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1. Introduction. Let K be a number field and let S be a finite subset of
the set of places of K containing the infinite places. In 1963 Shafarevich [Sh]
proved that there are only finitely many K-isomorphism classes of elliptic
curves defined over K with good reduction outside S (this statement is
known as Shafarevich’s theorem). In 1970 Coates [Co] got for the special
case K = Q and 2, 3 ∈ S an effective constant C such that in each Q-
isomorphism class of elliptic curves defined over Q with good reduction at
the rational primes not in S there is an elliptic curve

E : Y 2 = 4X3 − g2X − g3, g2, g3 ∈ Z,
with max(|g2|, |g3|) ≤ C. For the proof he considered the Mordell equation

V 2 = U3 + r, r ∈ Z \ {0},
and used the reduction theory of binary forms to get an explicit upper bound
for the absolute value of the solutions (u, v) of the Mordell equation in Z2.
This led to an upper bound for the absolute value of the coefficients g2, g3

which provided the first effective proof of Shafarevich’s theorem.
In the same setting Brumer and Silverman [BrSi] deduced in 1996 an

upper bound for the number N of Q-isomorphism classes of elliptic curves
defined over Q with good reduction outside S. They applied an estimate
obtained by Evertse and Silverman [EvSi]. Later in 1999 this upper bound
for N was improved by Poulakis [Po]. He used an estimate for the number
of solutions of the unit equation x+ y = 1 obtained in [Ev] to establish his
explicit upper bound for N .

After Baker stated in [Ba1] his groundbreaking effective lower bounds for
linear forms in logarithms of algebraic numbers the existence of an effective
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proof of the general Shafarevich theorem for arbitrary number fields became
well-known. Ideas for such an effective proof can be found for example in
Masser and Wüstholz [MaWü], Holzapfel [Ho] and Serre [Se2, Se1]. For the
sake of completeness we also refer to a paper of Cremona and Lingham from
2007 (cf. [CrLi]) in which an algorithm to determine the classes in question
is described.

An elliptic curve E over K can be defined as the solution set in P2(C)
of a homogeneous equation with coefficients in K. However in view of Sha-
farevich’s theorem this point of view is somewhat unnatural since there are
different defining equations for the same curve and to deal with this is a cru-
cial point in the theorem. Therefore in this paper we shall consider an elliptic
curve as a geometric object. The precise definition and also the notions of
Weierstrass model and good reduction will be introduced in Section 2 below.

The main goal of this paper is then to establish, for given K and S,
the existence of an effectively computable affine Dedekind scheme Spec(R)
with quotient field K and 2, 3 ∈ R× and an effective constant C depending
only on quantities (specified in Section 3) given by K and S such that the
following holds: For each elliptic curve E defined over K with good reduction
outside S there exists a globally minimal Weierstrass model W of E over
Spec(R) which is smooth. Furthermore, the Weierstrass scheme structure
of W over Spec(R) admits an equation which can be associated to E and
which takes the form

W : Y 2Z = X3 + a4XZ
2 + a6Z

3

with a4, a6 ∈ R such that

max(h(a4), h(a6)) ≤ C;

here h is the absolute logarithmic Weil height of K which will be defined
in Section 3. We immediately get extensions of the previously mentioned
results of Coates, Evertse, Brumer, Silverman and Poulakis to arbitrary
number fields K. Our result improves in the case K = Q parts of the known
results and it provides a new effective proof of Shafarevich’s theorem.

The plan of the paper is as follows: We start in Section 2 with the
precise definition of an elliptic curve in geometric terms, then we define
Weierstrass models and their properties and finally we explain what good
reduction means. In Section 3 we introduce the absolute height, state the
main theorem, give corollaries and discuss how they improve and generalize
the known results. Then in Section 4 we slightly extend the result of Bugeaud
[Bu, Theorem 1], we prove two lemmas from algebraic number theory and a
lemma from geometry which provides the existence of a Weierstrass model of
an elliptic curve with some special properties. The proof of the main theorem
is given in Section 5. We start by constructing R, then apply the geometric
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lemma from which we obtain a Weierstrass model W over Spec(R) for each
elliptic curve E defined over K with good reduction outside S. The defining
equation for W can be chosen in short Weierstrass form with coefficients
a4, a6 ∈ R such that the discriminant ∆ = −16(4a3

4 + 27a2
6) ∈ R× of the

Weierstrass equation has a minimality property. We transform the equation
for the discriminant into a Mordell equation with coefficients in OK and
apply an effective result which provides bounds for the height of the S-
integral solutions. Some further estimates assure that the bounds depend
only on quantities given by K and S. In Section 6 we prove corollaries to
the main theorem. We show that one can get a Weierstrass model of E over
Spec(OK) with globally controlled reduction. Furthermore, the results are
discussed in the special cases when OS is a principal ideal domain and when
K = Q.

2. Geometric preliminaries. In this section we define an elliptic curve
in a geometric way, we define and discuss Weierstrass models and explain
the term “good reduction”.

An elliptic curve (E,O) over a number field K is a smooth, projective
and connected curve E of genus one over Spec(K) together with a section
O ∈ E(K). Unless stated otherwise we identify the pair (E,O) with the
Spec(K)-scheme E and we say that two elliptic curves are K-isomorphic
if they are isomorphic in the category of schemes over Spec(K). We can
associate to E (see [De]) a Weierstrass equation

(2.1) Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

ai ∈ K, such that E is K-isomorphic to the closed subscheme of the projec-
tive plane P2

K = Proj(K[X,Y, Z]) given by (2.1).
Let R ⊂ K be a Dedekind domain with fraction field K and

W = Proj(R[X,Y, Z]/(F ))

where

F = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3

and has coefficients in R. The pair (W, f) with f a K-isomorphism from
the generic fiber W ×Spec(R) Spec(K) to E is called a Weierstrass model of
E over Spec(R) and we take the discriminant of the Weierstrass equation
F = 0 as its discriminant ∆W . For simplicity we suppress f and use W
instead of (W, f).

Let p be a non-zero prime ideal of R and Rp the local ring of R at p. We
say that the model W is minimal at p if the order of p in ∆W is minimal
when taken over all Weierstrass models of E over Spec(Rp). A minimal
Weierstrass model at p always exists. The Weierstrass model W is globally
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minimal if it is minimal at each non-zero prime of R. The existence of a
globally minimal Weierstrass model depends on R.

The elliptic curve E over K has good reduction at p if there exists a
smooth Weierstrass model of E over Spec(Rp), and it has good reduction
outside a subset S of Spec(R) if it has good reduction at all p not in S.

3. Statement of the results. Let K be a number field of degree d
and with ring of integers OK , let MK be the set of places of K, MK,fin the
set of finite places and MK,∞ the set of the infinite places of K. Instead of
v ∈ MK,∞ we also write v |∞ and there is a natural bijection between the
set of finite places and prime ideals in OK given by v 7→ pv and p 7→ vp. The
infinite places v |∞ correspond to embeddings σ : K ↪→ C and give absolute
values |α|v = |σ(α)|dv with dv = 1 if v corresponds to a real embedding and
dv = 2 if the embedding is not real. The norm of an ideal a 6= 0 in OK is
defined as NK/Q(a) = |OK/a|, and for α ∈ K and p ∈ Spec(OK) we let
ordp(α) be the order of p in the principal ideal (α) defined by α and we put
ordv(α) = ordpv(α). The places v ∈MK,fin define absolute values |α|v on K
if we put |α|v = NK/Q(pv)−ordv(α) for α 6= 0 and |0|v = 0.

We use absolute values to define the height of a vector (α1, . . . , αn) ∈ Kn

as

HK(α1, . . . , αn) =
∏

v∈MK

max(1, |α1|v, . . . , |αn|v).

It is customary to use also the absolute height H which is independent of K
and satisfies HK = Hd. The case n = 1 includes also the definition of the
absolute height H(α) of α ∈ K. Very often we use the absolute logarithmic
height h = logH. The height function satisfies H(α + β) ≤ 2H(α)H(β)
and H(αβ) ≤ H(α)H(β) for α, β ∈ K. The height of a monic polynomial
f(X) = Xn + β1X

n−1 + · · · + βn ∈ K[X] is H(f) = H(β1, . . . , βn). Let E
be an elliptic curve over K and W a Weierstrass model of E over Spec(R)
given by F = 0. We define the height H(W) of the model as the height of
the coefficient vector of F .

Let S be a finite set of places of K, let s be the number of finite places
in S, let p1, . . . , ps be the prime ideals of OK corresponding to the finite
places in S and for 1 ≤ i ≤ s let pi ∈ N be defined as piZ = pi ∩ Z. Then
we put p = max(3, p1, . . . , ps) where we have included 3 to make sure that
log log p > 0. We denote by OS the ring of S-integers and by O×S the group of
units of OS . Observe that by Dirichlet’s unit theorem (cf. [BoGu, Theorem
1.5.13]), O×S is finitely generated and has rank s+ d− 1.

We denote by DK the discriminant and by hK the class number of K.
In what follows C1, . . . , C5 are effectively computable real positive constants
depending just on d.
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Main Theorem. There exists an effectively computable set of places
T of K containing S such that if E is an elliptic curve over K with good
reduction outside S, then there exists a globally minimal Weierstrass model
W of E over Spec(OT ) which is smooth and satisfies

h(W) ≤ exp(exp(C1(s+ hK log |DK |+ log log p)2)).

There are various ways to attach a height to an elliptic curve. One pos-
sibility is to follow Silverman [Si2] and define

h(E) =
1
12

inf h(a3, b2)

with the infimum taken over all a, b ∈ K such that there is a Weierstrass
model of E over Spec(K) given by Y 2Z = X3 + aXZ2 + bZ3. Another
height has been introduced by Faltings and this height does not use models
in its definition. Each of these heights has special features and each of them
has some disadvantage inherent. They can be compared asymptotically and
both can be expressed in terms of the height h(j(E)) of the value of the
j-function at E up to a weight factor 1/12 and the unstable discriminant
(compare [Si1]). Our theorem shows then that for every elliptic curve E
defined over K with good reduction outside S any of the heights is bounded.

The set T in the Main Theorem will be effectively constructed with the
properties that it contains MK,∞, that 2, 3 are invertible in OT and that OT
is a principal ideal domain.

We briefly discuss the basic ingredients for the proof of the Main Theo-
rem. The existence of a globally minimal Weierstrass model will follow from
Lemma 4.4 together with the extra information that the model is given by
a short Weierstrass equation and that it is smooth over Spec(OT ). Here we
need that T contains S, that OT is a principal ideal domain and that 2, 3
are invertible in OT . The discriminant ∆W takes the form

(3.1) − 27a2
6 = 4a3

4 +
1
16
∆W

with ∆W ∈ O×T and using an improved version of a result of Bugeaud [Bu]
given in Proposition 4.1 we shall effectively bound the integral solutions a4

and a6 of the discriminant equation in terms of K and T . For the height
bound in the theorem we use the fact that T is effective in terms of S. The
proposition requires that the coefficients of the equation in (3.1) are in OK ,
which is not the case in general. It can be achieved however in a controlled
way by suitable transformations of the equation.

A natural question is whether there exists a globally minimal Weierstrass
model of E over Spec(OK) with height bounded as in the Main Theorem.
The obstruction comes from the class group of OK . It is known that for
every elliptic curve E → Spec(K) there exists a globally minimal Weierstrass
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model over Spec(OK) if and only if hK = 1 (see [Si3, Corollary 8.3]). By
a suitable transformation of the Weierstrass model over Spec(OT ) given in
the Main Theorem we construct a Weierstrass model over Spec(OK), in
general not globally minimal any more, and this establishes an extension to
arbitrary number fields K of the result of Coates.

Corollary 3.1 (Model over Spec(OK)). There exists an effectively
computable set of places T of K containing S such that if E is an elliptic
curve over K with good reduction outside S, then there exists a Weierstrass
model W of E over Spec(OK) which is smooth over Spec(OT ) and satisfies

h(W) ≤ exp(exp(C2(s+ hK log |DK |+ log log p)2)).

For the smoothness it is needed that the set T has the additional property
that all rational primes l that divide the norm of pv for some v ∈ T are
invertible in OT .

In the special case when OS is a principal ideal domain our bounds can
be improved.

Corollary 3.2. There exists an effectively computable set of places T
of K containing S such that if E is an elliptic curve over K with good
reduction outside S, then there exists a globally minimal Weierstrass model
W of E over Spec(OT ) and a Weierstrass model W ′ of E over Spec(OK),
both smooth over Spec(OT ), such that their logarithmic heights are bounded
by

exp(C(s+1)2

3 |DK |d+2(log p)d(s+2)).

When K = Q we can do slightly better. The double exponentiation gets
reduced to a single one. Let S be a finite set of rational primes. We put
s = |S| and p = maxS ∪ {3}.

Corollary 3.3 (Effective Shafarevich theorem over the rationals). Let
E be an elliptic curve over Q with good reduction outside S. There exists
a globally minimal Weierstrass model W over Spec(OS [1/6]) and a Weier-
strass model W ′ of E over Spec(Z), both smooth over Spec(OS [1/6]), such
that their heights satisfy

max(H(W), H(W ′)) ≤ exp(C(s+1)2

4 p103(s+3)).

Coates showed in [Co] that in each Q-isomorphism class of elliptic curves
with good reduction outside S there exists an elliptic curve defined by an
equation in short Weierstrass form with coefficients g2, g3 ∈ Z such that

max(|g2|, |g3|) ≤ exp(2107(s+1)4p109(s+1)3).

The bound in Corollary 3.3 is asymptotically better with respect to the
parameters s and p than the bound obtained by Coates.
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From our bounds for the heights it is easy to deduce that all K-isomor-
phism classes of elliptic curves over K with good reduction outside S can
be determined effectively and estimates for their number N(K,S) can be
given. This leads to bounds which are not as good as the results published by
Evertse, Brumer, Silverman and Poulakis in the case K = Q. For example
the bound for the number of isomorphism classes becomes

N(Q, S) ≤ exp(C(s+1)2

5 p103(s+3))

when K = Q. In this special case the bound obtained by Poulakis in [Po]
by a different method is sharper and fully explicit.

4. Auxiliary results. In this section we give some results which we
need for the proof of the Main Theorem. Let T be a finite set of places of K.
One of the main tools used in the proof is an effective upper bound for the
height of the solutions in OT of a hyperelliptic equation over OK . This upper
bound will be established at the beginning of this section. After that we
prove two technical lemmas, where the second gives an effective construction
of a finite subset of MK,fin such that OT is a principal ideal domain if T
contains this set. At the end of the section we prove a geometric lemma
which provides a specific model for an elliptic curve with good reduction
outside S.

The following proposition is an extension of a result of Bugeaud [Bu,
Theorem 1]. He assumes, and for simplicity we also do, that T contains the
archimedean places of K. We denote by t and q the quantities associated
to T that correspond to s and p which we have associated to S.

Proposition 4.1. Let a 6= 0 be an element in OK and let g be a monic
separable polynomial over OK with discriminant ∆g and degree n ≥ 3. We
set A = max(|NK/Q(a)|, 3) and H = max(H(g), 27). Then the solutions
(x, y) ∈ OT ×K of the equation aY 2 = g(X) satisfy

H(x) ≤ H2 eλ

with λ = λ1λ2λ3 and

λ1 = c
(t+1)2

1 q4n3d(log q)4n2dt,

λ2 = |DK |15n2/2A3n2 |NK/Q(∆g)|12n,

λ3 = (log |ADKNK/Q(∆g)|)6n2d log logH.

The constant c1 is effective and depends only on d and n.

Proof. Since all conditions of [Bu, Theorem 1] are satisfied, we get the
upper bound with an effective constant depending only on d, n and t as
stated. We now follow the proof given in [Bu] to get in addition an explicit
dependence of the constants on the parameter t. By k1, . . . , k46 we shall
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denote effective constants depending on d and n but not on t. In our proof
we keep the notation introduced in [Bu].

In a first step we work out the dependence on t of the constant c12 in
[Bu, Lemma 4]. Following the proof and using the same arguments as in
the proof of the main theorem of [BuGy] one sees that the constants c13 up
to c20 can be replaced by exp(k13(t+ 1)2) up to exp(k20(t+ 1)2) and c21 up
to c24 by k21(t+1) up to k24(t+1) respectively. This implies that c25 can be
replaced by exp(k25(t+ 1)2) and finally c12 by exp(k12(t+ 1)2). Since the
constants in the remaining lemmas and propositions are given explicitly or
are independent of t, we are now ready to work out also the dependence
of c1 in terms of t.

We begin by replacing c33 up to c35 by k33 up to k35 and we change c36

and c37 into k36(t + 1) and k37(t + 1) respectively. Further we take k38, k39

as c38, c39 and exp(k40(t+ 1)) for c40. Using the term which replaces c12 we
see that c41 can be replaced by exp(k41(t+ 1)2) and then we can take c42

for k42(t + 1) and exp(k43(t+ 1)2) up to exp(k46(t+ 1)2) for c43 up to c46

respectively. We conclude that c1 can be replaced by exp(k1(t+ 1)2) and
the statement follows with c1 = k1, where this c1 is the one of the statement
in this proposition.

We remark that the above arguments imply, more generally, that the
effective constant of the first bound of Bugeaud [Bu, Theorem 1], depending
on d, n and t, is at most exp((t+1)2 log c1), where c1 is the effective constant
of the above proposition that depends only on d and n.

Let v ∈MK,fin and let pv be the positive generator of pv∩Z. The following
lemma provides a tool to remove denominators so as to construct models
over Spec(OK) from models which are defined only over an open subset.

Lemma 4.2. For a in OT we define the rational integer

δ(a) :=
∏

v∈T, v-∞
|a|v>1

|a|v.

Then δ(a)a ∈ OK .

Proof. We take w - ∞ and verify |δ(a)a|w ≤ 1. For w /∈ T we have
|δ(a)|w ≤ 1 and |a|w ≤ 1 and therefore the assertion. If w ∈ T and |a|w ≤ 1,
then again |δ(a)|w ≤ 1 and so the assertion follows in this case. Finally, if
w ∈ T and |a|w > 1, then

|δ(a)|w =
∏

v∈T, pv=pw

|a|v>1

∣∣|a|v∣∣w ≤ ∣∣|a|w∣∣w ≤ |a|−1
w .

This concludes the proof.
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We notice that the statement of the lemma would also follow from [BoGu,
Proposition 1.6.6] where with extra effort an additional property is proved.

The next lemma allows us to remove class group obstructions in connec-
tion with globally minimal models.

Lemma 4.3. There exists a set of at most hK log |DK | finite places v
with pv bounded by |DK |1/2 such that OT for T ⊂ MK is a principal ideal
domain if T contains the set.

Proof. By [La, Theorem 4, p. 119] we can choose for each class in the
class group of K an integral representative a with the property that

NK/Q(a) ≤ |DK |1/2,
and from this we conclude that at most (log |DK |)/(2 log 2) prime ideals
divide a. Taking the sum over the class group shows that this gives at most
(hK log |DK |)/(2 log 2) prime ideals. Their classes generate the class group.
Let P ⊂ N be the set of rational primes corresponding to these prime ideals.
We define T0 as the set of v in MK,fin such that l divides the norm of pv for
some l ∈ P and we see that

|T0| ≤ dhK log |DK |
and that the largest rational prime in P is at most |DK |1/2. In the ring OT
for T ⊇ T0 as in the lemma, ideals corresponding to elements in T0 become
trivial. Their images in the class group of OT generate the group and this
shows that the class group is trivial.

We choose a fundamental system U of T -units and a generator ζ of the
torsion subgroup of O×T and we say that ∆ ∈ O×T is reduced if it takes the
form ∆ = ζm

∏
ε∈U ε

n(ε) with 0 ≤ m,n(ε) ≤ 11. For our geometric lemma
below we assume that T contains S, that OT is a principal ideal domain and
that 2, 3 are invertible in OT .

Lemma 4.4. Let E be an elliptic curve over K with good reduction
outside S. There exists a globally minimal Weierstrass model of E over
Spec(OT ) given by an equation of the form Y 2Z = X3 +a4XZ

2 +a6Z
3 with

discriminant reduced and in O×T .

Proof. By assumption the Picard group of Spec(OT ) is trivial and then
[Li, Theorem 9.4.35] provides a globally minimal Weierstrass model W of
E over Spec(OT ). Pick F ∈ OT [X,Y, Z] with W = Proj(OT [X,Y, Z]/(F )).
For v ∈ MK,fin we take p = pv ∈ Spec(OT ) and Wp = W ×OT

Spec(OT,p).
Since W is minimal its localization Wp stays minimal. The elliptic curve E
has good reduction outside S and since S ⊆ T it follows that E has the
same property with respect to T . Therefore the fiber Wp(p) of Wp at p is
smooth for all p not in T and from [Li, Corollary 10.1.23] we deduce that
∆W ∈

⋂
p∈Spec(OT )O

×
T,p = O×T .
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By assumption, 6 is in O×T and this implies that there exists a Weierstrass
modelW ′ over Spec(OT ) with defining equation Y 2Z = X3 +a′4XZ

2 +a′6Z
3

such that the discriminants∆W and∆W ′ coincide up to a T -unit. This shows
thatW ′ is another globally minimal Weierstrass model of E over Spec(OT ).
We write its discriminant as

∆W ′ = ζm
′ ∏
ε∈U

εn
′(ε)

with U the fundamental system of T -units and ζ the root of unity introduced
above. Reduction modulo 12 gives

∆W ′ = u12ζm
∏
ε∈U

εn(ε)

for some u ∈ O×T and with 0 ≤ m,n(ε) ≤ 11. The same arguments as above
show that the Weierstrass model defined by Y 2Z = X3+a4XZ

2+a6Z
3 with

a4 = u−4a′4, a6 = u−6a′6 is a globally minimal Weierstrass model of E over
Spec(OT ) and has discriminant u−12∆W ′ which is reduced and in O×T .

Observe that even if OK is a principal ideal domain, it is a priori not
possible to associate to E an equation with coefficients in OK and with
reduced discriminant, as the following example shows. Let K = Q, S =
{2, 3} and E be the elliptic curve defined by the equation

(4.1) Y 2Z = X3 − 4XZ2 +
8
3
Z3.

The Weierstrass model W of E over Spec(OS) given by (4.1) has discrim-
inant ∆W = 210, which is reduced. The equation Y 2Z = X3 − 324XZ2 +
1944Z3 gives a Weierstrass model of E over Spec(Z) and its discriminant is
210312, which is not reduced any more. In conclusion E has no Weierstrass
model over Spec(Z) with reduced discriminant.

We need that ∆W is reduced to get a bound for its height in terms of
S and K. If an effective Szpiro conjecture on the minimal discriminant of
an elliptic curve [Sz] were true, the reduction would be obsolete in the case
when OK is a principal ideal domain.

As a conclusion we see that, even if K = Q, we have to consider solutions
a4, a6 of (3.1) in OT and not only in OK . This shows that the results of Baker
on the effective resolution of the hyperelliptic equation [Ba4, Ba5], or more
specifically on the Mordell equation [Ba2, Ba3], are not sufficient to deal
with the problem.

With these results we are now ready to prove the Main Theorem and
this will be done in the next section.

5. Proof of the Main Theorem. Let K and S be as in the Main
Theorem. The constants c2, c3, . . . which will be introduced in the proof
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depend only on the degree d of K and can be computed effectively. For T
we take the union of the set of places constructed in Lemma 4.3, the sets S
and MK,∞, and the set of places corresponding to prime divisors of 6. The
set T is effectively computable and we have to compare the number s and
the prime p in the Main Theorem associated to S with the corresponding
quantities t and q for T . Using the bound in Lemma 4.3 we get

(5.1) t ≤ ds+ dhK log |DK |+ 2d and q ≤ p|DK |1/2.

We now take an elliptic curve E over K with good reduction outside S
and conclude, since T contains S, that our curve E has good reduction
outside T . As in [BuGy, Lemma 1] we choose a fundamental system U of
T -units such that

(5.2) h(ε) ≤ c(t+1)2

2 RT

for all ε ∈ U , where RT denotes the T -regulator (defined in [Bu]), and we
fix a generator ζ of the torsion subgroup of K×.

Our Lemma 4.4 gives a globally minimal Weierstrass modelW of E over
Spec(OT ) with equation Y 2Z = X3 + a4XZ

2 + a6Z
3 and coefficients a4, a6

in OT such that ∆ = ∆W is reduced. We multiply equation (3.1) with 16
and find that (4a4, 4a6) ∈ OT ×OT is a solution of

(5.3) − 27Y 2 = X3 +∆.

From Lemma 4.2 we see that α = δ(∆)∆ ∈ OK and clearly δ(∆) is bounded
by HK(∆) = H(∆)d. Then x = −4δ(∆)2a4, y = 12δ(∆)3a6 is a solution of
the equation 3Y 2 = X3 − δ(∆)5α. The polynomial g(X) = X3 − δ(∆)5α
is separable and therefore an application of Proposition 4.1 to 3Y 2 = g(X)
gives

(5.4) H(x) ≤ H(g)2 eλ

with λ = λ1λ2λ3 (for the definition of the quantities λ1, λ2, λ3 see Proposi-
tion 4.1).

Since the degree of g is 3 we get

(5.5) λ1 ≤ c(t+1)2

3 q108d(log q)36dt

and to estimate λ2 and λ3 we need bounds for |NK/Q(∆g)|, H(g) and A. In
a first step we estimate H(∆) and δ(∆) and in a second step the estimates
are used to derive upper bounds for |NK/Q(∆g)|, H(g) and A. In a third
step we deduce the upper bounds for λ2 and λ3 as stated.

To give an estimate for H(∆) we bound from above the T -regulator RT .
From [Bu, Lemma 3] we get RT ≤ RKhK(d log q)t and from [Le] we see that
RKhK is at most (10d)10d|DK |1/2(log |DK |)d−1, which combines to

RT ≤ c4|DK |1/2(log |DK |)d−1(d log q)t.
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The discriminant ∆ is reduced and this means that

∆ = ζm
∏
ε∈U

εn(ε)

for integers 0 ≤ m,n(ε) < 12. Height properties together with (5.2) and the
upper bound for RT lead to

H(∆) ≤ exp(c(t+1)2

5 |DK |1/2(log |DK |)d−1(log q)t)

and we conclude that

(5.6) δ(∆) ≤ exp(c(t+1)2

6 |DK |1/2(log |DK |)d−1(log q)t).

The absolute value of the norm from K to Q of ∆g = −27(δ(∆)5α)2 is at
most equal to H(∆g)d and can be estimated by c7H(δ(∆)5α)2d. We recall
that α = δ(∆)∆ and therefore

H(α) ≤ exp(c(t+1)2

8 |DK |1/2(log |DK |)d−1(log q)t)

and then (5.6) yields

|NK/Q(∆g)| ≤ exp(c(t+1)2

9 |DK |1/2(log |DK |)d−1(log q)t).

In our application of Proposition 4.1 we have H(g) = H(δ(∆)5α), a = 3
and A = 3d. We put the estimates together to obtain

λ2 ≤ exp(c(t+1)2

10 |DK |1/2(log |DK |)d(log q)t),(5.7)

λ3 ≤ (c(t+1)2

11 |DK |1/2(log |DK |)d(log q)t)55d.(5.8)

The estimates for λ1, λ2 and λ3 given in (5.5), (5.7) and (5.8) are now
used to give an upper bound for H(x), H(a4) and H(a6). From (5.4) we get

H(x) ≤ exp(exp(c(t+1)2

12 |DK |1/2(log |DK |)d(log q)t))

and (5.6) together with the inequality H(a4) ≤ H(x)H(4δ(∆)2) leads to

(5.9) H(a4) ≤ exp(exp(c(t+1)2

13 |DK |1/2(log |DK |)d(log q)t)).

From (5.3) we see that H(a6) ≤ 59H(a4)3/2H(∆)1/2 and our estimates for
H(a4) and H(∆) give

(5.10) H(a6) ≤ exp(exp(c(t+1)2

14 |DK |1/2(log |DK |)d(log q)t)).

Finally, we replace t and q in (5.9), (5.10) by the estimates in (5.1) and
obtain

max(h(a4), h(a6)) ≤ exp(c(s+hK log |DK |+1)2

15 (log p)ds+dhK log |DK |+2d)

≤ exp(exp(c16(s+ hK log |DK |+ log log p)2))

as claimed in the theorem.
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6. Proof of the corollaries. Once the Main Theorem is established it
is not difficult to deduce the corollaries.

Proof of Corollary 3.1. The Main Theorem gives a set of places T which,
as we may assume, contains with a finite place v all places which are associ-
ated to the divisors of pvOK for pv a generator of pv ∩ Z. This can be done
without changing the estimates and the rational primes pv for v ∈ T then
become invertible in OT .

Let E be an elliptic curve defined over K with good reduction outside S.
Then there exists a globally minimal Weierstrass model of E over Spec(OT )
given by an equation Y 2Z = X3+aXZ2+bZ3, where the height of a, b ∈ OT
is bounded in terms of K and S and where ∆a,b = −16(4a3 + 27b2) ∈ O×T .
From Lemma 4.2 we see that α = δ(a)a and β = δ(b)b are in OK and
that δ(a)δ(b) ≤ (H(a)H(b))d. The construction of T implies that all prime
divisors of δ(a) and δ(b) are invertible in OT and this shows that δ(a), δ(b)
∈ O×T . One also sees that u = δ(a)δ(b), a4 = u4a, a6 = u6b and ∆ = u12∆a,b

have logarithmic heights at most 30dmax(h(a), h(b)). Our Main Theorem
then gives the bound for max(h(a4), h(a6)) as stated.

Let W be the subscheme of P2
OK

= Proj(OK [X,Y, Z]) defined by the
Weierstrass equation Y 2Z = X3 + a4XZ

2 + a6Z
3 with discriminant ∆W =

∆ ∈ OK ∩O×T . The generic fiber of W over Spec(OK) is K-isomorphic to E
and this shows that W is a Weierstrass model of E over Spec(OK) with the
required properties.

Proof of Corollary 3.2. By assumption, with the same notation as in the
first step of the proof of the Main Theorem, we get

(6.1) t ≤ d(s+ 2) and q ≤ p.

We replace t and q in (5.9) and (5.10) by the bounds given in (6.1). The
same arguments as in the proof of Corollary 3.1 then give Corollary 3.2.

Proof of Corollary 3.3. We put T = S ∪ {2, 3} = U and take ζ = −1.
From Lemma 4.4 we obtain a globally minimal Weierstrass model W of E
over Spec(OT ) defined by Y 2Z = X3 + a4XZ

2 + a6Z
3 with a4, a6 ∈ OT =

OS [1/6]. Its discriminant ∆ = ∆W = −16(4a3
4 + 27a2

6) ∈ Z can be written
as ±

∏
ln(l) with 0 ≤ n(l) ≤ 11 and with n(l) = 0 unless l ∈ S or l = 2, 3.

We see that x = −4a4, y = 4a6 gives a solution of

27Y 2 = X3 −∆.

The discriminant ∆g of the polynomial g(X) = X3 − ∆ is −27∆2. We
apply Proposition 4.1, where now a = A = 27 and H = max(|∆|, 27), and
get an upper bound for H(x). Since H(∆) = |∆| ≤ q11t, it follows that
|∆g| = 27|∆|2 ≤ 27q22t and H ≤ 27|∆| ≤ 27q11t. Using these estimates and
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log q ≤ q we get
H(x) ≤ exp(c(t+1)2

17 q170+103t)

for an effective constant c17. Finally, we replace t and q by the upper bounds
given in (6.1) to obtain

(6.2) max(H(a4), H(a6)) ≤ exp(c(s+1)2

18 p103(s+3))

with an effective constant c18, which completes the proof of the first part
of the corollary. From (6.2) we deduce the remaining parts with the same
arguments as used in the proof of Corollary 3.1.
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Department of Mathematics
ETH Zürich
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