(ii)

Note that outside the domain (Gc) the asymptotic behavior of Γ (x, y, z)
is completely described in [15, (4) and Theorem 3.2].
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If x = y, then

µy,z(u) = µx,z(1) =
∞�

−∞
ηr(1− t) d

(
[xt]
xt

)
=
∞�

−∞
%

(
1− t
r

)
d

(
[xt]
xt

)

=
∞�

−∞
%(v − s) d

(
[zt]
zt

)
=:

Λ(x, z)
x

.

Thus it follows directly from Theorem 1.1(i) that, for v ≥ v0,

Ψ(x, z) = Λ(x, z)
log x
log z

∏

z<p≤x

(
1− 1

p

)
+Oε

(
Φ(x, z)
Lε(z)

)
.

With the strong form of Mertens’ formula
∏

z<p≤x

(
1− 1

p

)
=

log z
log y

(1 +Oε(Lε(z)−1)),(3)

we get, for v ≥ v0,

Ψ(x, z) = Λ(x, z) +Oε(xLε(z)−1).(4)

De Bruijn [2] introduced Λ(x, z) as an approximation to Ψ(x, z). He
showed that (4) holds for x > 1, y ≥ 2. Saias [8] improved that result by
showing that, for ε > 0,

Ψ(x, z) = Λ(x, z)(1 +Oε(Lε(z)−1)) for (x, z) in (Hε(x, z)).

Let

L(x, y, z) := xη(u, v)
log y
log z

∏

z<p≤y

(
1− 1

p

)
.

We will derive the following corollary from Theorem 1.1.

Corollary 1.2. There exists a positive constant c such that for all
ε > 0, under the conditions (Gc) and (Hε(x, y)), we have

(i) Γ (x, y, z) = L(x, y, z) +Oε

(
xσr(u)

(
Hr(u)−c1

log y
+
e−u(1−ε)

Lε(z)

))
,

(ii) Γ (x, y, z)

= xη(u, v) +Oε

(
xσr(u)

(
Hr(u)−c1

log y
+
e−u(1−ε)

Lε(z)

)
+

x

(log y)Lε(z)

)
,

(iii) Γ (x, y, z)

= x
∏

z<p≤y

(
1− 1

p

)
+Oε

(
xσr(u)

(
Hr(u)−c1 log z

log y
+
e−u(1−ε)

Lε(z)

))
.
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The following are sample consequences of Corollary 1.2. Under the con-
ditions (Gc), (Hε(x, y)), and (Hε(y, z)), we have

Γ (x, y, z) = L(x, y, z) +Oε

(
xσr(u)Hr(u)−c1

log y

)

and

Γ (x, y, z) = xη(u, v) +Oε

(
x

log y
(σr(u)Hr(u)−c1 + Lε(z)−1)

)
,

which is an improvement of (2) if z and u grow unbounded. Under the
conditions (Gc), (Hε(x, y)), (Hε(y, z)), and x ≥ yz, we get

Γ (x, y, z) = L(x, y, z)
(

1 +Oε

(
σr(u)Hr(u)−c1

log z

))

and

Γ (x, y, z) = xη(u, v)
(

1 +Oε

(
σr(u)Hr(u)−c1 + Lε(z)−1

log z

))
,

since η(u, v) � u/v for x ≥ yz, according to [15, Lemma 3.4].
Saias [9, p. 351] showed that, under the condition (Gc), we have

σr(u) =
(

u

1− r

)−u(1+O((log log(3u))/log(2u)))

.(5)

In Section 2 we calculate the Laplace transform of ηr(u) = η(u, u/r) and
estimate the inverse Laplace integral

1
2πi

σ+i∞�

σ−i∞
η̂r(s)eus ds,

which converges to ηr(u) for Re(s) > 0.
We will use two different approaches to approximate Γ (x, y, z). First,

the Möbius inversion formula gives

Γ (x, y, z) =
∑

d|P
µ(d)

[
x

d

]
,

where P =
∏
z<p≤y p. The main term in Theorem 1.1(ii) is obtained by

ignoring the square brackets and extending the sum to infinity.
Let

ζ(s, t) =
∏

p≤t
(1− p−s)−1

and let ζ(s) denote Riemann’s zeta function. With

an =
{

1 if p |n⇒ p 6∈ (z, y],
0 else,
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the series

ζ(s)
ζ(s, z)
ζ(s, y)

=
∞∑

n=1

an
ns

is the Dirichlet series associated with the counting function Γ (x, y, z) =∑
n≤x an. Perron’s formula (see for example [12, Theorem II.2.1]) shows

that

Γ (x, y, z) =
1

2πi

κ+i∞�

κ−i∞
ζ(s)

ζ(s, z)
ζ(s, y)

· x
s

s
ds (κ > 1, x 6∈ N).(6)

This will be the starting point of the proof of Theorem 1.1(i). We will make
use of the saddle-point method to evaluate the complex integral in (6).

2. Study of η(u, v) by the saddle-point method. Let f̂(s) denote
the value of the Laplace transform of the function f at s, that is,

f̂(s) :=
∞�

0

e−suf(u) du.

Let Ir(s) be the entire function defined by

Ir(s) :=
s�

rs

et − 1
t

dt =
1�

r

est − 1
t

dt.

For 0 < r ≤ 1, let ηr(u) = η(u, u/r) and σr(u) = σ(u, u/r).We put η0(u) = 0
and σ0(u) = e−γ%(u).

Lemma 2.1. For 0 ≤ r < 1 we have

%̂(s) = exp{γ + I0(−s)} (s ∈ C),(i)

ω̂(s) = [s exp{γ + I0(−s)}]−1 − 1 (Re(s) > 0),(ii)

σ̂r(s) = exp(Ir(−s))− r (s ∈ C),(iii)

η̂r(s) =
r

s
exp(−Ir(−s)) (Re(s) > 0).(iv)

Proof. The Laplace transforms of %, ω and σr have been calculated by
Bovey [1, Lemma 1], Fouvry and Tenenbaum [4, (6.14)], and Saias [9, Lemma
1], respectively. We only show (iv). From the definition of η(u, v) in (1) we
have

ηr(u) = η(u, u/r) = %(u/r) +
u�

0

%(t/r)ω(u− t) dt.

Hence, for Re(s) > 0,

η̂r(s) = r%̂(rs) + r%̂(rs)ω̂(s) = (ω̂(s) + 1)r%̂(rs).
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Together with (i) and (ii) this gives

η̂r(s) =
r

s
exp{I0(−rs)− I0(−s)} =

r

s
exp(−Ir(−s)),

for Re(s) > 0.

Remark 2.2. ω̂(s) and η̂r(s) extend to analytic functions on C except
for a simple pole at s = 0, given explicitly by the expressions in Lemma
2.1(ii), (iv), for s 6= 0.

Corollary 2.3. We have, for u ≥ 0 and 0 < r ≤ 1,

u�

0

ηr(t)%(u− t) dt = r

u/r�

0

%(t) dt,(i)

u�

0

ω(t) dt+ 1 = ηr(u) +
1
r

u�

0

ηr(u− t)ω(t/r) dt,(ii)

u�

0

ηr(t)σr(u− t) dt = r(1− ηr(u)).(iii)

Proof. By Lemma 2.1 we have, for Re(s) > 0,

%̂(s)η̂r(s) =
r

s
%̂(rs),

ω̂(s) + 1
s

= η̂r(s)(ω̂(rs) + 1),

σ̂r(s)η̂r(s) = r

(
1
s
− η̂r(s)

)
.

The result follows.

Corollary 2.4. We have
∞�

0

{ηr(t)− r} dt = r(1− r).

Proof. We derive the expansion of η̂r(s) at s = 0 of order 1 as follows:

η̂r(s) =
r

s
exp

(
−
−s�

−rs

et − 1
t

dt

)
=
r

s
exp

(
−
−s�

−rs
{1 +O(t)} dt

)

=
r

s
exp{(1− r)s+O(s2)} =

r

s
{1 + (1− r)s+O(s2)}

=
r

s
+ r(1− r) +O(s).

Since r̂ = r/s it follows that

̂(ηr − r)(s) = r(1− r) +O(s),

which implies the result.
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It follows from Corollary 4.6 of [15] that η′r(u) is of bounded variation on
any bounded interval. Together with the rapid decrease of η′r(u) at infinity
(Proposition 5.3 in [15]), this implies that the inverse Laplace integral

1
2πi

α+i∞�

α−i∞
η̂′r(s)e

us ds(7)

converges to the value of η′r(u) for u 6= 0, 1, for any abscissa of integra-
tion α (see [16, II.7.3 or II.7.5]). We will evaluate (7) with the saddle-point
method.

According to the saddle-point method (see [3, Chapter 5]), the integral in
(7) will be dominated by the contribution from a small neighborhood of the
real point α, if we choose α to be a zero of the derivative of the integrand.
We have

η̂′r(s) = sη̂r(s)− 1 = r exp(−Ir(−s))− 1.

If we temporarily ignore the influence of the term −1 in the last expression,
a zero of the derivative of the integrand in (7) is a solution of the equation

e−w − e−rw = uw,(8)

which has no real solution other than w = 0. We consider instead the related
equation

e−w − e−rw = −uw.
Following Saias [9], we write w = −ξ and define, for u > 1− r, ξr(u) to be
the unique positive solution ξ of the equation

eξ = erξ + uξ.(9)

We let ξr(1− r) = 0. The following result, due to Saias [9, Lemma 3], shows
that (8) has a solution which is close to −ξr(u), suggesting that α = −ξr(u)
is a good choice for the abscissa of integration.

Lemma 2.5 (Saias). For 0 ≤ r < 1, s ∈ C and |s| > c0, the equation

eξ = erξ + sξ

has a unique solution satisfying

|ξ − ξr(|s|)− i arg(s)| < 1.

We are thus able to define a function ξ = ξr(s) which is analytic for

{s ∈ C : |s| > c0, arg(s) 6= 3π/2}.
The following asymptotic formula for σr(u), due to Saias [9, Theorem 1],

will allow us to bound η′r(u) in terms of σr(u).

Lemma 2.6 (Saias). Let n and k be integers ≥ 0. If u > 2, then there
exists a constant c = c(n, k) such that , under the condition (Gc), we have
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σ(n)
r (u) = (−ξr(u))n

(
ξ′r(u)
2π

)1/2

× exp
{
−

u�

1−r
ξr(t) dt

}(
1 + fr,n(u) +On,k

(
1
uk

))

where fr,n denotes a C∞ function satisfying

f (l)
r,n �n,l

1
ul+1 (l ≥ 0).

Remark 2.7. With (9) we can transform the main term in Lemma 2.6
using the identity

−
u�

1−r
ξr(t) dt = −uξr(u) +

ξr(u)�

0

es − ers
s

ds = −uξr(u) + Ir(ξr(u)).

Lemma 2.8 (Saias [8, Lemma 7]). For s ∈ C \ [0,+∞), we have

I0(s) = − log(−s)− γ +O(es/s).

Lemma 2.9 (Saias [9, Lemma 4]). Let 0 ≤ r < 1, u ≥ 1 and n ≥ 1.
Then

ξr(u) = log u+ log
(

log(2u) +
1

1− r

)
+O(1),(i)

ξ(n)
r (u) =

(−1)n+1(n− 1)!
un

(
1 +On

(
1

log(u/(1− r))

))
(u > c).(ii)

Lemma 2.10 (Saias [9, Lemma 5]). Let 0 ≤ r < 1, u ≥ 1, s = ξr(u) + iτ
and let n be an integer ≥ 0. Then we have, for τ � 1,

I(n)
r (s) = u

(
1 +On

(
1

log(2u/(1− r)) + |τ |
))

.

Lemma 2.11. Let r, u ∈ R satisfy 0 ≤ r < 1 and u ≥ 1. Let s, τ ∈ C
satisfy s = ξr(u) + iτ. Then

|e−Ir(s)| ≤ exp
{
− Ir(ξr(u)) + I ′′r (ξ)

τ2

2

}
(τ ∈ R),(i)

|e−Ir(s)| � exp{Ir(ξr(u))}Hr(u)−c3 (τ ∈ R, 1 ≤ |τ | ≤ eξ),(ii)

e−Ir(s) = −seγ
(

1 +O

(
eξ

τ
+ rτ

))
(eξ ≤ |τ | � r−1),(iii)

e−Ir(s) =
1
r

(
1 +O

(
eξ

τ
+
erξ

rτ

))
(|τ | ≥ eξ, rτ � 1).(iv)
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Proof. (i) Since (1− cos(tτ)) ≤ (tτ)2/2, we have

Ir(ξ)− Re(Ir(ξ + iτ)) =
1�

r

etξ(1− cos(tτ))
t

dt ≤
1�

r

etξτ2t2

2t
dt =

τ2

2
I ′′r (ξ),

which implies (i).
(ii) Let

J := Ir(ξ) + Re(Ir(ξ + iτ)) =
1�

r

{eξt(1 + cos(tτ))− 2} dt
t
.

We need to bound J from below. First consider the case r ≤ 1/2. Let J1
be the contribution to J from the domain r ≤ t ≤ 1/2 and let J2 be the
contribution to J from the domain 1/2 ≤ t ≤ 1. Since |τ | ≤ eξ,

J1 ≥
1/2�

r

(cos(tτ)− 1)
dt

t
= −2

τ/4�

rτ/2

sin2(t)
dt

t
≥ −2

|τ |�

0

sin2(t)
dt

t

≥ −2
1�

0

t dt− 2
|τ |�

1

dt

t
= −1− 2 log(|τ |) ≥ −c1 log u− c2,

by Lemma 2.9. Also,

J2 ≥
1�

1/2

{
eξt (1 + cos(tτ))− 2

t

}
dt =

[
eξt

ξ
+ Re

(
et(ξ+iτ)

ξ + iτ

)]1

1/2
− log 4

= eξ
{

1
ξ

+
cosλ√
ξ2 + τ2

}
+O

(
eξ/2

ξ

)
,

where λ = τ−arctan(τ/ξ). There exists some absolute constant τ0 such that
cosλ ≥ 0 for |τ | ≤ τ0. For such τ the lower bound for J2 is thus� eξ/ξ. For
|τ | > τ0, we have

J2 ≥ eξ
{

1
ξ
− 1√

ξ2 + τ2

}
+O

(
eξ/2

ξ

)
� eξ

ξ3 +O

(
eξ/2

ξ

)
� eξ

ξ3 .

From Lemma 2.9 it follows that J2 � u/(logu)2, which shows the result in
the case r ≤ 1/2.

If r > 1/2, we have

Ir(ξ) + Re(Ir(ξ + iτ)) =
1�

r

eξt(1 + cos(tτ))
dt

t
+ 2 log r(10)

≥
1�

r

eξt − 1
t

(1 + cos(tτ)) dt− 2 log 2.
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We put

Q(τ) :=
1�

r

eξt − 1
t

(1 + cos(tτ)) dt.(11)

By the second mean value theorem we have
1�

r

eξt − 1
t

cos(tτ) dt ≥ −(eξ − 1)
2
|τ | ,

since (eξt − 1)/t ≤ eξ − 1. Thus, for |τ | ≥ 1 and k a positive integer, we
obtain

Q(kτ) =
1�

r

eξt − 1
t

(1 + cos(kτt)) dt ≥ Ir(ξ)−
2(eξ − 1)
k|τ |(12)

� u

(
1− ceξ

ku

)
,

by Lemma 2.10. One easily verifies by induction that the inequality

|1 + eika| ≤ k|1 + eia|
holds for all odd positive integers k and a ∈ R. Squaring both sides implies
(1 + cos(ka)) ≤ k2(1 + cos a), which gives

Q(kτ) ≤ k2Q(τ),(13)

for any odd positive integer k. We choose k = 1 + 2[c0e
ξ/u]. Then (12) and

(13) imply

Q(τ) ≥ Q(kτ)
k2 � u

k2 �
u3

e2ξ .

From Lemma 2.9, we have eξ � u(log(2u) + 1/(1− r)), hence

Q(τ)� u
(

log(2u) + 1
1−r
)2 � umin2

(
1− r, 1

log(2u)

)
.

Together with (10) and (11), this gives the desired result.
(iii) We write −Ir(s) = −I0(s) + I0(rs). Since rs � 1, we clearly have

I0(rs)� rs. To estimate I0(s), we apply Lemma 2.8. This gives

−Ir(s) = log(−s) + γ +O(es/s+ rs),

which yields the result.
(iv) Here we use Lemma 2.8 to approximate both I0(s), and I0(rs). We

obtain

−Ir(s) = log(−s)− log(−rs) +O

(
es

s
+
ers

rs

)
.

This shows (iv) and hence concludes the proof of Lemma 2.11.

Remark 2.12. Note that eξ+erξ/r = O(eξ+1/r). Indeed, if erξ/r > eξ,
then ξ < (1− r)−1 log(r−1), which implies that erξ � 1.
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Lemma 2.13. We have
�

s=−ξ+iτ
|τ |≥eξ

η̂′r(s)e
us ds = O

(
e−uξ

eξ

u− 1

)
.

Proof. Note that η̂′r(s) = sη̂r(s) − 1 = r exp(−Ir(−s)) − 1, by Lemma
2.1. Using integration by parts, we can write�

s=−ξ+iτ
|τ |≥eξ

(r exp(−Ir(−s))− 1)eus ds =
�

s=ξ+iτ
|τ |≥eξ

(r exp(−Ir(s))− 1)e−us ds

=
1
u

[(re−Ir(s) − 1)e−us]τ=eξ
τ=−eξ +

r

u

�

s=ξ+iτ
|τ |≥eξ

es − ers
s

e−Ir(s)−us ds.

Let A denote the first term and let B denote the integral in the last expres-
sion. To bound A we consider the two cases 1 ≤ reξ, and 1 > reξ, and apply
Lemma 2.11(iii) respectively (iv) to obtain A � e−uξ/u. To bound B we
assume first that reξ < 1. The contribution to B from the interval [eξ, 1/r]
is, by Lemma 2.11(iii), bounded by

r

u

�

eξ<|τ |≤1/r

es − ers
s

O(s)e−us ds = O

(
e−uξ

eξ

u

)
.

Finally, the contribution to B from τ > max(eξ, 1/r) is bounded by

r

u

�

|τ |>max(eξ ,1/r)

es − ers
rs

(
1 +

O(eξ + 1/r)
τ

)
e−us ds� e−uξ

u(u− 1)
+

1
u
e−uξeξ,

by Lemma 2.11(iv). This concludes the proof of Lemma 2.13.

Proposition 2.14. Let u > 1 and 0 < r < 1. Then

η′r(u)� eIr(ξ)−uξ+ξHr(u)−c1.(14)

Proof. If 1 < u ≤ 3/2, then Lemmas 2.9 and 2.10 show that the right
hand side of (14) is � 1 − r. On the other hand, η′r(u) = 0 if r > 3/4 and
1 < u ≤ 3/2. This follows from Proposition 5.3(ii) of [15] and the fact that
σ(u, v) = 0 if u > 1 and 1 < v ≤ 2 (see [5, Theorem 2(B)]). If r ≤ 3/4 we
clearly have η′r(u)� 1− r. This shows the result for 1 < u ≤ 3/2.

Now let u > 3/2. By (7) we may write

2πiη′r(u) =
−ξ+i∞�

−ξ−i∞
η̂′r(s)e

us ds =
ξ+i∞�

ξ−i∞
(re−Ir(s) − 1)e−us ds

=
ξ+ieξ�

ξ−ieξ
(re−Ir(s) − 1)e−us ds+O

(
e−uξ+ξ

u− 1

)
,
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by Lemma 2.13. We clearly have
ξ+ieξ�

ξ−ieξ
e−us ds = O(e−uξ).

Lemmas 2.10 and 2.11(i) show that exp{−Ir(s)} � 1 for |τ | ≤ 1. This yields
�

|τ |≤1
s=ξ+iτ

re−Ir(s)−us ds = O(e−uξ).

Lemma 2.11(ii) finally allows us to write
�

1≤|τ |≤eξ
s=ξ+iτ

re−Ir(s)−us ds� exp{Ir(ξ)− uξ + ξ}Hr(u)−c1 ,

which completes the proof of Proposition 2.14.

Corollary 2.15. There exists a positive constant c such that , under
the condition (Gc), we have

η′r(u)� σr(u)Hr(u)−c1 .

Proof. If u ≤ u0, the result follows from [15, Prop. 5.3(ii)]. Let u > u0
for some sufficiently large constant u0. By Lemma 2.9 we have ξ′r(u)� 1/u
and eξr(u) � u(log(2u) + (1− r)−1). Thus, in the domain (Gc), we have

(ξ′r(u))−1/2eξr(u)Hr(u)−c0 � Hr(u)−c1 .

The result now follows from Lemma 2.6 and Proposition 2.14.

We now turn our attention to ηr(u). We start with the following lemma.

Lemma 2.16. Let u ≥ 2. Then

J :=
�

σ=−ξ
|τ |>eξ

η̂r(s)eus ds�
e−uξ

u
min(1, reξ).

Proof. Integration by parts shows that

J =
eus

u
· r
s
e−Ir(−s)

∣∣∣∣
|τ |=∞

|τ |=eξ
(15)

+
�

σ=−ξ
|τ |≥eξ

eus

u
· r
s
e−Ir(−s)

(
1
s
− e−s − e−rs

s

)
ds.

Lemma 2.11(iii) and (iv) shows that the first term in (15) is � re−uξ/u.
Let J1 denote the contribution to the integral in (15) from the domain
eξ ≤ |τ | ≤ max(eξ, 1/r) and J2 the contribution from |τ | > max(eξ, 1/r). To
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bound J1, we may assume that eξ < 1/r, otherwise J1 = 0. Lemma 2.11(iii)
shows that

J1 =
�

σ=−ξ
eξ≤|τ |≤1/r

eus

u
· r
s
seγ
{

1 +O

(
eξ

τ
+ rτ

)}(
1
s
− e−s − e−rs

s

)
ds

� r
e−uξ

u
· 1
u− 1

+ r
e−uξ

u
eξ � e−uξ

u
min(1, reξ),

since eξ < 1/r. Lemma 2.11(iv) allows us to write

J2 =
�

σ=−ξ
|τ |≥max(eξ,1/r)

eus

u
· r
s
O

(
1
r

)(
1
s
− e−s − e−rs

s

)
ds

� e−uξ

u
· eξ

max(eξ, 1/r)
=
e−uξ

u
min(1, reξ).

This completes the proof of Lemma 2.16.

Proposition 2.17. Let u ≥ 2. Then

|ηr(u)− r| � rξeIr(ξ)−uξHr(u)−c1 .

Proof. Let s = σ + iτ. Then the inverse Laplace transform

1
2πi

σ+i∞�

σ−i∞
η̂r(s)eus ds

converges to ηr(u) for σ > 0, according to Widder [16, II.7.3]. Now η̂r(s) =
rs−1 exp{−Ir(−s)} has a simple pole at s = 0 with residue r. Also, Lemma
2.11(iv) shows that η̂r(s) � 1/s for |τ | > max(eξ, 1/r). This allows us to
move the abscissa of integration to σ = −ξ to obtain

ηr(s)− r =
1

2πi

−ξ+i∞�

−ξ−i∞
η̂r(s)eus ds.

We have �

σ=−ξ
|τ |≤1

r

s
e−Ir(−s)+us ds� re−uξ,

since exp{−Ir(−s)} � 1 for |τ | ≤ 1, by Lemmas 2.10 and 2.11(i). Also
�

σ=−ξ
1<|τ |≤eξ

r

s
e−Ir(−s)+us ds� rξ exp{Ir(ξ)− uξ}Hr(u)−c1 .
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By Lemma 2.16, we have
�

σ=−ξ
|τ |>eξ

η̂r(s)eus ds�
e−uξ

u
min(1, reξ).

Thus it suffices to show that u−1 min(1, reξ) � rξ. If r ≤ 1/2 note that
ξr(u) = log u + log2 u+ O(1). Thus reξ/u � rξ. If r > 1/2 we have 1/u �
ξ/2 < rξ. This completes the proof of Proposition 2.17.

Corollary 2.18. There exists a positive constant c such that , under
the conditions (Gc) and u ≥ 2, we have

ηr(u)− r � rσr(u)Hr(u)−c1 .

The proof is analogous to the proof of Corollary 2.15.

3. Proof of Theorem 1.1 and its corollary. To prove Theorem 1.1
we will establish the following propositions.

Proposition 3.1. Let ε > 0. Under the conditions (Hε(x, y)) and (Vε),
we have

Γ (x, y, z)−W (x, y, z)�ε
xe−uξ

Lε(z)

(
eIr(ξ)Hr(u)−c2

log y
+ 1
)
.

Proposition 3.2. There exists a constant c such that under the condi-
tions (Gc) and u ≥ log y we have

Γ (x, y, z)− x
∏

z<p≤y

(
1− 1

p

)
� Θ(x, y, z).

Proof of Theorem 1.1. We first assume that (x, y, z) ∈ (Hε(x, y)). If
y ≤ y0(ε), then (Hε(x, y)) implies that x ≤ x0(ε) and the result is trivial.
Thus we may assume that y > y0(ε) for some sufficiently large constant
y0(ε). Theorems 1 and 4 of [10] show that, under conditions (Hε(x, y)) and
(Gc), we have

Θ(x, y, z) � x e
−uξ+Ir(ξ)
√
u log z

.

For a suitable constant c, condition (Gc) implies that c2u(1 − r)2 ≥ log u.
Also note that conditions (Hε(x, y)) and (Gc) imply (Vε/5) for c large enough.
Applying Proposition 3.1 with ε/5 in place of ε yields the result.

If (x, y, z) 6∈ (Hε(x, y)), the result follows directly from Proposition 3.2.

Lemma 3.3. There exists a constant c such that for all ε > 0, under the
conditions (Gc) and (Hε(x, y)), we have

µy,z(u) = ηr(u) +O

(
σr(u)Hr(u)−c2

log y

)
.
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Proof. Using integration by parts, we can write

µy,z(u) = ηr(u)− {x}
x
−
u�

0

η′r(u− t)
{yt}
yt

dt.

We need to estimate
u�

0

η′r(u− t)
dt

yt
=

1
x

u�

0

η′r(t)y
t dt.

Since η′r(u)� 1, we have

1
x

u/2�

0

η′r(t)y
t dt� u

√
x

x
� x−1/3.

This is clearly acceptable since the conditions (Gc) and (Hε(x, y)) imply
that

σr(u)Hr(u)−c2

log y
� u−2u

log y
� x−1/3,

according to (5).
Note that if (u, v) is in (Gc) then (u/2, v/2) is in (Gc/2). By Corollary

2.15 we have
u�

u/2

η′r(t)y
t dt�

u�

u/2

Hr(t)−c1σr(u)yt dt� Hr(u)−c2
u�

0

σr(u)yt dt.

Saias [10, p. 297] showed that, under the conditions (Gc) and y ≥ (log x)2,
we have

u�

0

σr(u)yt dt � xσr(u)
log y

.

This completes the proof of the lemma.
Proof of Corollary 1.2. (i) By Lemma 3.3 and Mertens’ formula we have

W (x, y, z) = L(x, y, z) +O

(
xσr(u)Hr(u)−c1

log y

)
.

The result now follows from Theorem 1.1 since, under the conditions (Gc)
and (Hε(x, y)), we have

Θ(x, y, z) � xσr(u)
log z

,

according to Saias [10, Theorem 2].
Part (ii) follows directly from (i) since

L(x, y, z) = xη(u, v)(1 +Oε(Lε(z)−1)),

due to the strong form of Mertens’ formula (3).
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(iii) If 1 ≤ u < 2, the result follows since Γ (x, y, z) � xr according to
[15, Theorem 3.1]. If u ≥ 2 we combine Lemma 3.3 and Corollary 2.18 to
get

W (x, y, z) = x
∏

z<p≤y

(
1− 1

p

)
+O(xrσr(u)Hr(u)−c1).

The result now follows from Theorem 1.1.

4. Proof of Proposition 3.1. Before we are able to evaluate the inte-
gral in (6) we need several auxiliary results. In the following, we write (Hε)
to mean (Hε(x, y)).

Lemma 4.1. Let ε > 0 and write s = σ + iτ with σ, τ ∈ R. There exists
a constant t0 = t0(ε) such that , under the conditions

t ≥ t0(ε), 2 ≥ σ ≥ 1− (log t)−2/5−ε, |τ | ≤ Lε(t),
we have

ζ ′(s, t)
ζ(s, t)

=
ζ ′(s)
ζ(s)

+
t1−s

s− 1
+Oε

(
1

Lε(t)

)
,(i)

ζ(s, t) = ζ(1, t)(s− 1)ζ(s) exp{I0((1− s) log t)}
(

1 +Oε

(
s− 1
Lε(t)

))
.(ii)

Proof. The estimate in (i) is equivalent to the estimate in [12, (67) in
Chapter III.5]. We obtain (ii) by integrating both sides of the equation in
(i) on the straight line between 1 and s and subsequent exponentiation.

Lemma 4.2. Let ε > 0. There exists a y0 = y0(ε) such that under the
conditions

y ≥ y0(ε), 2 ≥ σ ≥ 1− (log y)−2/5−ε, |τ | ≤ Lε(z),

we have

ζ(s, z)
ζ(s, y)

=
ζ(1, z)
ζ(1, y)

exp{−Ir((1− s) log y)}
(

1 +Oε

(
1

Lε(z)

))
.

Proof. We have
(
ζ(s, z)
ζ(s, y)

)′(ζ(s, z)
ζ(s, y)

)−1

=
ζ ′(s, z)
ζ(s, z)

− ζ ′(s, y)
ζ(s, y)

.

We apply Lemma 4.1 with t = y and ε/3 in place of ε to obtain, under the
given conditions,
(
ζ(s, z)
ζ(s, y)

)′ ζ(s, y)
ζ(s, z)

=
z1−s − y1−s

s− 1
− ζ

′(s)
s

+
ζ ′(s, z)
ζ(s, z)

− z1−s

s− 1
+Oε

(
1

Lε/2(y)

)
.
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We integrate both sides of the last equation along the straight line between
1 and s and subsequently exponentiate both sides of the equation. This gives
ζ(s, z)
ζ(s, y)

=
ζ(1, z)
ζ(1, y)

exp{−Ir((1− s) log y)}(1 +G(s, z))
(

1 +Oε

(
1

Lε(y)

))
,

with

G(s, z) := exp
{ s�

1

(
ζ ′(w, z)
ζ(w, z)

− ζ ′(w)
w
− z1−w

w − 1

)
dw

}
− 1.

If z ≥ z0(ε), we integrate the formula in Lemma 4.1(i) between 1 and s to
obtain

G(s, z)� Lε(z)/Lε/2(z)� 1/Lε(z).

If z ≤ z0(ε), we have, under the given conditions,

ζ ′(w, z)
ζ(w, z)

− ζ ′(w)
w
− z1−w

w − 1
� 1,

uniformly for w on the straight line between 1 and s. Thus G(s, z) �
(s− 1)�ε 1 in this case. This concludes the proof of Lemma 4.2.

Lemma 4.3. Let ε > 0. There exists a y0 = y0(ε) such that under the
conditions

y ≥ y0(ε), σ ≥ 1− (log y)−2/5−ε,
y1−σ

log y
≤ |τ | ≤ Lε(y),

we have

ζ(s)
ζ(s, z)
ζ(s, y)

� log z · eI0((1−σ) log z).

Proof. We have

|ζ(s, z)| ≤ ζ(σ, z)� log z · eI0((1−σ) log z),

where the last estimate is from Lemma 4.1 and Mertens’ formula. Lemma
4.1 allows us to write, under the given conditions,

ζ(s)
ζ(s, y)

� e−I0((1−s) log y)

(s− 1) log y
.(16)

We have
e(1−σ) log y

|τ | log y
≤ 1.

Thus, Lemma 2.8 shows that the right hand side of (16) is � 1, which
concludes the proof of the lemma.

Lemma 4.4. Let ε > 0, r ≤ 1/2 and let the conditions (Hε) and (Vε)
be satisfied. Then, for s = β + iτ and ξ/log y ≤ |τ | ≤ exp{(log y)3/2−ε}, we
have

ζ(s, z)
ζ(s, y)

� ζ(β, y)
ζ(β, z)

· e−cu.
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Proof. An easy calculation shows that

|(1− p−s)(1− p−β)| = (1− p−2β)
(

1− 2(1 + cos(τ log p))
pβ(1 + p−β)2

)1/2

≤ exp
{
−1 + cos(τ log p)

4pβ

}
.

This implies that ∣∣∣∣
ζ(s, z)
ζ(s, y)

· ζ(β, z)
ζ(β, y)

∣∣∣∣ ≤ e−V

with

V :=
∑

z<p≤y

1 + cos(τ log p)
pβ

.

We need to show that V � u. The result holds trivially when u < u0, since
V ≥ 0. Thus we may assume that u ≥ u0. We have

V + 2S ≥ 1
log y

∑

z<n≤y
Λ(n)(1 + cos(τ logn))n−β,(17)

where Λ denotes von Mangoldt’s function and

S :=
1

log y

∑

ν≥2

∑

pν≤y
p−νβ log p� 1,

since β ≥ 1− (log y)−2/5−ε. We have

(18)
1

log y

∑

n≤z
Λ(n)(1 + cos(τ log n))n−β

≤ 2
log y

∑

n≤z
Λ(n)n−β ≤ 3z1−β

(1− β) log y
+O(1) =

3erξ

ξ
+O(1).

Lemma 6 of [6] shows that, for ε < 1 and |τ | ≤ exp{(log y)3/2−ε},
∑

n≤y
Λ(n)n−s =

y1−β−iτ

1− β − iτ +Oε

(
1

1− β

(
1 +

y1−β

e(log y)ε/2

))
.

Since (1 + cos(τ logn))n−β = Re(n−β + n−β−iτ ), this gives
1

log y

∑

n≤y
Λ(n)(1 + cos(τ log n))n−β

=
1

log y
Re
{
y1−β

1− β +
y1−β−iτ

1− β − iτ

}

+Oε

(
1

(1− β) log y

(
1 +

y1−β

exp{(log y)ε/2}

))

=
eξ

ξ

(
1 +

cos δ√
1 + (τ(log y)/ξ)2

)
+Oε

(
1 + exp{ξ − (log y)ε/2}

ξ

)
,
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with δ = −τ log y − arctan(−τ/(1 − β)). Together with (17) and (18) this
shows that

V ≥ eξ

ξ

(
1− 1√

1 + (τ(log y)/ξ)2

)
− 3erξ

ξ
+Oε

(
1 +

1
ξ

exp{ξ − (log y)ε/2}
)

� eξ/ξ � u,

for |τ | ≥ ξ/log y. This completes the proof of the lemma.

Lemma 4.5. Let ε > 0. Under the conditions (Hε) and (Vε) we have, for
1 ≤ |τ | ≤ Lε(y),

ζ(β + iτ)� (log(|τ |+ 1))2/3.

Proof. Korobov [7] and Vinogradov [14] established the upper bound

ζ(σ + iτ)� (1 + τ c(1−σ)3/2
)(log τ)2/3

for σ ≥ 0, τ ≥ 2 and for some positive constant c. According to Lemma 2.9,
the conditions (Hε) and (Vε) imply that

β = 1− ξr
log y

≥ 1− (log y)−2/5−ε.

Hence

ζ(β + iτ)�
{

1 + exp
(
c

log |τ |
(log y)3/5+3ε/2

)}
(log |τ |)2/3

for |τ | ≥ 2. This yields the desired result since

log |τ | ≤ log(Lε(y)) = (log y)3/5−ε

and ζ(β + iτ)� 1 for 1 ≤ |τ | ≤ 2.

Lemma 4.6. Let ε > 0. Under the conditions (Hε) and (Vε), we have

E3 := x
ζ(1, z)
ζ(1, y)

�

σ=−ξ
|τ |≥Lε/4(z) log y

ζ

(
1 +

s

log y

)
e−Ir(−s)+us

s+ log y
ds

� x
e−uξ

Lε/2(z)

(
eIr(ξ)−c2u/log2u

log y
+ 1
)
.

Proof. Define M := max(Lε/4(z) log y, eξ). Let E3,1 denote the contri-
bution to E3 from the domain Lε/4(z) log y ≤ |τ | ≤ M and let E3,2 be the
contribution from |τ | > M . We first study E3,2. Since |τ | > eξ and τ � 1/r,
Lemma 2.11(iv) yields

e−Ir(−s) =
1
r

(
1 +O

(
eξ

τ
+
erξ

rτ

))
.
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Thus, by Mertens’ formula,

E3,2 � x
�

|τ |>M
σ=−ξ

ζ

(
1 +

s

log y

)
eus

s+ log y
ds

+O

(
xe−uξ(eξ + 1/r)

�

|τ |>M

1
τ
ζ

(
1 +

s

log y

)
ds

s+ log y

)

=
�

σ=1−ξ/log y
|τ |>M/log y

ζ(s)
xs

s
ds+O

(
xe−uξ(eξ + 1/r)

1√
M log y

)
,

since ζ(1+s/log y)�
√

τ
log y . Now let β = 1−ξ/log y and let T := M/log y =

max(Lε/4(z), eξ/log y). In order to estimate the last integral, we approximate
ζ(s) using Corollary II.3.5.1 of [12]. This gives

�

|τ |>T
σ=β

ζ(s)
xs

s
ds =

�

|τ |>T
σ=β

( ∑

n≤|τ |
n−s +O(|τ |−σ)

)xs
s
ds

=
∞∑

n=1

�

|τ |≥max(n,T )
σ=β

(
x

n

)s ds
s

+O

(
xβ

T β

)
.

The last term is clearly acceptable. The estimate (7) in Chapter II.2 of [12]
allows us to estimate the sum over n by

�
∞∑

n=1

(
x

n

)β 1
1 + (n+ T )|log(x/n)| .

The contribution from positive integers n with |x − n| ≤ x3/4 is clearly
� x3/4. If |x− n| > x3/4, one easily verifies that nβ |log(x/n)| � √n, since
β > 3/4 for y > y0. Hence the last sum is

�
∞∑

n=1

xβ

n3/2 + T
+ x3/4 � xβ

T 1/3
+ x3/4 � xβ

T 1/3
� x

e−uξ

Lε/2(z)
,

since T � xε. Thus E3,2 is acceptable.
We now turn to E3,1. We may assume that eξ > Lε/4(z) log y, otherwise

we have E3,1 = 0. This implies that r ≤ 1/2 and ξ � log u. It follows from
usual estimates for the zeta function that

ζ

(
1 +

s

log y

)
1

s+ log y
� |s|−1/2.
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Thus, Lemma 2.11(ii) allows us to write

E3,1 � xr
�

σ=−ξ
Lε/4(z) log y≤|τ |≤eξ

ζ

(
1 +

s

log y

)
e−Ir(−s)+us

s+ log y
ds

� xr
�

σ=−ξ
Lε/4(z) log y≤|τ |≤eξ

exp{Ir(ξ)− uξ}Hr(u)−c1

|s|1/2 ds

� xr exp{ξ − uξ + Ir(ξ)− c1u/log2(2u)} � x
e−uξ+Ir(ξ)−c2u/log2(2u)

Lε/2(z) log y
,

which is clearly acceptable. This completes the proof of Lemma 4.6.

Lemma 4.7. Let ε > 0. Under the conditions (Hε) and (Vε) we have

E2 :=
x

Lε/4(z)
· ζ(1, z)
ζ(1, y)

−ξ+iLε/4(z) log y�

−ξ−iLε/4(z) log y

∣∣∣∣ζ
(

1 +
s

log y

)
e−Ir(−s)+us

s+ log y

∣∣∣∣ d|s|

� x
e−uξ

Lε/2(z)

(
exp{Ir(ξ)}Hr(u)−c2

log y
+ 1
)
.

Proof. Let L := Lε/4(z) and let

J := E2
Leuξ

rx
�
−ξ+iL log y�

−ξ−iL log y

∣∣∣∣ζ
(

1 +
s

log y

)
e−Ir(−s)

s+ log y

∣∣∣∣ d|s|,

by Mertens’ formula. We divide the interval [0, L log y) into four subintervals
determined by the endpoints

0, 1, min(L log y, eξ), max(min(L log y, eξ), 1/r), L log y.

Let J1, J2, J3 and J4 denote the corresponding contributions to J.
To bound J1, note that it follows from Lemmas 2.10 and 2.11(i) that

exp{−Ir(s)} � 1 for |τ | ≤ 1. Also, ζ(t) has a simple pole at t = 1. Finally,
|s+ log y| � log y under the conditions (Hε) and (Vε). Thus

J1 � 1.

For J2 we make use of Lemma 2.11(ii) to obtain

J2 � eIr(ξ)Hr(u)−c1
�

1≤|τ |≤min(L log y,eξ)

∣∣∣∣
ζ(1 + s/log y)
s+ log y

∣∣∣∣ d|s|.(19)

Due to the pole of ζ(t) at t = 1 we subdivide the domain of the last integral
again. Let J2,1 and J2,2 be the contributions to the integral in (19) from the
domains 1 ≤ |τ | ≤ min(log y, eξ) and min(log y, eξ) ≤ |τ | ≤ min(L log y, eξ),
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respectively. Then

J2,1 �
�

1≤|τ |≤min(log y,eξ)

log y
τ

dτ

log y
= min(log log y, ξ).

If eξ ≤ log y, then J2,2 = 0. If eξ > log y, Lemma 4.5 implies that

J2,2 �
�

log y≤|τ |≤min(L log y,eξ)

(log(|τ |/log y + 1))2/3

|τ | dτ

=
�

1≤|τ |≤min(L,eξ/log y)

(log(|τ |+ 1))2/3

|τ | dτ � (logL)5/3 < log z.

If log log y < log z, we have J2,1 � log z. Otherwise J2,1 � ξ � log u. Hence

J2 � (log z)eIr(ξ)Hr(u)−c2 .

To bound J3, we may assume that eξ ≤ L log y and eξ < 1/r, otherwise
J3 = 0. This means that |τ |/log y ≤ 1/log z and hence ζ(1 + s/log y) �
(log y)/s. By Lemma 2.11(iii), we have

J3 �
�

eξ≤|τ |≤1/r

∣∣∣∣
ζ(1 + s/log y)
s+ log y

∣∣∣∣ |s| d|s| �
�

eξ≤|τ |≤1/r

1 dτ � 1/r.

To bound J4, we may assume that eξ < L log y, otherwise J4 = 0. By
Lemma 2.11(iv), we have

J4 �
�

max(eξ,1/r)≤|τ |≤L log y

∣∣∣∣
ζ(1 + s/log y)
s+ log y

∣∣∣∣
1
r
dτ.(20)

Due to the pole of ζ(t) at t = 1, we subdivide the domain of the last integral.
Let J4,1 and J4,2 denote the contributions to the integral in (20) from the
domains max(eξ, 1/r) ≤ |τ | ≤ max(log y, eξ, 1/r) and max(log y, eξ, 1/r) ≤
|τ | ≤ L log y, respectively. If log y ≤ eξ, then J4,1 = 0. Otherwise, we have

J4,1 �
1
r

�

max(eξ ,1/r)≤|τ |≤log y

1
|τ | dτ �

1
r

(log log y − log(1/r)) =
1
r

log log z.

Lemma 4.5 shows that

J4,2 �
1
r

�

max(log y,eξ,1/r)≤|τ |≤L log y

(log(1 + |τ |/log y))2/3

|τ | dτ

=
1
r

�

max(1,eξ/log y,1/log z)≤|τ |≤L

(log(1 + |τ |))2/3

|τ | dτ

� 1
r

(logL)5/3 <
log z
r

.



Integers free of prime divisors, II 331

Therefore, we have

J4 �
log z
r

.

Since J1 + J3 � J4, we have J � J2 + J4 and hence

E2 � xre−uξ(J2 + J4)/Lε/4(z).

Thus,

E2 � x
e−uξ

Lε/2(z)

(
eIr(ξ)Hr(u)−c2

log y
+ 1
)
,

which concludes the proof of Lemma 4.7.

Lemma 4.8. Let ε > 0. Under the conditions (Hε) and (Vε) we have

E1 :=
�

σ=1−ξr/log y
|τ |≥Lε/4(z)

ζ(s)
ζ(s, z)
ζ(s, y)

· x
s

s
ds

� x exp{−uξ + Ir(ξ)−min(cu, (log y)3/5−ε)}
(log y)Lε(z)

.

Proof. We write β = 1− ξ/log y. Define

T = max(Lε/4(z), Lε/3(z) min(Lε/2(y), exp{u+ (log log y)1+ε/3})).
Let E1,1 and E1,2 denote the contributions to E1 from the domains |τ | > T
and Lε/4(z) ≤ |τ | ≤ T, respectively.

We begin by studying E1,1. Corollary II.3.5.1 of [12] enables us to write,
for s = β + iτ,

ζ(s) =
∑

n≤|τ |
n−s +O(|τ |−β).

Since
ζ(s, z)
ζ(s, y)

=
∏

z<p≤y
(1− p−s) =

∑

P−(m)>z
P+(m)≤y

µ(m)
ms

,

we have

ζ(s)
ζ(s, z)
ζ(s, y)

=
∑

n≤|τ |

∑

P−(m)>z
P+(m)≤y

µ(m)
(mn)s

+O

(
ζ(s, z)
ζ(s, y)

· 1
|τ |β

)
.(21)

We clearly have
∣∣∣∣
ζ(s, z)
ζ(s, y)

∣∣∣∣ =

∣∣∣∣
∑

P−(m)>z
P+(m)≤y

µ(m)
ms

∣∣∣∣ ≤
∑

P−(m)>z
P+(m)≤y

1
mβ

=
ζ(β, y)
ζ(β, z)

.
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Furthermore, Lemma 4 of [10] shows that, under the conditions (Hε) and
(Vε),

ζ(β, y)
ζ(β, z)

� eIr(ξ)

r
.

Thus, the contribution from the error term in (21) to E1,1 is

� xβ
ζ(β, y)
ζ(β, z)

�

|τ |>T

dτ

|τ |β+1 �
xβ

T β
· e

Ir(ξ)

r
=
x exp{−uξ + Ir(ξ)}

rT β
.(22)

The estimate (7) in Chapter II.2 of [12] enables us to write, uniformly
for z > 0,

�

σ=β
|τ |>T

zs

s
ds� zβ

1 + T |log z| .

The contribution to E1,1 from the main term in (21) can therefore be esti-
mated as follows:

(23)
∞∑

n=1

∑

P−(m)>z
P+(m)≤y

µ(m)
�

σ=β
|τ |≥max(T,n)

(
x

mn

)s ds
s

�
∞∑

n=1

∑

P−(m)>z
P+(m)≤y

(x/(mn))β

1 + (T + n)|log(x/(mn))| .

Note that the contribution to the right hand side of (23) from pairs (m,n)
such that |log(x/(mn))| > 1 is

� xβ
ζ(β, y)
ζ(β, z)

∞∑

n=1

1
nβ(T + n)

� xβ
ζ(β, y)
ζ(β, z)

· 1√
T
,(24)

since β ≥ 1/2. For the remaining pairs (m,n) with |log(x/(mn))| ≤ 1, let
S1, S2 denote the respective contributions to (23) corresponding to the cases
m ≤ x/T, m > x/T. We have

(T + n)

∣∣∣∣log
(

x

mn

)∣∣∣∣� n

∣∣∣∣1−
x

mn

∣∣∣∣,

which gives

S1 �
∑

m≤x/T
P−(m)>z
P+(m)≤y

∑

x/(em)≤n≤xe/m

1
1 + |n− x/m| �

∑

m≤x/T
P−(m)>z
P+(m)≤y

log
(
ex

m

)
.(25)
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Using partial summation, we have
∑

m≤x/T
P−(m)>z
P+(m)≤y

log
(
ex

m

)
=

∑

m≤x/T
Θ(m, y, z)

(
log
(
ex

m

)
− log

(
ex

m+ 1

))
(26)

+Θ(x/T, y, z) log(eT )

�
∑

m≤x/T

Θ(m, y, z)
m

+Θ(x/T, y, z) logT.

To bound Θ in the last expression, we make use of Rankin’s inequality for Θ:

Θ(x, y, z) =
∑

1≤m≤x
P−(m)>z
P+(m)≤y

1 ≤
∑

m≥1
P−(m)>z
P+(m)≤y

(
x

m

)β
= xβ

ζ(β, y)
ζ(β, z)

.(27)

Thus, by (25)–(27), we have

S1 �
ζ(β, y)
ζ(β, z)

( ∑

m≤x/T
mβ−1 +

xβ

T β
log T

)
� xβ√

T
· ζ(β, y)
ζ(β, z)

,(28)

since β ≥ 3/4.
When (m,n) is counted in S2, we have m > x/T and 1/e ≤ x/(mn) ≤ e,

hence n ≤ eT. From this we obtain

S2 ≤
∑

n≤eT

∑

x/(en)≤m≤ex/n
P−(m)>z
P+(m)≤y

1
1 + T |x/(mn)− 1|

�
∑

n≤eT

{
Θ(ex/n, y, z)√

T
+

∑

|m−x/n|<x/(n
√
T )

P−(m)>z
P+(m)≤y

1
}
.

We use (27) (Rankin’s inequality for Θ) to get

S2,1 :=
∑

n≤eT

Θ(ex/n, y, z)√
T

�
∑

n≤eT

(
ex

n

)β ζ(β, y)
ζ(β, z)

· 1√
T

(29)

� xβT 1−β

(1− β)
√
T
· ζ(β, y)
ζ(β, z)

� xβ

T 1/4
· ζ(β, y)
ζ(β, z)

.

It remains to bound
S2,2 :=

∑

n≤eT
Rn,

with

Rn := Θ

(
x

n
+

x

n
√
T
, y, z

)
−Θ

(
x

n
− x

n
√
T
, y, z

)
.
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If r ≤ 1/2 and
u < (log log y)1+ε/4 + (log z)3/5−2ε/5,

we use the trivial bound Rn � x/(n
√
T ) to obtain

S2,2 �
x log T√

T
� x

exp{−uξ + Ir(ξ)− u/2}
(log y)Lε/2(z)

(30)

according to Lemma 2.9. Thus, we may assume in the following that

u ≥ (log log y)1+ε/4 + (log z)3/5−2ε/5(31)

if r ≤ 1/2. From the proof of Lemma 7 in [10] we have

Rn �
1√
T

∣∣∣∣
�

σ=β
T 1/4≤|τ |≤

√
T

ζ(s, y)
ζ(s, z)

(
x

n

)s(
1− |τ |√

T

)
ds

∣∣∣∣(32)

+
(
x

n

)β ζ(β, y)
ζ(β, z)

· 1
T 1/4

.

We have
∑

n≤eT

(
x

n

)β ζ(β, y)
ζ(β, z)

· 1
T 1/4

� xβT 1−β

(1− β)T 1/4
· ζ(β, y)
ζ(β, z)

� xβ

T 1/5
· ζ(β, y)
ζ(β, z)

.(33)

To bound the first term in (32), we consider two cases, r ≥ 1/2 and r < 1/2.
If r ≥ 1/2, then T = Lε/4(z). Lemma 6(i) of [10] states that, under

conditions (Hε), (Vε), Lε(z) ≤ |τ | ≤ Lε/3(y), r ≥ 1/2 and y ≥ y0(ε),

ζ(s, y)
ζ(s, z)

= 1 +Oε

(
eξ

|τ log y| +
1

Lε(z)

)
.

Applying this result with ε/3 instead of ε shows that, for r ≥ 1/2, the first
term on the right hand side of (32) is

�ε

(
x

n

)β( 1√
T log(x/n)

+
log T√
T log y

+
1

Lε/3(z)

)
�
(
x

n

)β 1
Lε/3(z)

.

Thus,

(34)
∑

n≤eT

1√
T

∣∣∣∣
�

σ=β
T 1/4≤|τ |≤

√
T

ζ(s, y)
ζ(s, z)

(
x

n

)s(
1− |τ |√

T

)
ds

∣∣∣∣

�
∑

n≤eT

(
x

n

)β 1
Lε/3(z)

� xβ

Lε/3(z)
· T

1−β

1− β

� xβ

Lε/2(z)
� x exp{−uξ + Ir(ξ)− (log y)3/5−ε}

(log y)Lε(z)
.

In the last estimate we made use of the fact that Lε/2(z)� Lε(z)L3ε/4(y),
since r ≥ 1/2.
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If r < 1/2 we make use of estimate (5.3) of [10]: under the conditions
(Hε), (Vε), Lε(z) ≤ |τ | ≤ Lε/3(y), r ≤ 1/2 and y ≥ y0(ε), we have

ζ(s, y)
ζ(s, z)

�ε
ζ(β, y)
ζ(β, z)

e−cu,

for some positive constant c. This shows that, for r < 1/2, the first term on
the right hand side of (32) is

�
(
x

n

)β ζ(β, y)
ζ(β, z)

e−cu.

Since ξ � log u for r < 1/2, this implies that

(35)
∑

n≤eT

1√
T

∣∣∣∣
�

σ=β
T 1/4≤|τ |≤

√
T

ζ(s, y)
ζ(s, z)

(
x

n

)s(
1− |τ |√

T

)
ds

∣∣∣∣

� xβ
T 1−β

1− β ·
ζ(β, y)
ζ(β, z)

e−cu

� xβ(log y)eξ
ζ(β, y)
ζ(β, z)

e−cu � xβe−cu/2

(log y)2Lε/2(z)
· ζ(β, y)
ζ(β, z)

.

The last estimate follows from (31).
Now Lemma 4 of [10] shows that, under the conditions (Hε) and (Vε),

ζ(β, y)
ζ(β, z)

� eIr(ξ)

r
.(36)

Thus, (30) and (32)–(35) show that

S2,2 =
∑

n≤eT
Rn �

x exp{−uξ + Ir(ξ)−min(cu, (log y)3/5−ε)}
(log y)Lε(z)

.

Finally, (29), (28), (24) and (22) allow us to conclude that

E1,1 �
x exp{−uξ + Ir(ξ)−min(cu, (log y)3/5−ε)}

(log y)Lε(z)
,

for some positive constant c.
To conclude the proof of Lemma 4.8, we need to bound

E1,2 =
�

σ=β
Lε/4(z)≤|τ |≤T

ζ(s)
ζ(s, z)
ζ(s, y)

· x
s

s
ds

from above.
If r = log z/log y > 1/2, or if both conditions, u < (log log y)1+ε/3 +

(log z)3/5−ε/2 and (log z)3/5−ε/2 > log log y, are satisfied, choosing ε suf-
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ficiently small and y0(ε) sufficiently large gives T = Lε/4(z) and hence
E1,2 = 0.

If u ≥ (log log y)1+ε/3 + (log z)3/5−ε/2 and r ≤ 1/2, Lemma 4.5, Lemma
4.4 and (36) show that

E1,2 � xβ
ζ(β, y)
ζ(β, z)

e−cu
�

Lε/4(z)≤τ≤T

(log τ)2/3

τ
dτ � xβ(log y)2eIr(ξ)−cu,

which is clearly acceptable.
Finally, we consider the case where u < (log log y)1+ε/3 + (log z)3/5−ε/2

and (log z)3/5−ε/2 ≤ log log y. We define

λ(s, y, z) := ζ(s)
ζ(s, z)
ζ(s, y)

.

Integration by parts applied twice yields

E1,2 =
[
xsλ(s, y, z)
is log x

]|τ |=T

|τ |=Lε/4(z)
+

1
log x

�

σ=β
Lε/4(z)≤|τ |≤T

λ(s, y, z)xs
ds

s2

− 1
log x

�

σ=β
Lε/4(z)≤|τ |≤T

λ′(s, y, z)xs
dτ

s

and

E1,2 =
[
xsλ(s, y, z)
is log x

+
ixsλ′(s, y, z)
s(log x)2

]|τ |=T

|τ |=Lε/4(z)
(37)

+
�

σ=β
Lε/4(z)≤|τ |≤T

(
λ(s, y, z)

log x
− λ′(s, y, z)

(log x)2

)
xs

s2 ds

+
�

σ=β
Lε/4(z)≤|τ |≤T

λ′′(s, y, z)
(logx)2 xs

dτ

s
.

We apply Lemma 4.3, with ε/4 replaced by ε, to obtain

λ(s, y, z)� (log z)eI0((1−β) log z).

Now (Hε) and (Vε) imply that 1− β ≤ (log y)−2/5−ε. Since (log z)3/5−ε/2 ≤
log log y this shows that (1− β) log z � 1 and hence exp{I0((1 − β) log z)}
� 1. Thus,

λ(s, y, z)� log z
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in this case. Cauchy’s formula allows us to write

λ(k)(s, y, z) =
k!

2πi

�

|w−s|=(log y)−2/5−ε

λ(w, y, z)
(w − s)k+1 dw(38)

� (log z)(log y)k(2/5+ε),

for Lε/4(z) ≤ |τ | ≤ T . Applying (38) to the expression (37) leads to

E1,2 � xβ
(

log z
u(log y)Lε/4(z)

+
(log T )(log z)
u2(log y)6/5−ε

)
,

which is acceptable. This concludes the proof of Lemma 4.8.

Proof of Proposition 3.1. By Perron’s formula (see for example [12, The-
orem II.2.1]), we have, for all real κ > 1 and x 6∈ N,

Γ (x, y, z) =
1

2πi

κ+i∞�

κ−i∞
ζ(s)

ζ(s, z)
ζ(s, y)

· x
s

s
ds.

The residue at s = 1 has value xζ(1, z)/ζ(1, y). The integrand is an analytic
function of s for s 6= 0 or 1, and tends to 0 as |τ | → ∞ in every vertical
strip 0 < σ0 ≤ σ ≤ 1. We can therefore move the abscissa of integration to
the left as far as

β := 1− ξr(u)
log y

.

Set L := Lε/4(z). We obtain

Γ (x, y, z) = x
ζ(1, z)
ζ(1, y)

+
1

2πi

β+i∞�

β−i∞
ζ(s)

ζ(s, z)
ζ(s, y)

· x
s

s
ds(39)

= x
ζ(1, z)
ζ(1, y)

+
1

2πi

β+iL�

β−iL
ζ(s)

ζ(s, z)
ζ(s, y)

· x
s

s
ds+ E1,

with

E1 :=
�

σ=β
|τ |≥L

ζ(s)
ζ(s, z)
ζ(s, y)

· x
s

s
ds.

The conditions (Hε(x, y)) and (Vε) imply that β satisfies

β ≥ 1− (log y)−2/5−ε,(40)

according to Lemma 2.9. Using Lemma 4.2, we approximate the integrand
in (39) by

ζ(s)
ζ(1, z)
ζ(1, y)

· x
s

s
e−Ir((1−s) log y) = x

ζ(1, z)
ζ(1, y)

ζ

(
1 +

s′

log y

)
e−Ir(−s

′)+us′

1 + s′/log y
,
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where s′ = (s− 1) log y. We obtain

(41) Γ (x, y, z)

= x
ζ(1, z)
ζ(1, y)

+
x

2πi
· ζ(1, z)
ζ(1, y)

−ξ+iL log y�

−ξ−iL log y

ζ

(
1 +

s

log y

)
e−Ir(−s)+us

s+ log y
ds

+O(E1 + E2),

with

E2 :=
x

L
· ζ(1, z)
ζ(1, y)

−ξ+iL log y�

−ξ−iL log y

∣∣∣∣ζ
(

1 +
s

log y

)
e−Ir(−s)+us

s+ log y

∣∣∣∣ d|s|.

We extend the integral in (41) to infinity by writing

(42) Γ (x, y, z)

= x
ζ(1, z)
ζ(1, y)

+
x

2πi
· ζ(1, z)
ζ(1, y)

−ξ+i∞�

−ξ−i∞
ζ

(
1 +

s

log y

)
e−Ir(−s)+us

s+ log y
ds

+O(E1 + E2 + E3),

with

E3 := x
ζ(1, z)
ζ(1, y)

�

σ=−ξ
|τ |≥L log y

ζ

(
1 +

s

log y

)
e−Ir(−s)+us

s+ log y
ds.

Set E := E1 + E2 + E3. The integrand in (42) has a simple pole at s = 0
with residue xζ(1, z)/ζ(1, y). By moving the line of integration of (42) to
the right as far as σ = κ > 0, it follows that

Γ (x, y, z) =
x

2πi
· ζ(1, z)
ζ(1, y)

−κ+i∞�

−κ−i∞
ζ

(
1+

s

log y

)
e−Ir(−s)+us

s+ log y
ds+O(E)

=
x

2πi
· ζ(1, z)
rζ(1, y)

−κ+i∞�

−κ−i∞
ζ

(
1+

s

log y

)
s

s+ log y
η̂r(s)eusds+O(E),

since η̂r(s) = rs−1e−Ir(−s) by Lemma 2.1. Now, it is easily verified that, for
all complex s, we have

ζ

(
1 +

s

log y

)
s

s+ log y
=
∞�

−∞
e−st d

(
[yt]
yt

)
.

Thus

Γ (x, y, z) =
x

2πi
· ζ(1, z)
ζ(1, y)

−κ+i∞�

−κ−i∞
µ̂y,z(s)eus ds+O(E).

Since ηr(u) = r+O(%(u)) it follows that µy,z(u)� 1. Therefore the inverse
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Laplace integral

µy,z(u) =
−κ+i∞�

−κ−i∞
µ̂y,z(s)eus ds(43)

converges whenever κ > 0 and yu 6∈ N. When x = yu ∈ N, the integral (43)
converges to

1
2

(µy,z(u) + µy,z(u−)) = µy,z(u) +
1

2x
.

Lemmas 4.6–4.8 complete the proof of Proposition 3.1 by showing that,
under the given conditions, E = E1 + E2 + E3 is acceptable.

5. Proof of Proposition 3.2. Let α = α(x, y, z) be defined to be the
solution of the equation

∑

z<p≤y

log p
pα − 1

= log x.(44)

We will first establish three auxiliary results.

Lemma 5.1. Let a ≥ 1, u ≥ u0, y ≥ y0 and (x, y, z) ∈ (Gc) for some
suitable c. Then

Θ(ax, y, z)� aαΘ(x, y, z),

where α = α(x, y, z) is defined in (44).

Proof. Let α1 := α(ax, y, z). Then α1 ≤ α. Following Saias [11, Theo-
rem 1], we can write

Θ(ax, y, z) =
(ax)α1ζ(α1, y, z)

α1
√

2πφ2(α1, y, z)

{
1 +O

(
1
u

+ (log y)2
√
y − z
y

)}
,(45)

where

ζ(s, y, z) :=
∏

z<p≤y
(1− p−s)−1, φ(s, y, z) := log ζ(s, y, z)

and, for k ≥ 1,

φk(s, y, z) =
∂

∂sk
φ(s, y, z).

By definition of α1 we have

(ax)α1ζ(α1, y, z) ≤ (ax)αζ(α, y, z).

A routine calculation shows that α 7→ α
√
φ2(α, y, z) is a decreasing func-

tion of α. After replacing α1 by α on the right hand side of (45) we apply
Theorem 1 of [11] a second time to obtain the desired inequality.

Lemma 5.2. Let ε > 0. Let y ≥ y0, z ≥ 1 and x ≥ y ≥ z+ z7/12 with y0
sufficiently large. Let s = α+ iτ with τ ∈ R and u = min(u, (y − z)/log y).
Then:
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(i) if |τ | ≤ 1/log y,∣∣∣∣
ζ(s, z)
ζ(s, y)

∣∣∣∣� ζ(α, y, z) exp{−c0u},

(ii) if 1/log y < |τ | ≤ exp{(log y)3/2−ε} and y ≥ max(2z, y0),
∣∣∣∣
ζ(s, z)
ζ(s, y)

∣∣∣∣� ζ(α, y, z) exp
{
−c1(ε)

uτ2

(1− α)2 + τ2 + (log(y/z))−2

}
,

(iii) if 1/log y < |τ | ≤ c2y/log y,∣∣∣∣
ζ(s, z)
ζ(s, y)

∣∣∣∣

� ζ(α, y, z) exp
{
−c3

log(y/(|τ | log y))
log y

· uτ2

(1− α)2 + τ2 + (log(y/z))−2

}
.

Proof. An easy calculation shows that

|(1− p−s)(1− p−α)| = (1− p−2α)
(

1− 2(1 + cos(τ log p))
pα(1 + p−α)2

)1/2

≤ exp
{
−1 + cos(τ log p)

4pα

}
.

This implies that ∣∣∣∣
ζ(s, z)
ζ(s, y)

· ζ(α, z)
ζ(α, y)

∣∣∣∣ ≤ e−V ,

with

V :=
∑

z<p≤y

1 + cos(τ log p)
pα

.

If |τ | log y ≤ 1, we have

V ≥ 1
log y

∑

z<p≤y

log p
pα
� y1−α − z1−α

(1− α) log y
� u,

by Lemma 1(ii) and Lemma 8 of [11].
To show (ii) and (iii) we argue as in Lemma 10 of [11], where

∑

z<p≤y

1− cos(τ log p)
pα

is bounded from below. The calculations are identical and we obtain the
desired bounds.

Lemma 5.3. Let y − z > log x, u ≥ (log log y)2 and (x, y, z) ∈ (Gc) for
some suitable c. Then

M(x, y, z) :=
∑

n≤x
n|P

µ(n)� Θ(x, y, z)
(

1
u

+ (log y)2
√
y − z
y

)
,

where P :=
∏
z<p≤y p.
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Proof. We only sketch the proof since it is almost identical to the proof
of Theorem 1 in [11] by Saias. The result being trivial for u < u0 or y < y0,
we may assume that u and y are sufficiently large. The first effective Perron
formula (see for example [12, Theorem II.2.2]) enables us to write

(46) M(x, y, z) =
α+iT�

α−iT

ζ(s, z)
ζ(s, y)

· x
s

s
ds+O

(
xα
∑

n|P

|µ(n)|
nα(1 + T |log(x/n)|)

)
,

where P :=
∏
z<p≤y p. Following Saias, we choose α = α(x, y, z) as defined

in (44) and

T :=





[exp{−(log y)3/2−ε}+ exp{−c1u(log(2u))−2}]−1 (y ≥ 2z),[
c2

(log y)3/2

y
+ (log(2u)) exp

{
−c3

u

(log(2u) + log y/log(y/z))2

}]−1

(y < 2z).

From the proof of Lemma 12 in [11], we see that the error term in (46) is

� 1
T

(Θ(x, y, z) + (log T )xαζ(α, y, z)).

Let s = α + iτ. The contribution to the integral in (46) from the domain
1/log y ≤ |τ | ≤ T is � xαζ(α, y, z)/T by Lemma 5.2. This is shown in the
same manner as in [11] or [6]. It remains to estimate the contribution to the
integral in (46) from the domain |τ | < 1/log y. Lemma 5.2 allows us to write

�

|τ |<1/log y

ζ(s, z)
ζ(s, y)

· x
s

s
ds� xαζ(α, y, z)e−cu

�

|τ |<1/log y

dτ

α+ τ

= xαζ(α, y, z)e−cu log
(

1 +
1

α log y

)

� xαζ(α, y, z)e−cu

� xα

T
ζ(α, y, z),

since α log y � 1 for y − z > log x, according to Lemma 4 in [11]. Following
the proof of Theorem 1 in [11], we conclude that M(x, y, z) is

� Θ(x, y, z)
(

1
u

+ (log y)2
√
y − z
y

)
,

which is the desired inequality.

Proof of Proposition 3.2. Let P =
∏
z<p≤y p. Then

Γ (x, y, z) =
∑

n|P
µ(n)

[
x

n

]
= x

∑

n|P

µ(n)
n
−
∑

n|P
µ(n)

{
x

n

}
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= x
∏

z<p≤y

(
1− 1

p

)
− x

∑

n>x
n|P

µ(n)
n
−
∑

n≤x
n|P

µ(n)
{
x

n

}

= x
∏

z<p≤y

(
1− 1

p

)
− x

∑

n>x
n|P

µ(n)
n

+O(Θ(x, y, z)).

If y ≤ y0 for some fixed y0 then the last sum vanishes for x >
∏
p≤y0

p.
Since the result is trivial for bounded x we can assume that y > y0 for some
sufficiently large y0. By partial summation, we have

x
∑

n>x
n|P

µ(n)
n
� x

∞�

x

|M(t, y, z)| dt
t2
,

with
M(x, y, z) :=

∑

n≤x
n|P

µ(n).

Let α = α(x, y, z) be as in (44). If y− z ≤ log x then α� 1/log y according
to Saias [11, Lemma 4]. Thus Lemma 5.1 allows us to write

x

∞�

x

|M(t, y, z)| dt
t2
� x

∞�

x

Θ(t, y, z)
dt

t2
� x1−αΘ(x, y, z)

∞�

x

tα−2 dt

=
1

1− α Θ(x, y, z)� Θ(x, y, z).

If y − z > log x and u ≥ u0 = log y0 then (1− α) log y � 1 according to
Saias [11, Theorem 2]. Thus Lemma 5.3 and Lemma 5.1 yield

x

ey−z�

x

|M(t, y, z)| dt
t2
� x

log y

ey−z�

x

Θ(t, y, z)
dt

t2
� x1−α

log y
Θ(x, y, z)

ey−z�

x

tα−2 dt

� Θ(x, y, z)
(1− α) log y

� Θ(x, y, z).

With α = α(x, y, z) and α̃ = α(ey−z, y, z) we have, by Lemma 5.1,

x

∞�

ey−z

|M(t, y, z)| dt
t2
� x

∞�

ey−z

Θ(x, y, z)
dt

t2

� xe−(y−z)α̃Θ(ey−z, y, z)
∞�

ey−z

tα̃−2 dt

� x

ey−z
Θ(ey−z, y, z)

�
(

x

ey−z

)1−α
Θ(x, y, z)� Θ(x, y, z),
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since α̃ = α(ey−z, y, z) � 1/log y, by Saias [11, Lemma 4]. This completes
the proof of Proposition 3.2.
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