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1. Introduction. The work of Huxley and Konyagin [8] considers the
question, “Among the circles drawn through three distinct integer points
in the plane, are circles which pass through four or more points rare?”
This question arose from the investigation by Huxley and Žunić [10, 11]
of the configurations of integer points in convex plane sets. Huxley and
Konyagin [8] study families of circles passing through three, four and five
integer points, finding upper and lower bounds.

This paper gives an improvement to Huxley and Konyagin’s current lower
bound for the number of circles passing through five integer points. We
conjecture that the improved lower bound is the asymptotic formula for the
number of circles passing through five integer points. We also generalise our
result to circles passing through more than five integer points. The current
lower bound has the form c logR, and we improve this to a polynomial
in logR of degree 2m−1 − 1. For small m ≥ 5, the estimate increases for
sufficiently large R, since we consider a small number of circles (the number
of which decreases with m) passing through many integer points.

Using the notation of [8], let Pm(R) denote the number of sets of m dis-
tinct integer points lying on a circle of radius r, with r ≤ R, where the centre
of the circle is located in the unit square. Again, using the notation of [8], for
sufficiently large R, C(m, ε) is a constant dependent on m and ε. For suffi-
ciently large R, Huxley and Konyagin have bounded Pm(R) for m = 3, 4, 5.
They proved

P3(R) = π2R4 +O(R2+κ(logR)λ),

where κ = 131/208 and λ = 18627/8320 (see [6]), and

P4(R) =
32(3 +

√
2)

21ζ(3)
ζ

(
3

2

)
L

(
3

2
, χ

)
R3 +O(R76/29+ε),
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where ε > 0 and L(s, χ) is the Dirichlet L-function formed with the non-
trivial character mod 4. We use this definition of L(s, χ) throughout the
paper. For P5(R) with ε > 0, the current bounds are

cR2 logR ≤ P5(R) ≤ C(5, ε)R76/29+ε.

To improve the lower bound on P5(R) we consider r(n), the arithmetic
function that counts the number of integer solutions of x2 + y2 = n with
x > 0, y ≥ 0. In a paper mainly concerned with moments of the divisor
function, Wilson [17] predicted the existence of analogues for powers of r(n):

Proposition A (Wilson). For each integer m ≥ 1, there are constants
bm, bm = 2m−1 − 1, and cm such that as N →∞, we have∑

n≤N
rm(n) = (cm + o(1))N(logN)bm .

Our first result is a more precise form of Wilson’s proposition for m ≥ 3.

Theorem 1.1. Let m ≥ 3 be a fixed integer, and r(n) be the arithmetic
function counting the number of integer solutions of x2 + y2 = n with x > 0
and y ≥ 0. Then, as N →∞,

(1.1)
∑
n≤N

rm(n) = NPm(logN) +O(NΦ+ε),

where Pm(x) is a polynomial of degree b = 2m−1 − 1, and the Φ term in the
exponent is less than 1. The leading coefficient c of Pm(x) is

(1.2) c =

(
π

4

)b+1E

b!
,

where E is the Euler product

(1.3) E =

(
1

2

)b ∏
p≡1mod 4

(
1− 1

p

)A(m,2) m∑
k=1

A(m, k)p(1−k)
∏

p≡3mod 4

(
1− 1

p2

)b
,

and A(m, k) denotes the Eulerian number [1]

A(m, k) =

k∑
j=0

(−1)j m+1Cj(k − j)m,

with A(m, 2) = 2m −m− 1.
The Φ term in the exponent of (1.1) is related to the value of the φ term

in the exponent for the size of the Riemann zeta function [15]:

ζ(1/2 + it) = O(tφ+η)

for all η > 0 as t→∞. The relationship is

(1.4) Φ =
(4b− 4)φ+ 1

(4b− 4)φ+ 2
,
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where b is the degree of Pm(x). By Huxley’s estimate [7], we take φ = 32/205.
The constant ε and the constant implied in the O symbol follow the conven-
tions given below.

We then establish our conjectured asymptotic formula for the number of
cyclic polygons with m integer vertices, that is, the number of circles passing
through m integer points, for each m ≥ 3, which have circumcentre at the
origin and circumradius at most

√
N .

Theorem 1.2. Let m ≥ 3 be a fixed integer. Let Xm(N) denote the
number of cyclic polygons with circumcentre at the origin, m integer vertices,
and circumradius at most

√
N . Then

Xm(N) =
N

m!

( m∑
j=1

4js(m, j)Pj(logN)
)

+O(NΦ+ε).

The polynomials Pj(x) and the Φ term in the exponent are as in Theorem 1.1,
where b in (1.4) is the degree of Pm(x), and s(m, j) denotes the signed
Stirling numbers of the first kind [2].

Next, we restrict this result to r∗(n, q), an arithmetic function related to
the function r(n).

Theorem 1.3. Let m ≥ 3 and q ≥ 1 be fixed integers. Let r∗(n, q) be
the arithmetic function which counts integer solutions of x2 + y2 = n with
x > 0, y ≥ 0 and highest common factor (x, y, q) = 1. Then for σ ≥ 1/2, as
N →∞,

(1.5)
∑
n≤N

(r∗(n, q))m

ns
= NPm,q(logN) +O(qεNΦ+ε),

where Pm, q(x) is a polynomial of degree b = 2m−1 − 1 whose coefficients
depend on q, and Φ < 1 is the same as in (1.4) of Theorem 1.1. The leading
coefficient cq of Pm,q(x) can be expressed as

(1.6) cq =
1

b!

(
π

4

)b+1

E(q, 1)

where E(q, 1) = EΨ(q, 1), for E as in (1.3) of Theorem 1.1, and Ψ(q, 1)
a certain convergent Euler product.

We establish a lower bound for the number of cyclic polygons with five
or more integer point vertices.

Lemma 1.4. Let m ≥ 5 and q ≥ 1 be fixed integers. Let n be a positive
integer with q2 < n. Let f(q) be the arithmetic function

(1.7) f(q) = q2
∏
p|q

(
1− 1

p2

)
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which counts pairs of residue classes a mod q, b mod q, with highest common
factor (a, b, q) = 1.

Let r∗ = (m − 1)r∗(n, q) denote the number of integer points (x, y) on
the circle x2 +y2 = n with highest common factor (x, y, q) = 1. Let Vm(n, q)
be the number of cyclic polygons with m integer point vertices, with radius
r =
√
n/q, centred at the point (a/q, b/q) in the unit square, where 0 ≤ a < q,

0 ≤ b < q and the highest common factor (a, b, q) equals 1. Then

Vm(n, q) ≥ f(q) lCm,

where l = [r∗/f(q)], the integer part of r∗/f(q), and lCm is interpreted as 0
for l ≤ m− 1.

We restrict the size of the circumradius r in Lemma 1.4 to the range
r ≤ R and obtain a theorem giving a lower bound for the number of m-sided
cyclic polygons with radius up to size R. This theorem is our conjectured
asymptotic formula for the number of circles passing through five or more
integer points.

Theorem 1.5. Let m ≥ 4 be a fixed integer. Let Wm(R) be the number
of cyclic polygons with m integer point vertices centred in the unit square
with radius r ≤ R. There exists a polynomial w(x) such that

Wm(R) ≥ 4m

m!
R2w(logR)(1 + o(1)),

where w(x) is an explicit polynomial of degree b = 2m−1 − 1.

We use the standard notation of ζ(s) for the Riemann zeta function,
with s = σ + it where σ = Re(s) and t = Im(s). We follow the convention
that when we have the constant ε in the exponent of an error term, ε may be
taken to be arbitrarily small and positive, but the constant implied in the
O symbol will depend on it. The Vinogradov symbol f(x)� g(x) as x→∞
means f(x) = O(g(x)) as x→∞, where g(x) is positive for all large x. The
symbol � means asymptotically equal to, that is, A � B � A, with some
implied constants.

2. Proof of Theorem 1.1. We begin our proof by writing the Dirichlet
series F (s) for rm(n) as an Euler product,

(2.1) F (s) =

∞∑
n=1

rm(n)

ns
= G

(
1

2s

) ∏
p≡1mod 4

H

(
1

ps

) ∏
p≡3mod 4

G

(
1

p2s

)
.

Here G(x) and H(x) are infinite series that can be expressed as rational
functions,
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G(x) =
1

1− x
,(2.2)

H(x) = 1 + 2mx+ 3mx2 + · · · = 1

(1− x)m+1

m∑
k=1

A(m, k)xk−1,(2.3)

with the defining property of the Eulerian numbers A(m, k) given in [1].

The Dirichlet series for rm(n) can be written in terms of the Dedekind
zeta function Z(s) = ζ(s)L(s, χ), the product of the Riemann zeta func-
tion and the Dirichlet L-function for the Gaussian field, so that F (s) =
Zb+1(s)E(s). From (2.1)–(2.3) we have

E(s) =

(
1− 1

2s

)b ∏
p≡3mod 4

(
1− 1

p2s

)b
(2.4)

×
∏

p≡1mod 4

(
1− 1

ps

)A(m,2) m∑
k=1

A(m, k)ps(1−k).

The product E in (1.3) is E(1) in the notation (2.4).

We find the analytic continuation of E(s) by comparing E(s) to ζ(2s)
and L(2s, χ) as infinite products of primes. We write

(2.5) E(s) =
J(s)

ζj1(2s)Lj2(2s, χ)
,

where the exponents j1 and j2 are found from b = 2m−1 − 1 and

(2.6) d = 2m−1(2m + 1)− 3m,

by

j1 =
d+ b

2
= 2m−1(2m−1 + 1)− 1

2
(3m + 1),

j2 =
d− b

2
= 22(m−1) +

1

2
(1− 3m).

The residual factor J(s) of the expression E(s) given in (2.5) is

J(s) = A(2)
∏

p≡1mod 4

B(p)
∏

p≡3mod 4

C(p),

where

A(2) =

(
1 +

1

2s

)−j1(
1− 1

2s

)−j2
,

so A(2) is a rational function in 1/2s, with poles on σ = 0. For calculable
constants β and γ, dependent only on m, we have

B(p) = 1 +
β

p3s
+

γ

p4s
+ · · · ,
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and

C(p) =

(
1− 1

p4s

)−j2
= 1 +

j2
p4s

+
j2(j2 + 1)

2

1

p8s
+ · · · .

The Dirichlet series for log J(s) converges absolutely for σ > 1/3 by com-
parison with the series ζ(3σ). However, at s = 1/2, ζ(2s) has a pole, whilst
the series for L(2s, χ) converges for σ > 0. Hence E(s) can be continued
analytically to σ > 1/2.

We now consider the size of E(s),

|E(s)| = |J(s)|
|ζ(2s)|j1 |L(2s, χ)|j2

.

The series log J(s), and hence |J(s)|, are uniformly bounded for σ ≥ 1/2,
with |J(s)| < J̃ for some constant J̃ . For σ > 1/2, we have the inequalities

1

|ζ(2s)|
≤ ζ(2σ),

1

|L(2s, χ)|
≤ ζ(2σ),

and

|E(s)| = |J(s)|
|ζ(2s)|j1 |L(2s, χ)|j2

≤ J̃(ζ(2σ))j1+j2 = J̃ζd(2σ).

We need several lemmas to continue the proof of Theorem 1.1.

Lemma 2.1. Let η > 0. Then

1

2πi

1+η+iT�

1+η−iT

(
x

n

)sds
s

=


1 +O

((
x

n

)1+η 1

T log(x/n)

)
if n < x,

O

((
x

n

)1+η 1

T log(n/x)

)
if n > x.

Proof. This is a standard result; see Montgomery and Vaughan ([13,
Chapter 5]).

Lemma 2.2. Let

F (s) =
∞∑
n=1

rm(n)

ns
.

Let N be a positive integer. Set x = N + 1/2 and η = 2/log x. Then∑
n≤N

rm(n) =
1

2πi

1+η+iT�

1+η−iT
F (s)

xs

s
ds+O

(
x1+ε log x

T

)
.

Proof. This is deduced by the standard method from the inequality
r(n) ≤ A(δ)nδ, given by Hardy and Wright ([4, Chapter 18]).

Lemma 2.3. In Lemma 2.2, we can choose T ≥ 10 so that, for large x,

1

2πi

1+η+iT�

1+η−iT
F (s)

xs

s
ds = Res

s=1

[
F (s)

xs

s

]
+O(xΦ+ε),

where T = x1−Φ, and Φ was defined in (1.4).
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Proof. We take a bounded closed contour D around the pole of the
integrand at s = 1. Let α = 1/2+1/log x. Let T ≥ 10 be a parameter, chosen
so that T is a fractional power of x. The contour D = C1 + D1 + D2 + D3

is constructed once a second parameter U has been chosen, T/2 ≤ U ≤ T .
Then C1 is the line segment from 1 + η + iU to 1 + η − iU , D1 is the line
segment from 1 + η + iU to α+ iU , D2 is the line segment from α+ iU to
α− iU , and D3 is the line segment from α− iU to 1 + η − iU .

By the calculus of residues, the integral along C1 is

1

2πi

�

C1

F (s)
xs

s
ds = Res

s=1

[
F (s)

xs

s

]
− 1

2πi

�

D1

F (s)
xs

s
ds

− 1

2πi

�

D2

F (s)
xs

s
ds− 1

2πi

�

D3

F (s)
xs

s
ds.

Firstly we consider the integral along D2. Here we have σ = α, so that
E(s) ≤ J̃ζd(2α), and |E(s)| � logd x.

For 1 ≤ τ ≤ T and 1/2 ≤ α ≤ 3/4,

(2.7)

τ�

1

|ζ(α+ it)|4 dt� τ log4 τ � T log4 T

(Titchmarsh [15, Chapter 7]), so that

T�

−T

|ζ(α+ it)|4

|α+ it|
dt� log5 T.

The proof in [7] of Huxley’s estimate

ζ(1/2 + it)� tφ(log t)γ ,

with φ = 32/205 and γ = 4157/2050 and 10 ≤ |t| ≤ T , can be adapted
(Huxley [5], Huxley and Watt [9]) to show that for σ ≥ 1/2 and 10 ≤ |t| ≤ T ,

ζ(σ + it)� |t|2φ(1−σ)(log |t|)γ � T 2φ(1−σ)(log T )γ � T φ(log T )γ ,(2.8)

L(σ + it, χ)� |t|2φ(1−σ)(log |t|)γ � T 2φ(1−σ)(log T )γ � T φ(log T )γ .(2.9)

We use (2.8) and (2.9) to obtain

T�

−T

|ζ(α+ it)|b+1|L(α+ it, χ)|b+1

|α+ it|
dt� log5 T (T φ logγ T )2(b−1).
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Hence

(2.10)
�

D2

|F (s)| |x|s

|s|
|ds|

� (T 2φ(1−α)(log T )γ)2b−2xα logd x

T�

−T

|ζ(α+ it)|4

|α+ it|
dt

�
√
xT (2b−2)φ(log T )(2b−2)γ+5(log x)d.

We now estimate the integrals along D1 and D3. Here we have α ≤ σ ≤
1 + η, |xs| = xσ, and

|E(s)| ≤ J̃ζd(2σ)� 1

(2σ − 1)d
� 1

(2α− 1)d
� logd x.

The integral along D1 is found by averaging over U , T/2 ≤ U ≤ T :∣∣∣∣ 1

2πi

�

D1

F (s)
xs

s
ds

∣∣∣∣ ≤ 1

T/2

T�

T/2

1+η�

α

|F (s)| |xs|
|s|

|ds| dt(2.11)

=
2

T

1+η�

α

xσ
( T�

T/2

|Zb+1(s)E(s)|
|s|

dt

)
dσ.

We use the bounds (2.7)–(2.9) to estimate

(2.12)

T�

T/2

|Zb+1(s)E(s)|
|s|

dt

� (log x)d
T�

T/2

|ζ(σ + it)|b+1|L(σ + it, χ)|b+1

|σ + it|
dt

� (log x)dT log4 T (T 2φ(1−σ)(log T )γ)b−3(T 2φ(1−σ)(log T )γ)b+1

T/2

� (log x)dT 2φ(1−σ)(2b−2)(log T )γ(2b−2)+4.

We substitute (2.12) into (2.11) to obtain

(2.13)

∣∣∣∣ 1

2πi

�

D1

F (s)
xs

s
ds

∣∣∣∣
� (log x)d(log T )γ(2b−2)+4

T

1+η�

α

xσT 2φ(1−σ)(2b−2) dσ

� (log x)d(log T )γ(2b−2)+4

T
(
√
xT (2b−2)φ + x).

We get the same estimate for the integral along D3.
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We choose T so that T (4b−4)φ � x, which gives log T � log x. We can
now modify the estimate (2.13) to

1

2πi

�

D1

F (s)
xs

s
ds� x(log x)(2b−2)γ+d+4

T
,

and similarly for the integral along D3. The integral along D2, given in
(2.10), becomes

1

2πi

�

D2

F (s)
xs

s
ds�

√
xT (2b−2)φ(log x)(2b−2)γ+d+5.

We balance these terms by choosing

T � x
1

(4b−4)φ+2 (log x)−((2b−2)φ+1).

Hence

√
xT (2b−2)φ(log x)(2b−2)γ+d+5 � x(log x)(2b−2)γ+d+4

T
� xΦ(log x)A,

with Φ as in (1.4), and A = (2b−2)γ+d+ 4. The powers of log x contribute
to the factor of the form xε.

We now calculate the residue given in our contour integral estimation.

Lemma 2.4. The residue in the statement of Lemma 2.3 can be written
as

Res
s=1

[F (s)xs/s] = xPm(log x),

where Pm(z) is a polynomial in z of degree b = 2m−1− 1, whose coefficients
are expressed in terms of the derivatives of the function

(2.14) V (s) = (s− 1)b+1F (s)/s

by

Pm(z) =
1

b!

b∑
j=0

bCjV
(b−j)(1)zj .

Proof. Since F (s) = Zb+1(s)E(s), where the Dedekind zeta function
Z(s) has a single pole at s = 1, and the Euler product E(s) is regular at
s = 1, V (s) is regular at s = 1, with power series expansion

V (s) =
∞∑
n=0

V (n)(1)

n!
(s− 1)n.

We multiply (2.14) by xs and rearrange to give

F (s)xs

s
=

V (s)xs

(s− 1)b+1
,
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which we use to write the residue as a limit. The result of the lemma then
follows by the usual rules of differentiation.

Proof of Theorem 1.1. Concatenating the results of Lemmas 2.2–2.4, we
have

(2.15)
∑
n≤N

rm(n) = xPm(log x) +O(xΦ+ε) +O

(
x1+ε log x

T

)
.

By the choice of T in Lemma 2.3 the error terms combine to O(xΦ+ε).
Theorem 1.1 is expressed in terms of N = x− 1/2, so that

(2.16) x = N(1 +O(1/N)), log x = logN +O(1/N),

and we pass easily from the expression (2.15) in terms of x to the statement
(1.1) in terms of N .

The leading coefficient of Pm(log x) is V (1)/b!, where

V (1) = E(1)
(

Res
s=1

)b+1
= E(1)(π/4)b+1.

The leading coefficient of Pm(log x) is

c = (π/4)b+1E/b!

in the notation of (1.2) and (1.3).

3. Proof of Theorem 1.2. We recall that Xm(N) denotes the number
of cyclic polygons with m integer vertices, centre at the origin, and circum-
radius at most

√
N . The circumradius is

√
n for some integer n. Let Ym(n)

be the number of such polygons inscribed in the circle x2 + y2 = n. Then
Ym(n) = rCm, where r = 4r(n) and Ym(n) can be expanded in terms of the
signed Stirling numbers s(m, j) of the first kind [2], to give

Ym(n) =
1

m!

m∑
j=1

s(m, j)rj .

Hence

Xm(N) =
∑
n≤N

Ym(n) =
∑
n≤N

1

m!

m∑
j=1

s(m, j)rj(n)(3.1)

=
1

m!

m∑
j=1

4js(m, j)
∑
n≤N

rj(n).

Theorem 1.2 follows at once when we substitute the asymptotic expansion
(1.1) of Theorem 1.1. The Φ term in the error exponent in (3.1) is formally
the same as that of (1.4) with b = 2m−1 − 1.
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4. Proof of Theorem 1.3. We indicate the necessary modifications to
the proof of Theorem 1.1 to obtain Theorem 1.3.

Instead of the arithmetic function r(n) given on primes p and prime
powers pk, we find expressions for r∗(n, q) related to the primes p. We dis-
tinguish bad primes p with p | q from good primes p with p - q. Let n = pk,
where p ≥ 2 is a prime, and k ≥ 1 is an integer. Then

r∗(n, q) =



r(n) for all primes when k = 1,

r(n) for good primes p, when k ≥ 2,

0 for p = 2 bad, when k ≥ 2,

2 for bad p ≡ 1 mod 4,

0 for bad p ≡ 3 mod 4.

We write the Dirichlet series F (q, s) for (r∗(n, q))m as an Euler product

F (q, s) =

∞∑
n=1

(r∗(n, q))m

ns
=

∏
p prime

φp(q, s).

For good primes p - q the Euler factors are those in (2.1),

φp(q, s) = φp(s) =


G(1/2s) for p = 2,

H(1/ps) for p ≡ 1 mod 4,

G(1/p2s) for p ≡ 3 mod 4.

For bad primes p | q the Euler factors become

φp(q, s) = θp(s) =


1 + 1/2s for p = 2,

1 + 2m/(ps − 1) for p ≡ 1 mod 4,

1 for p ≡ 3 mod 4.

We obtain a factorisation

F (q, s) = Zb+1(s)E(q, s) = Zb+1(s)E(s)Ψ(q, s),

where Ψ(q, s) is a finite Euler product,

Ψ(q, s) =
∏
p|q

ψp(s),

and ψp(s) = θp(s)/φp(s), so that

ψp(s) =


1− 1/p2s for p 6≡ 1 mod 4,

1 + 2m/(ps − 1)

H(1/ps)
for p ≡ 1 mod 4.

(4.1)

The most difficult case we consider is when p ≡ 1 mod 4. Instead of the
Euler factor at good primes

H

(
1

ps

)
= 1 +

2m

ps
+

3m

p2s
+

4m

p3s
+ · · · ,
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we have

1 +
2m

ps − 1
= 1 +

2m

ps
+

2m

p2s
+

2m

p3s
+ · · · .

Taking out the factor Zb+1(s) makes the Euler factor more complicated. At
good primes the Euler factor becomes

(4.2)

(
1− 1

ps

)2m(
1 +

2m

ps
+

3m

p2s
+

4m

p3s
+ · · ·

)
= 1− d

p2s
+
d3
p3s
− d4
p4s

+ · · · ,

where d = 2m−1(2m + 1)− 3m as in (2.6), and d3 = 4m− 6m + (8m− 2m)/3.

At bad primes the Euler factor becomes

(4.3)

(
1− 1

ps

)2m(
1 +

2m

ps
+

2m

p2s
+

2m

p3s
+ · · ·

)
= 1− e

p2s
+
e3
p3s
− e4
p4s

+ · · · ,

where e = 2m−1(2m − 1) and e3 = (8m + 2m+1)/3− 4m.

We consider the convergence of E(q, s). Since E(s) and the expressions
(4.1)–(4.3) are convergent for σ ≥ 1/2, and the finite Euler product Ψ(q, s)
does not affect convergence, E(q, s) is convergent for σ ≥ 1/2.

We consider the size of E(q, s). Analogously to (2.5), we have

E(q, s) =
J(q, s)

ζj1(2s)Lj2(s, χ)
,

where j1 = (d+ b)/2 and j2 = (d− b)/2.

We take out the correct Euler factor (1 − 1/p2s)d for the good primes
p ≡ 1 mod 4. At bad primes p ≡ 1 mod 4 we have a partially cancelled Euler
factor

(4.4)

1− e

p2s
+

e3
p3s
− e4
p4s

+ · · ·(
1− 1

p2s

)d .

Our minimum value of σ is 1/2 + 1/log x, which gives |p−2s| ≤ 1/p. The
modulus of the expression in (4.4) when σ ≥ 1/2 is less than or equal to(

1 +
1
√
p

)2m(
1 +

2m
√
p− 1

)
(

1− 1

p

)d .

We split the bad primes with p ≡ 1 mod 4 into small primes p < M1 and
large primes p ≥M1, where M1 = (2m + 1)2. We have

1 +
2m
√
p− 1

≤
{

2 for p ≥M1,

2m for 5 ≤ p < M1.
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We need to estimate the product Ψ(q, s) over bad primes. Writing
∏∗ for a

product over bad primes with p ≡ 1 mod 4, we have∏∗
(

1 +
2m
√
p− 1

)
≤
∏
p<M1

∗
2m

∏
p≥M1

∗
2 ≤ (2m)2

2m−1+2md(q) = O(qε).

Also ∏∗
(

1 +
1
√
p

)2m(
1− 1

p

)−d
≤ (B(ε))ωqε,

where ω is the number of distinct prime factors of q and B(ε) is a constant
depending on ε. We use B(ε) = 2B2(ε) and 2ω(q) ≤ d(q) to obtain

(B(ε))ωqε = (2B2(ε))ωqε ≤ (d(q))B2(ε)qε = O(qε).

The other factor is∏
p|q

p6≡1mod 4

(
1− 1

p2s

)
≤

∏
p|q

p 6≡1mod 4

(
1− 1

p

)
= O(qε).

Thus, for σ ≥ 1/2,

|E(q, s)| = |E(s)Ψ(q, s)| � qε logd x.

We now truncate our contour integrals. The standard method of trun-
cating the contour integral which defines the Mellin transform for a single
term of a Dirichlet series is given in Lemma 2.1. We use this to produce an
analogous result to that of Lemma 2.2 by applying the truncation to the
series F (q, s) term-by-term, so that for x = N + 1/2 and η = 2/log x, as
N →∞,

(4.5)
∑
n≤N

(r∗(n, q))m =
1

2πi

1+η+iT�

1+η−iT
F (q, s)

xs

s
ds+O

(
x1+ε log x

T

)
.

We estimate the contour integral in similar fashion to Lemma 2.3, choos-
ing T ≥ 10 so that, for large x,

(4.6)
1

2πi

1+η+iT�

1+η−iT
F (q, s)

xs

s
ds = Res

s=1

[
F (q, s)

xs

s

]
+O(qεxΦ+ε),

when T = x1−Φ, in the notation (1.4) for Φ. We calculate the residue in
(4.6) in the same way as we did in the proof of Theorem 1.1. The residue
can be written as

(4.7) Res
s=1

[F (q, s)xs/s] = xPm,q(log x),

where Pm,q(z) is a polynomial in z of degree b = 2m−1−1, whose coefficients
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are expressed in terms of the derivatives of the function

V (q, s) = (s− 1)b+1F (q, s)/s

by

(4.8) Pm,q(z) =
1

b!

b∑
j=0

bCjV
(b−j)(q, 1)zj .

Concatenating the results of (4.5)–(4.7), we have

(4.9)
∑
n≤N

(r∗(n, q))m = xPm,q(log x) +O(qεxΦ) +O

(
x1+ε log x

T

)
.

By the choice of T , T = x1−Φ, the error terms combine to O(qεxΦ+ε). The-
orem 1.3 is expressed in terms of N = x− 1/2, so that using (2.16) we can
pass easily from the expression (4.9) in terms of x to the statement (1.5) of
Theorem 1.3 in terms of N .

The leading coefficient of Pm,q(log x) is cq = V (q, 1)/b!. We have

V (q, 1) =
E(q, 1)

1

(
lim
s→1

(s− 1)Z(s)
)b+1

= E(q, 1)

(
π

4

)b+1

.

Hence the leading coefficient cq = (π/4)b+1E(q, 1)/b! of Pm,q(x) is as in (1.6),
and we find an expression for E(q, 1) = EΨ(q, 1). We obtain

Ψ(q, 1) =
∏
p|q

p 6≡1mod 4

(
1− 1

p2

) ∏
p|q

p≡1mod 4

(
1 + 2m/(p− 1)

H(1/p)

)
,

which completes the statement of Theorem 1.3.

5. Proof of Lemma 1.4. We now find an upper bound for the coeffi-
cients of the polynomial Pm,q(z), and show that it depends only on log q and
the number of distinct prime factors of q. We need an upper bound for the
coefficients of the polynomial Pm,q(z) in order to prove Lemma 1.4, when
we are estimating a sum over q where the summand includes the polynomial
Pm,q(z).

Lemma 5.1. Consider the polynomial Pm,q(z) with coefficients

1

b!

b∑
j=0

bCjV
(b−j)(q, 1).

The upper bound for these coefficients is

Bω
∑
j

∑
k

j+k≤b

V (b−j−k)(1)(log q)k

k!j!(b− j − k)!
zj ,
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where B is a constant given in the proof, so that the upper bound is dependent
only on log q and ω = ω(q), the number of distinct prime factors of q.

Proof. We define Pm,q(z) by (4.8), and consider the derivatives

V (b−j)(q, s) =

b−j∑
k=0

b−jCkΨ
(k)(q, s)V (b−j−k)(s).

We rewrite Pm,q(z) as

Pm,q(z) =
∑
k

Ψ (k)(q, 1)

k!

∑
j

j+k≤b

V (b−j−k)(1)zj

j!(b− j − k)!
.(5.1)

Since q does not appear in the definition of V (s), q does not appear in
the second sum of (5.1). The coefficient of zj in Pm,q(z) is given by this sum,
multiplied by the Dirichlet polynomial∑

k≤b

Ψ (k)(q, 1)

k!
,

where j + k ≤ b. Thus only Ψ (k)(q, 1) depends on q. We now estimate
Ψ (k)(q, s) at s = 1.

The value of Ψ(q, s) does not depend on what power of p divides q, only
on whether p divides q. We let q = q1 . . . qω and qa = praa for a = 1, . . . , ω;
then

Ψ(q, s) =
ω∏
a=1

ψ(qa, s) =
ω∏
a=1

ψ(pa, s).

We find the kth derivative of Ψ(q, s) in terms of ψ(pa, s),

(5.2) Ψ (k)(q, s) =
∑
k1

. . .
∑
kω

k1+···+kω=k

ω∏
a=1

(
d

ds

)k
ψ(pa, s).

We now find the kth derivative of ψ(p, s). We have

ψ(p, s) =

{
P1(1/p

s) for p ≡ 1 mod 4,

P2(1/p
s) for p 6≡ 1 mod 4,

where, for M = 2m,

P1

(
1

ps

)
= 1 +

M∑
t=1

(−1)t−1(t− 1)MCt

pts
, P2

(
1

ps

)
= 1− 1

p2s
.
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We find the kth derivative of P1(1/p
s) to be(

d

ds

)k
P1

(
1

ps

)
= (− log p)k

M∑
t=1

(−1)t−1tk(t− 1)MCt

pts
(5.3)

= (− log p)kP3

(
1

ps

)
.

We expand P3(1/p
s) to obtain

−2k
e2
p2s

+ 3k
e3
p3s

+ · · · −Mk eM
pMs

,

where the coefficients ei are defined by (4.3). Next we find the kth derivative
of P2(1/p

s),

(5.4)

(
d

ds

)k
P2

(
1

ps

)
= −(−2 log p)k

p2s
.

We estimate the derivatives of (5.3) and (5.4) at s = 1. We find∣∣∣∣( d

ds

)k
P1

(
1

ps

)∣∣∣∣
s=1

=

∣∣∣∣(− log p)kP3

(
1

ps

)∣∣∣∣
s=1

= (log p)k
∣∣∣∣P3

(
1

p

)∣∣∣∣,
and ∣∣∣∣P3

(
1

p

)∣∣∣∣ =

∣∣∣∣ M∑
t=1

(−1)t−1tk(t− 1)MCt

pt

∣∣∣∣ ≤ M∑
t=1

tk(t− 1)MCt

pt
.

Now as p ≡ 1 mod 4, we have p ≥ 5, so that

M∑
t=1

tk(t− 1)MCt

pt
≤

M∑
t=1

tk(t− 1)MCt

5t
,

and thus

(5.5)

∣∣∣∣( d

ds

)k
P1

(
1

ps

)∣∣∣∣
s=1

≤ (log p)k
M∑
t=1

tk(t− 1)MCt

5t
.

By the definition of P2(1/p
s), we have p 6≡ 1 mod 4 so that p2 ≥ 4, hence

(5.6)

∣∣∣∣( d

ds

)k
P2

(
1

ps

)∣∣∣∣
s=1

=
(2 log p)k

p2
≤ 2k−2(log p)k.

We now establish which of the estimates (5.5) and (5.6) is larger. The
coefficient of (log p)k in (5.5) is a sum whose first term is

2k MC2

52
=

2k+m−1(2m − 1)

52
.

This is already larger than the coefficient 2k−2 of (log p)k in (5.6), as m ≥ 3.



Circles passing through five or more integer points 157

Let

B =
M∑
t=1

tk(t− 1)MCt

5t
.

The kth derivatives of P1(1/p
s) and P2(1/p

s) at s = 1 are both bounded by
B(log p)k, and therefore |ψ(k)(p, 1)| ≤ B(log p)k.

We use this with p = pa and s = 1 in (5.2) to find

Ψ (k)(q, 1) =
∑
k1

. . .
∑
kω

k1+···+kω=k

ω∏
a=1

(
d

ds

)k
ψ(pa, 1)(5.7)

≤
∑
k1

· · ·
∑
kω

k1+···+kω=k

ω∏
a=1

B(log pa)
k ≤ Bω(log p1 + · · ·+ log pω)k

= Bω(log(p1 + · · ·+ pω))k = Bω(log q)k.

We use the estimate Ψ (k)(q, 1) ≤ Bω(log q)k of (5.7) in (5.1) to find our
upper bound

Pm,q(z) ≤ Bω
∑
j

∑
k

j+k≤b

V (b−j−k)(1)(log q)k

k!j!(b− j − k)!
zj ,

which involves only log q and ω = ω(q), the number of distinct prime factors
of q, as required.

Proof of Lemma 1.4. Let (x, y) be an integer point. Suppose that (x, y) ≡
(a, b) mod q, with 0 ≤ a < q, 0 ≤ b < q, so that there exist integers (x1, y1)
with x = qx1−a and y = qy1−b. The point (x, y) lies on the circle x2+y2 = n
if and only if the point (x1, y1) lies on the circle

(x− a/q)2 + (y − b/q)2 =
n

q2
.

We call the integer points (x, y) on the circle x2 + y2 = n with highest
common factor (x, y, q) = 1 the primitive points. Recall that r∗ is the number
of integer points on the circle x2 + y2 = n with highest common factor
(x, y, q) = 1, so that r∗ is the total number of primitive points.

Let ∑
a

∑′

b

denote the sum over pairs of integers (a, b) with 0 ≤ a < q, 0 ≤ b < q
and highest common factor (a, b, q) = 1. Let r∗ab count the primitive points
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(x, y) ≡ (a, b) mod q, so we have

r∗ =
∑
a

∑′

b

r∗ab.

We call (a, b) mod q a good residue class if r∗ab ≥ m; otherwise if r∗ab ≤
m − 1 we call (a, b) mod q a bad residue class. Let B be the number of
bad residue classes, and let A be the total number of primitive points in
the bad residue classes. Then A ≤ (m − 1)B ≤ (m − 1)f(q) < r∗ for f(q)
defined in (1.7). Let G be the number of good residue classes, and K the
total number of primitive points in the good residue classes. Then there are
G = f(q)−B good residue classes containing K = r∗ −A primitive points.

Let

C(x) = xCm =
x

m!
(x− 1) · · · (x−m+ 1).

From each good residue class we can pick primitive points in C(r∗ab) ways.
The total number of cyclic polygons with m integer point vertices con-
structed in this way is ∑

a

∑′

b
(a,b) good

C(r∗ab).

To determine a lower bound for this sum we need to use Jensen’s inequality
(see Hardy, Littlewood and Pólya [3, Chapter 2] or Mitrinović [12]).

Jensen’s inequality. Let ϕ(x) be a convex real function satisfying
ϕ′′(x) ≥ 0 on a closed interval [a, b]. Then for x1, . . . , xn on [a, b] we have

n∑
i=1

ϕ(xi) ≥ nϕ
(

1

n

n∑
i=1

xi

)
.

The zeros of C(x) lie in the closed interval [0,m−1], so the zeros of C ′(x)
and C ′′(x) lie in the open interval (0,m− 1). The interval for x will be the
closed interval [m−1, r∗], and bad residue classes occur when r∗ab ∈ [0,m−2],
giving C(r∗ab) = 0 and r∗ab 6∈ [m− 1, r∗].

We cannot apply Jensen’s inequality immediately because of the presence
of bad residue classes. Schinzel [14] tells us that there must exist some residue
class containing x = r∗ab points, with x ≥ r∗/f(q).

Let r∗ ≥ (m− 1)f(q)(f(q) + 1), so that

r∗

(B + 1)f(q)
≥ r∗

f(q)(f(q) + 1)
≥ m− 1.

Then

C(x) ≥ (B + 1)P

(
x

B + 1

)
=

x

120

(
x

B + 1
− 1

)
· · ·
(

x

B + 1
−m+ 1

)
.
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We replace the B values of x = r∗ab, corresponding to bad residue classes,
and the one value for which C(x) = 0, corresponding to the residue class
with no primitive points, with B+ 1 values all equal to r∗ab/(B+ 1). For the
other residue classes we do not need to replace any values. We now have the
sum ∑

a

∑′

b
(a,b) good

C(r∗ab).

We apply Jensen’s inequality to this sum to obtain

∑
a

∑′

(a,b) good

C(r∗ab) ≥
( ∑
amod q

∑
bmod q

1
)
C


∑

amod q

∑
bmod q

r∗ab∑
amod q

∑
bmod q

1

 = GC

(
K

G

)
.

The worst case we have to consider has the K primitive points belonging
to the good residue classes (a, b) split evenly between all of the residue classes
(a, b), that is, between all of the f(q) residue classes (a, b). This means that
each residue class will be good, hence K = r∗ and G = f(q), so that

Vm(n, q) =
∑
a

∑′

b
(a,b) good

C(r∗ab) ≥ f(q)C

(
r∗

f(q)

)
≥ f(q) lCm,

with l = [r∗/f(q)], the integer part of r∗/f(q). If we have an even split
between residue classes, then r∗/f(q) is an integer and we have l = r∗/f(q),
but when r∗/f(q) is not an integer, we need the more general definition for l.
Hence we have shown that Vm(n, q) ≥ f(q) lCm, and we are done.

6. Proof of Theorem 1.5. We bound the number of cyclic polygons
with m integer point vertices with radius r ≤ R. Let Vm(n, q) be the number
of cyclic polygons with m integer point vertices centred in the unit square
with fixed radius r =

√
n/q, and centre of the form (a/q, b/q), where the

highest common factor (a, b, q) equals 1. Let Wm(R) be the number of cyclic
polygons with m integer point vertices centred in the unit square with radius
r ≤ R. Then

(6.1) Wm(R) =
∑
q

∑
n

Vm(n, q)

with q ≤ 6(R+ 1)2 and n ≤ q2R2, and these bounds are independent of m.

In (6.1) we have q ≤ 6(R + 1)2. However, large values of q complicate
our summation of Vm(n, q) over q, so we prefer to have very small values
of q. We can restrict to small values of q, since we are calculating a lower



160 S. M. Plunkett-Levin

bound. We choose q such that f(q) < r∗. Since the maximum value of f(q)
is q2, we therefore choose q2 < r∗ = 4r∗(n, q).

The root mean square size estimate for r∗(n, q) is bounded for n ≤ N ,
and r∗(n, q) ≤

√
logN/2 in root mean square. We use the root mean square

size of r∗(n, q) to restrict our values of q. We have radius r ≤ R and we
replace N with R2 to get q2 ≤ (8 logR)1/2. This is independent of m, the
number of integer point vertices of our cyclic polygon. Thus let q < Q, where
Q = 2(logR)1/4. Then we have

(6.2) Wm(R) ≥
∑
q<Q

∑
n≤q2R2

f(q) lCm

with f(q) defined in (1.7), and l = r∗/f(q) for r∗ = 4r∗(n, q). We interpret

lCm as 0 for l ≤ m− 1.

We use the expansion of lCm as a function of l to obtain

lCm ≥
lm

m!
−O(lm−1).

We substitute this into (6.2) to get

(6.3) Wm(R) ≥
∑
q<Q

∑
n≤q2R2

f(q)
lm

m!
−O

(∑
q<Q

∑
n≤q2R2

f(q)lm−1
)
.

We consider the first sum in (6.3), our main term:∑
q<Q

∑
n≤q2R2

f(q)
lm

m!
=

4m

m!

∑
q<Q

∑
n≤q2R2

(r∗(n, q))m

(f(q))m−1
(6.4)

≥ 4m

m!

∑
q<Q

1

q2m−2

∑
n≤q2R2

(r∗(n, q))m,

since f(q) ≤ q2.
We omit the constant factor 4m/m! for ease of notation, and consider

the term from (6.4),

(6.5)
∑
q<Q

1

q2m−2

∑
n≤q2R2

(r∗(n, q))m.

We found in Theorem 1.3 that, as N →∞,

(6.6)
∑
n≤N

(r∗(n, q))m = NPm,q(logN) +O(qεNΦ+ε),

where Pm,q(x) is a polynomial of degree b = 2m−1 − 1, whose coefficients
depend on q, and the term Φ in the exponent, given in (1.4) of Theorem 1.1,
is less than 1.
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In (6.5) we have N = q2R2 and we use the expression for the sum over
n ≤ N of (r∗(n, q))m in (6.6) to replace the sum of (6.5) with

(6.7)
∑
q<Q

q2R2 Pm,q(2 log qR)

q2m−2
+O

(∑
q<Q

qε(qR)2Φ+2ε

q2m−2

)

= R2
∑
q<Q

Pm,q(2 log qR)

q2m−4
+O

(
R2Φ+2ε

∑
q<Q

q2Φ+3ε

q2m−2

)
= R2A+ B, say.

We have Φ < 1 and we choose ε such that 2Φ + 3ε ≤ 2 in B. The error
term B is the same size as the sum

∑
1/qβ, with β = 2m−4, which converges

over q with m ≥ 4. Hence B = O(R2Φ+2ε).
We consider the sum A of (6.7), which, with β = 2m−4, can be written

as

(6.8)
∑
q<Q

Pm,q(2 log qR)

qβ
=
∞∑
q=1

Pm,q(2 log qR)

qβ
+O

(∑
q≥Q

Pm,q(2 log qR)

qβ

)
.

The polynomial Pm,q of degree b has numerical coefficients involving
both m and q. However, using Lemma 5.1, we found an upper bound for the
coefficients of the polynomial Pm,q(z) that depends only on log q and ω(q).
Since q < Q, ω(q) is bounded and there exists an absolute constant C with

Pm,q(2 log qR) ≤ C(log q + logR)b

for every q such that 1 ≤ q ≤ Q and R ≥ 10. Since m ≥ 4, the exponent
β of q also satisfies β ≥ 4. Hence, by the Integral Test [16], the error term
from (6.8) becomes

O

(∑
q≥Q

Pm,q(2 log qR)

qβ

)
= O

( ∞�
Q−1

(log q + logR)b

qβ
dq

)
(6.9)

= O

(
logbR

Qβ−1

)
.

The leading term of the polynomial Pm,q(2 log qR) in the main term
of (6.8) is

1

b!
V (q, 1)(2 log qR)b =

2b

b!
V (1)Ψ(q, 1)(log q + logR)b.

We let M = 2m and write

Ψ(q, s) =
∏
p|q

p 6≡1mod 4

(
1− 1

p2s

)∏∗
(

1− 1

p2s

)M(
1 +

M

ps − 1

)
=

∞∑
d=1

p|d⇒p|q

e(d)

ds
.

The coefficients e(d) in this sum are 0 unless d is powerful. This series
converges absolutely at s = 1.
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Thus the main term of (6.8) is given by the sum
∞∑
q=1

Pm,q(2 log qR)

qβ
=
∞∑
q=1

2b

b!

V (1)Ψ(q, 1)

qβ
(log q + logR)b

where added to the second sum is the sum over q of lower order terms of
Pm,q(2 log qR), which is greater than or equal to

2bV (1)

b!

∞∑
q=1

Ψ(q, 1)

qβ
(log q + logR)b.

This is a polynomial in logR of degree b,

(6.10)
2bV (1)

b!

∞∑
q=1

Ψ(q, 1)

qβ
(log q + logR)b

=
2bV (1)

b!

b∑
i=0

bCi logb−iR
∞∑
q=1

Ψ(q, 1) logi q

qβ
.

Since
d

dβ

(
1

qβ

)
=
− log q

qβ
,

(
− d

dβ

)
1

qβ
=

log q

qβ
,

the expression (6.10) becomes

(6.11)
2bV (1)

b!

b∑
i=0

bCi logb−iR
∞∑
q=1

Ψ(q, 1)

(
− d

dβ

)i 1

qβ

=
2bV (1)

b!

b∑
i=0

bCi logb−iR

(
− d

dβ

)i ∞∑
q=1

Ψ(q, 1)

qβ
.

We have 0 < Ψ(q, 1) < µd(q) where

µ =
∏
p|q

p≡1mod 4
p≤M−1

(
1 +

M − 1

p

)
,

and d(q) is the divisor function counting the positive divisors of q. Hence
∞∑
q=1

Ψ(q, 1)

qβ
< µ

∞∑
q=1

d(q)

qβ
,

and in (6.11),

(6.12)

(
− d

dβ

)i ∞∑
q=1

Ψ(q, 1)

qβ
<

(
− d

dβ

)i
µ

∞∑
q=1

d(q)

qβ
= µ

∣∣∣∣( d

ds

)i
ζ2(s)

∣∣∣∣
s=β

.
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The sum over q in (6.11) is bounded by the result of (6.12), and since

Ψ(q, 1) =

∞∑
d=1

p|d⇒p|q

e(d)

d

forms a convergent series of positive terms, Ψ(q, 1) converges to a positive
constant Ki(β), involving the ith derivative of ζ2(β). Therefore

(6.13)
∞∑
q=1

Pm,q(2 log qR)

qβ
≥ w(logR) =

2bV (1)

b!

b∑
i=0

bCiKi(β) logb−iR,

where w(logR) is a polynomial of degree b.
Hence, using (6.9) and (6.13), the main sum A in (6.8) satisfies∑

q<Q

P ∗m(2 log qR)

qβ
≥ w(logR) +O

(
log bR

Qβ−1

)
.

Returning to the expression in (6.7), we have

R2A+ B ≥ R2w(logR) +R2O

(
log bR

Qβ−1

)
+O(R2Φ+2ε).

Since 2Φ + 2ε < 2Φ + 3ε ≤ 2, we find 2Φ + 2ε < 2, which makes our error
term O(R2Φ+2ε) = o(1). As the polynomials Pm,q(x) and w(x) have positive
numerical leading coefficients,

O

(
logbR

Qβ−1

)
= O

(
w(logR)

Qβ−1

)
= w(logR)O

(
1

Qβ−1

)
,

and O(1/Qβ−1) = o(1) for our choice of β = 2m − 4 with m ≥ 4. We
therefore have

R2A+ B ≥ R2w(logR)(1 + o(1)) + o(1) = R2w(logR)(1 + o(1)).

We write the error term in (6.3) as

O

(∑
q<Q

1

(f(q))m−2
(q2R2Pm−1,q(2 log qR) +O(qε(qR)2Φ+2ε))

)
.

We ignore the O(qε(qR)2Φ+2ε) term. As 1/(f(q))m−2 = O(1/q2m−2), we are
left with an error term of the same form as A in (6.7). Thus

O

(
R2
∑
q<Q

Pm−1,q(2 log qR)

q2m−4

)
= O(w1(logR)(1 + o(1))),

where w1(logR) is a polynomial of degree bm−1 = 2m−2 − 1. We conclude
that

Wm(R) ≥
∑
q<Q

∑
n<q2R2

Vm(n, q) ≥ 4m

m!
R2w(logR)(1 + o(1)).
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This paper distills part of my PhD thesis at Cardiff University.
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