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1. Introduction and statement of main results. Despite extensive
research on congruence properties of the Fourier coefficients of elliptic mod-
ular forms, surprisingly little is known about congruence properties of Siegel
modular forms of higher genus. In this note, we consider congruences for the
Fourier coefficients of Siegel modular forms of genus 2, studied by Sturm [15]
in the case of an elliptic modular form.

Let f =
∑∞

n=0 af (n)qn ∈ OL[[q]] be an elliptic modular form of weight

k on a congruence subgroup Γ (1) of SL2(Z), where OL denotes the ring
of integers of a number field L. Sturm proved in [14] that if β is a prime
ideal of OL for which af (n) ≡ 0 (mod β) for 0 ≤ n ≤ k

12 [SL2(Z) : Γ (1)],
then af (n) ≡ 0 (mod β) for every n ≥ 0. This result is called the Sturm
formula. In fact, the Sturm formula implies that all the Fourier coefficients
of f modulo β are determined by the first k

12 [SL2(Z) : Γ (1)] coefficients.
We note that, using the ring structure of weak Jacobi forms, the first two
authors derived in [4] an analogue of the Sturm formula for Jacobi forms.

Our first main theorem is an analogue of the Sturm formula for Siegel
modular forms of genus 2. Note that Poor and Yuen [12] gave a result in
this direction which is more general, but different (see Remark 1.2(2)). Our
result was obtained independently.

We fix some notations. Let p ≥ 5 be a prime. Let Γ2 be the full Siegel
modular group Γ2 = Sp2(Z) and Γ be a congruence subgroup of Γ2 with
level N . Let Mk(Γ ) be the space of Siegel modular forms of weight k on
Γ and let Sk(Γ ) be the space of cusp forms in Mk(Γ ). If all the Fourier
coefficients of F ∈ Mk(Γ ) are p-integral rational and zero modulo p, then
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we write F ≡ 0 (mod p). With these notations we state our analogue of the
Sturm formula for a Siegel modular form of genus 2.

Theorem 1.1. Let k be an even positive integer. Suppose that F is a
Siegel modular form in Mk(Γ ) with p-integral rational coefficients having the
form

F (τ, z, τ ′) =
∑

n,m∈ 1
N
Z, r∈ 1

2N
Z

n,m,nm−r2≥0

A(n, r,m)qnξ2rq′m,

with q = e2πiτ , ξ = e2πiz, q′ = e2πiτ
′

and
( τ z
z τ ′
)

in the Siegel upper half-

plane H2 of degree 2, where H2 :=
{( τ z

z τ ′
)
∈ M2(C)

∣∣ Im
( τ z
z τ ′
)
> 0

}
. If

A(n, r,m) ≡ 0 (mod p) for every n, m such that

0 ≤ n ≤ k

10
[Γ2 : Γ ] and 0 ≤ m ≤ k

10
[Γ2 : Γ ],

then F ≡ 0 (mod p).

Remark 1.2. (1) The bounds in Theorem 1.1 are sharp for Γ = Γ2; this
will be discussed in Section 3.1.

(2) The results of Poor and Yuen [12] are stated in terms of the dyadic
trace. For example, when Γ = Γ2, their results imply the following:

Theorem ([12]). Let F =
∑

T a(T )eπi tr(TZ) ∈ Mk(Γ2) be a Fourier
expansion of F . Here T runs over all even, symmetric and semi-positive
definite 2× 2 matrices. Suppose that a(T ) ∈ Z(p) and a(T ) ≡ 0 (mod p) for
all T with dyadic trace w(T ) ≤ k/3 (note that the bound will be k/6 if T is
taken as the form of a half integral matrix). Then F ≡ 0 (mod p).

(3) As mentioned above, our bounds are sharp for Γ = Γ2. However,
since the statements in Theorem 1.1 and [12] are different, it seems hard to
tell which gives a better bound. Now, we compare the number of Fourier
coefficients required to confirm F ≡ 0 (mod p), based on the following
examples:

Number of T = ( 2n r
r 2m ) ≥ 0 (n ≤ m)

k w(T ) ≤ k/3 2n, 2m ≤ k/10

2 1 1

4 1 1

6 4 1

8 4 1

10 6 7

12 12 7

k w(T ) ≤ k/3 2n, 2m ≤ k/10

14 12 7

16 18 7

18 30 7

20 30 7

22 42 22

24 61 22

From this table we can see that our bounds are the same or better than
theirs when the level is one and the weight k is less than 24 except k=10.
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For elliptic modular forms, congruences involving Atkin’s U(p)-operator
were studied with important applications in the context of traces of sin-
gular moduli and class equations (see Ahlgren and Ono [1], Elkies, Ono,
and Yang [6], and Chapter 7 of Ono [11]). Recently the first two authors
and Richter [5] investigated congruences involving an analogue of Atkin’s
U(p)-operator for a Siegel modular form. As an application of Theorem 1.1
we improve the results in [5] by removing a condition on F .

Before stating our second main theorem we introduce further notations.
Let

M̃k :=
{
F (mod p) : F (Z) =

∑
a(T )eπi tr(TZ) ∈Mk(Γ ), a(T ) ∈ Z(p)

}
,

where Z(p) := Zp ∩ Q. For Siegel modular forms with p-integral rational
coefficients, we define their filtrations modulo p by

ω(F ) := inf{k : F (mod p) ∈ M̃k}.

Let Z :=
( τ z
z τ ′
)
. The differential operator D = (2π)−2

(
4 ∂
∂τ

∂
∂τ ′ −

∂2

∂z2

)
acts

on the Fourier expansions of Siegel modular forms as

D
(∑

a(T )eπi tr(TZ)
)

=
∑

det(T )a(T )eπi tr(TZ).

Let

F (Z)|U(p) :=
∑

T= tT≥0
T even
p| detT

a(T )eπi tr(TZ)

be an analogue of Atkin’s U(p)-operator for a Siegel modular form

F (Z) =
∑

T= tT≥0
T even

a(T )eπi tr(TZ).

Now we are ready to state the theorem on congruences involving an analogue
of Atkin’s U(p)-operator for a Siegel modular form.

Theorem 1.3. Let F be a Siegel modular form of degree 2, even weight k,
level 1, and with p-integral rational coefficients, where p > k is a prime.
Suppose that F 6≡ 0 (mod p). If p > 2k − 5, then F |U(p) 6≡ 0 (mod p). If
k < p < 2k − 5, then

ω(D(3p+3)/2−k(F )) =

{
3p− k + 3 if F |U(p) 6≡ 0 (mod p),

2p− k + 4 if F |U(p) ≡ 0 (mod p).

2. Proofs of main theorems. Let E
(2)
4 , E

(2)
6 , χ10 and χ12 denote the

generators (introduced by Igusa [7]) of Mk(Γ2) of weights 4, 6, 10 and 12,

respectively. Here E
(2)
k (k = 4, 6) is the normalized Eisenstein series of

weight k and genus 2
(
i.e. a

(
0 0
0 0

)
= 1
)

and the cusp forms χk (k = 10, 12)
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are normalized by a
(
2 1
1 2

)
= 1. Then all the Fourier coefficients of these

four generators are rational integers (cf. [8]). Nagaoka [9] and Böcherer and
Nagaoka [2] investigated Siegel modular forms modulo p.

Consider the Witt operator W : Mk(Γ2) → Mk(SL2(Z)) ⊗Mk(SL2(Z))
defined by

W (F )(τ, τ ′) := F
((

τ 0
0 τ ′
))
, (τ, τ ′) ∈ H×H,

where Mk(SL2(Z)) is the space of modular forms of weight k on SL2(Z). For
example, note that (see [9])

W (E
(2)
4 )(τ, τ ′) = E4(τ)E4(τ

′), W (χ10)(τ, τ
′) = 0,

W (E
(2)
6 )(τ, τ ′) = E6(τ)E6(τ

′), W (χ12)(τ, τ
′) = ∆(τ)∆(τ ′),

where Ek is the normalized Eisenstein series of weight k on SL2(Z) and ∆
is the unique normalized cusp form of weight 12 on SL2(Z).

Lemma 2.1 (Corollary 4.2 in [9]). Let Mk(Γ2)Z(p)
be a Z-module gen-

erated by all Siegel modular forms in Mk(Γ2) whose Fourier coefficients
are rational and p-integral. If F ∈ Mk(Γ2)Z(p)

satisfies W (F ) ≡ 0, then
F/χ10 ∈Mk−10(Γ2)Z(p)

.

With the above lemmas, we prove Theorem 1.1 for the case of level 1.

Proposition 2.2. Suppose that Γ = Γ2. Then the conclusion of Theo-
rem 1.1 is true.

Proof. By assumption, A(n, r,m) ≡ 0 (mod p) for every n, m such that
0 ≤ n,m ≤ k/10. Thus A(n, r,m) ≡ 0 (mod p) for every n, m such that
0 ≤ n ≤ 1

12(k + 2m) and 0 ≤ m ≤ k/10.

Let F (τ, z, τ ′) =
∑∞

m=0 φm(τ, z)q′m be the Fourier–Jacobi expansion
of F , where φm is a Jacobi form of weight k and index m. For each m
such that 0 ≤ m ≤ k/10, we have φm ≡ 0 (mod p) by the analogue of the
Sturm formula for Jacobi forms (see Theorem 1.3 in [4]) since A(n, r,m) ≡ 0
(mod p) for n, 0 ≤ n ≤ 1

12(k + 2m). Thus

(2.1) A(n, r,m) ≡ 0 (mod p) if 0 ≤ m ≤ k/10.

Let W (F ) be the Witt operator defined as

W (F (Z)) = F (τ, 0, τ ′).

Then

W (F (Z)) =

β∑
α=1

fα(τ)gα(τ ′) :=
∑
n,m≥0

B(n,m)qnq′m,

where fα and gα are modular forms of weight k on SL2(Z). From the ring
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structure of modular forms on SL2(Z), we have

W (F (Z)) =
∑

12i+4j+6t=k
t=0,1

f(i)(τ)∆(τ ′)iE4(τ
′)jE6(τ

′)t,

where f(i) is also a modular form of weight k on SL2(Z). Since

Ek(τ) = 1 +O(q) and ∆(τ) = q +O(q2),

the q-expansion of ∆(τ ′)iE4(τ
′)jE6(τ

′)t has the form

∆(τ ′)iE4(τ
′)jE6(τ

′)t = (q′)i + · · · .

The numbers j and t are uniquely determined by choosing a value of i.

From (2.1) we find that if m ≤ k/10, then B(n,m) ≡ 0 (mod p). This
implies that f(i) ≡ 0 (mod p) for i ≤ k/10. Note that indeed i ≤ k/10 since
12i + 4j + 6t = k. Thus we have W (F ) ≡ 0 (mod p), and there is a Siegel
modular form F ′ ∈ Mk(Γ

2)Z(p)
such that W (F ′) = (1/p)W (F ). Applying

Lemma 2.1 to F − pF ′, we have

F ≡ F(1)(Z)χ10(Z) (mod p),

where F(1)(Z) is a Siegel modular form of weight k− 10 and genus 2 on Γ2.

Let F(1)(τ, z, τ
′) =

∑∞
m=0 φ

(1)
m (τ, z)q′m be the Fourier–Jacobi expansion

of F(1). Then χ10(Z) has the Fourier–Jacobi expansion
∑∞

m=1 ψm(τ, z)q′m

such that ψ1(τ, z) 6≡ 0 (mod p). Thus for every m with 0 ≤ m ≤ k/10− 1,

φm ≡ 0 (mod p).

Hence, following the previous argument, we have

F(1) ≡ F(2)(Z)χ10(Z) (mod p),

where F(2)(Z) is a Siegel modular form of weight k − 20 and genus 2.

Repeating this argument, we obtain

F(t) ≡ F(t+1)(Z)χ10(Z) (mod p)

if 1 ≤ t < t0 and t0 = [k/10]. Thus

F ≡ F(t0)χ10(Z)t0 (mod p).

We will complete the proof by showing that F(t0) ≡ 0 (mod p). Let∑∞
m=0 φ

(t0)
m (τ, z)q′m be the Fourier–Jacobi expansion of F(t0). Since k/10−t0

≥ 0, we have φ
(t0)
0 ≡ 0 (mod p). Moreover, the weight of F(t0) is less than 8,

and dimCMk(Γ2) ≤ 1 for k ≤ 10. Thus, F(t0) ≡ 0 (mod p).

For a subring R ⊂ C, we denote by Mk(Γ )R the space of all f ∈Mk(Γ )
whose Fourier coefficients are in R. Let p be a prime. We denote by vp the
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normalized additive valuation on Q (i.e. vp(p) = 1). For

F (τ, z, τ ′) =
∑

n,m∈ 1
N
Z, r∈ 1

2N
Z

n,m,nm−r2≥0

A(n, r,m)qnξ2rq′m ∈Mk(Γ )Q,

we define

vp(F ) := inf

{
vp(A(n, r,m))

∣∣∣∣ n,m ∈ 1

N
Z, r ∈ 1

2N
Z, n,m, 4nm− r2 ≥ 0

}
.

Assume that vp(F ) ≥ 0, in other words F ∈ Mk(Γ )Z(p)
. Then we define

the order of F by

ordp(F ) := min
{
m
∣∣∣ φm(τ, z) =

∑
n,r

A(n, r,m)ξ2rqn 6≡ 0 (mod p)
}

= min{m | vp(A(n, r,m)) = 0 for some n, r}.
If vp(F ) ≥ 1, then we define ordp(F ) :=∞. Note that

ordp(FG) = ordp(F ) + ordp(G).(2.2)

Following the argument of Sturm [14], we prove Theorem 1.1 with the help
of Proposition 2.2.

Proof of Theorem 1.1. Let i := [Γ2 : Γ ]. Suppose that A(n, r,m) ≡ 0
(mod p) for every n, m such that 0 ≤ n ≤ 1

10ki and 0 ≤ m ≤ 1
10ki. Then

A(n, r,m) ≡ 0 (mod p) for every n, m such that 0 ≤ n ≤ 1
12(ki + 2m) and

0 ≤ m ≤ 1
10ki. Thus ordp(F ) > 1

10ki by the analogue of the Sturm formula
for Jacobi forms (see Theorem 1.2 in [4]).

We decompose Γ2 as Γ2 =
⋃i
j=1 Γγj , where γ1 = 12. Let

Ψ := F

i∏
j=2

F |kγj ∈Mki(Γ2)Q(µN ) (µN := e2πi/N ).

Then all Fourier coefficients of Ψ are in Q(µN ) according to Shimura’s re-
sult [13]. We take a constant λ ∈ Q(µN ) such that at least one of the
non-zero Fourier coefficients of λΨ is in Q. For example, we may take
λ := AΨ (n, r,m)−1 for a nonzero Fourier coefficient AΨ (n, r,m) of Ψ .

Moreover, we consider

Φ :=
∑

σ∈Gal(Q(µN )/Q)

(λΨ)σ =
∑

σ∈Gal(Q(µN )/Q)

(
λF

i∏
j=2

F |kγj
)σ

= F
∑

σ∈Gal(Q(µN )/Q)

(
λ

i∏
j=2

F |kγj
)σ
,

where σ runs over all elements of Gal(Q(µN )/Q) and fσ is defined by
applying σ to each Fourier coefficient of f when f ∈ Mk(Γ )Q(µN ). Then
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Φ ∈Mki(Γ2)Q. This follows from Sturm’s result [15, p. 344]. The choice of λ
implies that Φ 6= 0. Hence we can take a suitable constant C ∈ Q such that

vp

(
C

∑
σ∈Gal(Q(µN )/Q)

(
λ

i∏
j=2

F |kγj
)σ)

= 0.

This means CΦ ∈Mki(Γ2)Z(p)
. Using (2.2), we obtain

ordp(CΦ) = ordp(F ) + ordp

(
C

∑
σ∈Gal(Q(µN )/Q)

(
λ

i∏
j=2

F |kγj
)σ)

.

Note that ordp(CΦ) ≥ ordp(F ) > 1
10ki. Thus, by Proposition 2.2 we have

ordp(CΦ) =∞.
This implies

ordp(F ) + ordp

(
C

∑
σ∈Gal(Q(µN )/Q)

(
λ

i∏
j=2

F |kγj
)σ)

=∞.

The second part is finite and hence we have ordp(F ) =∞, so F ≡ 0 (mod p).
This completes the proof of Theorem 1.1.

Proof of Theorem 1.3. By Theorem 1 in [5], it is enough to show that
if A(n, r,m) ≡ 0 (mod p) for every (n, r,m) such that p - nm, then F ≡ 0
(mod p). To prove it we consider the Fourier–Jacobi expansion

F (τ, z, τ ′) =
∞∑
m=0

φm(τ, z)e2πimτ
′
.

Suppose that A(n, r,m) ≡ 0 (mod p) whenever p - nm. Then A(n, r,m) ≡ 0
(mod p) for m < p and n < p. Note that k/10 < p. Applying Theorem 1.1
completes the proof.

3. Examples

3.1. Examples for level 1. Let t(k) = [k/10]. Consider a Siegel mod-
ular form

Gk(Z) =
∑

n,m∈Z, r∈ 1
2
Z

n,m,nm−r2≥0

AG(n, r,m)qnξ2rq′m

of weight k and genus 2 defined as

Gk(Z) :=


E

(2)
4 (Z)iE

(2)
6 (Z)jχ

t(k)
10 (Z) (i+ j + t(k) = k, j = 0 or 1)

if k 6≡ 2 (mod 10),

χ
t(k)−1
10 (Z)χ12(Z) if k ≡ 2 (mod 10).
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Recall that

E
(2)
4 (Z) = 1 + 240q + 240q′ + · · · ,

E
(2)
6 (Z) = 1− 504q − 504q′ + · · · ,
χ10(Z) = (ξ−1 − 2 + ξ)qq′ + · · · ,
χ12(Z) = (ξ−1 + 10 + ξ)qq′ + · · · .

Thus we have

Gk(Z)

=

{
(ξ−1 − 2 + ξ)t(k)qt(k)q′t(k) + · · · if k 6≡ 2 (mod 10),

(ξ−1 + 10 + ξ)(ξ−1 − 2 + ξ)t(k)−1qt(k)q′t(k) + · · · if k ≡ 2 (mod 10).

The coefficients AG(n, r,m) are integral and AG(n, r,m) ≡ 0 (mod p) for
n ≤ k/10− 1 and m ≤ k/10− 1. Thus, when the level is one, the bounds in
Theorem 1.1 are sharp since Gk 6≡ 0 (mod p).

3.2. Examples for level 11 and 19. It is known that we can construct

a cusp form of Γ
(2)
0 (11) of weight 2 by Yoshida lift (cf. [16]). For the matrices

S
(11)
1 :=


1 1

2 0 0
1
2 3 0 0

0 0 1 1
2

0 0 1
2 3

 , S
(11)
2 :=


2 0 1 1

2

0 2 1
2 −1

1 1
2 2 0

1
2 −1 0 2

 ,

S
(11)
3 :=


1 0 1

2 0

0 4 2 3
2

1
2 2 4 7

2

0 3
2

7
2 4

 ,

if we put

F
(11)
2 := 1

24(3θ
S
(11)
1

− θ
S
(11)
2

− 2θ
S
(11)
3

),

then F
(11)
2 ∈ S2(Γ (2)

0 (11))Z(p)
, where θSj is defined by

θSj (Z) :=
∑

X∈M4,2(Z)

e2πi tr(Sj [X]Z).
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We give one more example of Yoshida lift. For the matrices

S
(19)
1 :=


1 0 1

2 0

0 1 0 1
2

1
2 0 5 0

0 1
2 0 5

 , S
(19)
2 :=


1 1

2
1
2

1
2

1
2 2 0 1
1
2 0 3 3

2
1
2 1 3

2 6

 ,

S
(19)
3 :=


2 0 1 1

2

0 2 1
2 1

1 1
2 3 1

2
1
2 1 1

2 3

 ,

if we put

F
(19)
2 := 1

8(θ
S
(19)
1

− 2θ
S
(19)
2

+ θ
S
(19)
3

),

then F
(19)
2 ∈ S2(Γ (2)

0 (19))Z(p)
.

Let E4 = E
(2)
4 , E6 = E

(2)
6 , and let χ10 and χ12 be Igusa’s generators as

introduced in Section 2. Set

χ20 := 11E4E6χ10 + 4χ2
10 + 8E2

4χ12

and denote the Fourier expansion of F by

F =
∑
T

aF (T )e2πitr(TZ).

Here T is a half-integral matrix. Then the following proposition is known.

Proposition 3.1 (Nagaoka–Nakamura [10]). The following hold:

(1) a
F

(11)
2

(T ) ≡ a−χ12(T ) (mod 11) for all T with tr(T ) ≤ 5.

(2) a
F

(19)
2

(T ) ≡ aχ20(T ) (mod 19) for all T with tr(T ) ≤ 4.

Now we can show the following congruences.

Proposition 3.2.

(1) F
(11)
2 ≡ −χ12 (mod 11),

(2) F
(19)
2 ≡ χ20 (mod 19).

Proof. Since the proof of (2) is similar to the proof of (1), we will show
(1) only. It is known by Böcherer–Nagaoka [3] that there exists a modular

form G12 ∈M12(Γ2)Z(p)
such that F

(11)
2 ≡ G12 (mod 11). From Proposition

3.1 we have

aG12(T ) ≡ a−χ12(T ) (mod 11) for all T with tr(T ) ≤ 5.
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Applying Theorem 1.1 to G12 and −χ12, we have G12 ≡ −χ12 (mod 11). In
fact, k/10 = 12/10. Hence it suffices to check the congruence of the Fourier

coefficients for all T with tr(T ) ≤ 2. Then F
(11)
2 ≡ G12 ≡ −χ12 (mod 11).

This completes the proof of (1).

Remark 3.3. In [3], Böcherer–Nagaoka proved that, under a mild as-

sumption, for each F2 ∈M2(Γ
(2)
0 (p))Z(p)

there exists a Siegel modular form
Gp+1 ∈Mp+1(Γ2)Z(p)

such that F2 ≡ Gp+1 (mod p).

Acknowledgements. The authors thank the anonymous referee for
careful reading and useful comments. The first author acknowledges par-
tial support by 2010 Korea Areospace University faculty research grant.

The first author was partially supported by NRF-2011-0025910 and by
KIAS through associate membership program. The second author was par-
tially supported by NRF 2011-0030749 and NRF 2011-0008928.

References

[1] S. Ahlgren and K. Ono, Arithmetic of singular moduli and class polynomials, Com-
pos. Math. 141 (2005), 293–312.
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