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cohomology of Witt vectors
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1. Introduction. Let K be a complete discrete valued field with residue
field of characteristic p > 0, and L/K be a finite Galois extension with Galois
group G. Suppose that kL/kK is separable. When K is of characteristic zero,
Hesselholt conjectured in [4] that the proabelian group {H1(G,Wn(OL))}n∈N
vanishes, where Wn(OL) is the ring of Witt vectors of length n with coeffi-
cients in OL (with respect to to the prime p). As explained in [4], this can
be viewed as an analogue of Hilbert’s Theorem 90 for the Witt ring W (OL).
This conjecture was proved in some cases in [4] and in general in [5].

In this paper we show that a similar vanishing holds when K is of char-
acteristic p. The main result of this paper is as follows.

Theorem 1.1. Let L/K be a finite Galois extension of complete dis-
crete valued equicharacteristic fields with Galois group G. Assume that the
induced residue field extension is separable. Then the proabelian group
{H1(G,Wn(OL))} is zero.

In order to prove this result one easily reduces it to the case where L/K
is a totally ramified Galois extension of degree p (see [5, Lemma 3.1]). We
make the argument in [5] work in the equicharacteristic case using an explicit
description of the Galois cohomology of OL when L/K is an Artin–Schreier
extension (see Proposition 2.4).

We recall that a proabelian group indexed by N is an inverse system
of abelian groups {An}n∈N whose vanishing means that for every n ∈ N,
there exists an integer m > n such that the map Am → An is zero (see
[6, Section 1]). This clearly implies the vanishing of lim←−n

H1(G,Wn(OL)). It

also implies the vanishing of H1(G,W (OL)) (with W (OL) being considered
as a discrete G-module) by [5, Corollary 1.2].
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Remark 1.2. One may also consider an analogue of Theorem 1.1 when
K is of equicharacteristic zero. However, in this case, all extensions L/K
are tamely ramified and the vanishing

H1(Gal(L/K),Wn(OL)) = 0 ∀n ≥ 0

can be easily deduced from the fact that OL is a projective OK [G]-module
(see [2, I, Theorem (3)]).

2. Cohomology of integers in Artin–Schreier extensions. Let K
be a complete discrete valued field of characteristic p as before. Let OK and
k denote the discrete valuation ring and residue field of K respectively. Let
L/K be a Galois extension of degree p. Recall that the ramification break (or
lower ramification jump) of this extension, to be denoted by s = s(L/K), is
the smallest non-negative integer such that the induced action of Gal(L/K)
on OL/m

s+1
L is faithful, where mL is the maximal ideal of OL ([1, II, 4.5]).

Thus unramified extensions are precisely the extensions with ramification
break zero. We recall the following well known result.

Proposition 2.1 (see [3] or [7, Proposition 2.1]). Let L/K be a Galois
extension of degree p of complete discrete valued fields of characteristic p.
There exists an element f ∈ K such that L is obtained from K by adjoining
a root of the polynomial

Xp −X − f = 0.

Further one can choose f such that vK(f) is coprime to p. In this case

vK(f) = −s
where s is the ramification break of Gal(L/K).

We now fix an f ∈ K given by the above proposition. Clearly, if vK(f)>0
then by Hensel’s lemma Xp −X − f already has a root in K. If vK(f) = 0
then the extension given by adjoining the root of this polynomial is an
unramified extension.

Proposition 2.2. Let L/K and f ∈ K be as above. Assume L/K is
totally ramified. Let λ be a root of Xp−X−f in L. Let s be the ramification
break of Gal(L/K). Then the discrete valuation ring OL is the subset of L
given by

OL =
{p−1∑

i=0

aiλ
i
∣∣∣ ai ∈ OK with vK(ai) ≥ is/p

}
.

Proof. Clearly the set {1, λ, . . . , λp−1} is a K-basis of L. Thus each x ∈ L
can be uniquely written in the form

x =

p−1∑
i=0

aiλ
i.
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Note that vL(λ) = vK(f) = −s is coprime to p by the choice of f . Since
L/K is ramified, s is non-zero. Moreover vL(ai) = pvK(ai) is divisible by p.
We thus conclude that for each 0 ≤ i ≤ p− 1, the values of vL(aiλ

i) are all
distinct modulo p, and hence distinct.

Thus

vL

(p−1∑
i=0

aiλ
i
)
≥ 0 if and only if vL(aiλ

i) ≥ 0 for all 0 ≤ i < p.

But vL(aiλ
i) = pvK(ai)− is. This proves the claim.

Lemma 2.3. Let p be a prime number as before. Let

Sk =

p−1∑
n=0

nk.

Then

(1) Sk ≡ 0 mod p if 0 ≤ k ≤ p− 2,
(2) Sp−1 ≡ −1 mod p.

Proof. The first congruence follows from the recursive formula (see [8,
(4)])

Sk =
1

k + 1

(
pk+1 − pk −

k−2∑
j=0

(
k

j

)
Sj+1

)
and the fact that k + 1 is invertible modulo p when k ≤ p − 2. (2) follows
from Fermat’s little theorem.

We now state an explicit description of H1(G,OL).

Proposition 2.4. With notation as in Proposition 2.1, let σ be a gen-
erator of Gal(L/K). Let Otr=0

L denote the set of all trace zero elements in
OL, and

(σ − 1)OL = {σ(x)− x | x ∈ OL}.

Then

(1) Otr=0
L =

{p−2∑
i=0

aiλ
i
∣∣∣ vK(ai) ≥ is/p

}
,

(2) (σ − 1)OL =
{p−2∑

i=0

aiλ
i
∣∣∣ vK(ai) ≥ (i+ 1)s/p

}
.

Proof. Since the sets Otr=0
L and (σ−1)OL are independent of the choice

of σ, we may assume that σ(λ) = λ+ 1.
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(1) Let x =
∑p−1

i=1 aiλ
i. Let Sk be as in Lemma 2.3. We have

tr(x) =

p−1∑
j=0

σj(x) =

p−1∑
j=0

p−1∑
i=0

ai(λ+ j)i =

p−1∑
i=0

ai

(p−1∑
j=0

(λ+ j)i
)
.

By binomially expanding and collecting coefficients of λi, we get

tr(x) =

p−1∑
i=0

ai

(
pλi +

i∑
j=1

(
i

j

)
Sjλ

i−j
)

= −ap−1 (by Lemma 2.3).

This together with Proposition 2.2 proves (1).

(2) Suppose x =
∑p−1

i=1 aiλ
i ∈ (σ − 1)OL. Then

p−1∑
i=1

aiλ
i = (σ − 1)

p−1∑
i=1

biλ
i,

where vK(bi) ≥ is/p by Proposition 2.2. This gives us the following system
of p equations:

a0 = b1 + · · ·+ bp−1,

a1 =
(
2
1

)
b2 +

(
3
2

)
b3 + · · ·+

(
p−1
p−2
)
bp−1, . . . ,

ai =
(
i+1
i

)
bi+1 + · · ·+

( p−1
p−(i+1)

)
bp−1, . . . ,

ap−2 = (p− 1)bp−1,

ap−1 = 0.

Since vK(bi+1) ≥ (i+ 1)s/p, we get vK(ai) ≥ (i+ 1)s/p. Thus

(σ − 1)OL ⊂
{p−2∑

i=0

aiλ
i
∣∣∣ vK(ai) ≥ (i+ 1)s/p

}
.

Conversely, assume

p−1∑
i=1

aiλ
i ∈
{p−2∑

i=0

aiλ
i
∣∣∣ vK(ai) ≥ (i+ 1)s/p

}
.

Since H1(G,L) = 0, there exists
∑
biλ

i ∈ L such that

p−1∑
i=1

aiλ
i = (σ − 1)

p−1∑
i=1

biλ
i.

The bi’s satisfy the above system of p equations. Using vK(ai)≥(i+ 1)s/p, it

is straightforward to prove by induction that vK(bi)≥ is/p. Hence
∑p−1

i=1 biλ
i

∈ OL.
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The following corollary is the equicharacteristic analogue of [4, Lemma
2.4].

Corollary 2.5. Let L/K be as in Proposition 2.1. Let x ∈ Otr=0
L define

a non-zero class in H1(G,OL). Then vL(x) ≤ s− 1.

Proof. We will show that for any x ∈ Otr=0
L , if vL(x) ≥ s, then the class

of x in H1(G,OL) is zero. By (2.4), we may write

x =

p−2∑
i=1

aiλ
i with vL(ai) ≥ is.

Since for all i, vL(aiλ
i) are distinct (see proof of Proposition 2.2), we have

vL(x) = inf{vL(aiλ
i)}.

Thus vL(x) ≥ s implies

vL(aiλ
i) = vL(ai)− is ≥ s ∀i.

This shows that vL(ai) ≥ (i + 1)s, which by Proposition 2.4 implies x ∈
(σ − 1)OL, and hence defines a trivial class in H1(G,OL).

3. Proof of the main theorem. Following [5, Lemma 3.1], the proof
of the main theorem reduces to the case when L/K is a totally ramified
Galois extension of degree p. So throughout this section we fix an extension
L/K of this type. We also fix a generator σ ∈ Gal(L/K). We first define a
polynomial G ∈ Z[X1, . . . , Xp] in p variables by

G(X1, . . . , Xp) =
1

p

(( p∑
i=1

Xi

)p
−

p∑
i=1

Xp
i

)
.

Note that despite the occurrence of 1/p, G is a polynomial with integral
coefficients.

Now for x ∈ L define

F (x) = G(x, σ(x), . . . , σi(x), . . . , σp−1(x)).

The expression F (x) is formally equal to (tr(x)p − tr(xp))/p and makes sense
in characteristic p since G has integral coefficients. Moreover, since for any
x ∈ L, F (x) is invariant under the action of Gal(L/K), we have F (x) ∈ K.
We now observe that [4, Lemma 2.2] holds in characteristic p in the following
form:

Lemma 3.1 ([4, Lemma 2.2]). For all x ∈ OL, vK(F (x)) = vL(x).

Proof of Theorem 1.1. The proof follows [5, proof of 1.4] verbatim, with
Corollary 2.5 and Lemma 3.1 replacing [5, Lemma 3.2] and [5, Lemma 3.4]
respectively. We briefly recall the idea of the proof for the convenience of the
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reader. By [4, Lemma 1.1], it is enough to show that for large n, the map

H1(G,Wn(OL))→ H1(G,OL)

is zero. By Corollary 2.5, it is enough to show that for large n,

(x0, . . . , xn−1) ∈Wn(OL)tr=0 ⇒ vL(x0) ≥ s.
The condition (x0, . . . , xn−1) ∈Wn(OL)tr=0 can be rewritten as

p−1∑
i=0

(σi(x0), . . . , σ
i(xn−1)) = 0.

Using the formula for addition of Witt vectors, one analyses the above equa-
tion and obtains (see [5, Lemma 3.5])

(1) tr(x`) = F (x`−1)− C tr(x`−1)
p + h`−2, 1 ≤ ` ≤ n− 1,

where C is a fixed integer and h`−2 is a polynomial in x0, . . . , x`−2 and its
conjugates such that each monomial appearing in h`−2 is of degree ≥ p2.
Using the above equation, Lemma 3.1 and [4, Lemma 2.1] one proves the
theorem in the following three steps, for the details of which we refer the
reader to [5, proof of 1.4].

Step 1. We claim that for 0 ≤ ` ≤ n− 2,

vL(x`) ≥
s(p− 1)

p
.

One proves this claim by induction on `. Since h−1 = tr(x0) = 0, equation
(1) gives

− tr(x1) = F (x0).

This, together with [4, Lemma 2.1], proves the claim for ` = 0. The rest of
the induction argument is straightforward. This claim, together with equa-
tion (1), is then used to show that vK(h`) ≥ s(p− 1) for all `.

Step 2. We show that for 2 ≤ i ≤ n− 1,

vL(xn−i) ≥
s(p− 1)

p

(
1 +

1

p
+ · · ·+ 1

pi−2

)
.

This is proved by induction on i, using (1) and the estimates

vL(x`) ≥ s(p− 1)/p, vL(h`) ≥ s(p− 1)

obtained in Step 1.

Step 3. Since vL is a discrete valuation, for an integer M such that

s(p− 1)

p

(
1 +

1

p
+ · · ·+ 1

pM−2

)
> s− 1,

we have vL(x0) ≥ s.
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