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Integer points close to convex surfaces
by

M. C. LETTINGTON (Cardiff)

1. Introduction. Let C' be the boundary surface of a strictly convex
bounded three-dimensional body. Strictly convex means that if P and @ are
points on C, then points on the line segment PQ between P and @ lie in
the convex body, but not on its boundary C. Let M C' denote the dilation
of C' by a factor M. Andrews [1] proved a general result which in three
dimensions gives the number of points of the integer lattice on M C to be

(1) O(M?/?),

as M tends to infinity. Strict convexity is necessary because a part of a
two-dimensional plane in the boundary C can give as many as a constant
times M? integer points for infinitely many values of M.

We consider the integer points within a distance § of the surface MC.
The two-dimensional case has been well-studied ([12], [5], [9], [6], [10], [11]).
Introducing § requires some uniform approximability condition on the sur-
face C', usually expressed in terms of upper and lower bounds for derivatives
and determinants of derivatives. Let A be the two-dimensional area of C.
The search region has three-dimensional volume

(2) (246 + O(6%)) M?,

and this is known to be the number of integer points on average over trans-
lations of the surface M C. To obtain an asymptotic formula one considers
the Fourier transform of the convex body, with conditions at least as far
as the 18th derivatives in order to estimate the multiple exponential in-
tegrals [7]. Hlawka [8] obtained a general dimensional asymptotic formula,
which in three dimensions yields an error of size (1); see also Kratzel [13].
Under the C*° hypothesis of a convergent Taylor series, the error term in
the asymptotic formula has been improved, most recently by Miiller [18].
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We derive an upper bound for the number of integer points within a
distance § of the surface. We require only that C' has a tangent plane at
every point, and that any two-dimensional cross-section through the normal
at some point P consists (in a neighbourhood of P) of a plane curve C’ with
continuous radius of curvature ¢’ satisfying a condition

1/M <co< o <ey.

This condition involves derivatives up to the second order. We actually sup-
pose that M is large and we assume the condition

(3) coM+1/2<o=¢M <M —1/2,

with C contained in a sphere of radius ¢; M.

Our upper bound has two terms whose orders of magnitude correspond
to (1) and (2). The constant factor in the second term is larger than 2A.

In Miiller [18] the differential inequality assumed is that the Gaussian
curvature does not vanish. We can regard (3) as a corresponding quantitative
bound.

Under the curvature conditions we prove that an upper bound for the
number of integer points N lying on or within a distance § from the surface C
is given by

2
N < <Zl> 216 (¢ M)3/2 + 295(c1 M)?).
0

In Section 3 we consider the convex hull of the integer points in a
d-dimensional convex body satisfying the Curvature Condition (introduced
in Section 2), and find explicit bounds for the number of faces in different
dimensions.

There is a vast literature on the lattice points in a convex polytope.
We have been able to use some parts of this theory ([1], [2], [3], [4], [16],
[17], [19]). Where possible, this theory has been stated in the general d-
dimensional case. To extend all the results of this paper to d dimensions
requires more investigation of configurations in intermediate dimensions,
and of the distribution of large faces of the convex hull with short normal
vectors. This will be the subject of a following paper [15].

2. Shells and curvature. Let Cy be the locus of points at distance §
from C' measured along the interior normals to C, and let C; be the locus
of points at distance § measured along the exterior normals. Let E be the
d-dimensional shell bounded by Cjy and C4 so that E has thickness 24. Let
S be the set of integer points in E, and let H be the convex hull of S, so
that H is a d-dimensional convex polytope. All points of S lie in H, but not
all integer points on the boundary of H lie in S.
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CURVATURE CONDITION (with size parameter M). For any point P on
C and any two-plane IT through the normal to C' at P, let C(II, P) be the
closed plane curve C'N II. Then C(I1, P) is twice differentiable with radius
of curvature o lying in the range

(4) coM +1/2<o<cM—-1/2,
where the constants cg, c¢; and § satisfy
(5) 1/M<00§1§01, 5<1/4.

As an immediate consequence of the Curvature Condition we have the
following lemma.

LEMMA 2.1. Let C satisfy the Curvature Condition. For both of the
boundary hypersurfaces Co and Ci of the shell E, at each point QQ of the
hypersurface there is a tangent hyperplane. The two-dimensional section
C(I1,Q) by a 2-plane normal to the tangent hyperplane is twice differen-
tiable. The radius of curvature of C(I1,Q) lies in the range

(6) coM < o < 1 M.

The proof follows by direct consideration of points on Cy(I1,Q) and
C1(I1, Q) with respect to C(I1,Q).

By the condition (4), S, the set of integer points, lies in a d-hypersphere

of radius R = ¢1 M, and we recall the formulae for V, the volume, and for
Sa, the surface content, of a d-dimensional sphere [19]:

(7) Vi=agR? Sq=dagR",
where
ok 92k+1 k|
_T _s Th < 6.
(8) G2k = 77> 02kl Ghr ) ag <6

3. Convex polytopes. In this section we again consider the general
d-dimensional case, so that the convex hull H of the set of integer points S
is a d-dimensional convex polytope, where d > 2.

LEMMA 3.1. To each hypersurface face of the convex polytope H we as-
sign a standard normal vector; this is the unique outward normal integer
vector (A1, ..., Aq), which is primitive in the sense that hef(Aq, ..., Ag) = 1.
Then for each N > 1 there are
(9) < 34N4
hyperfaces of H whose standard normal vector has length at most N.

Proof. There are 2N + 1 possibilities for each vector entry, so that the
total possible number of vectors is

(2N +1)¢ < 3IN9. u
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LEMMA 3.2. Let U be a set of K integer points in d-dimensional space
that do not all lie on some hyperplane. Then there is a simplicial complex
of at least K — d non-overlapping simplices whose vertices are the K points

of U.

Proof. This lemma may be proved from the outside in, by successively
removing vertices of the convex hull of U, or from the inside out by choosing
simplices of minimal non-zero volume [14]. =

LEMMA 3.3. Let H be a convex polytope contained in a hypersphere of
radius R, whose vertices are integer points. Then the number of (d — 1)-
hyperplane faces of H whose standard normal vector has length greater than

N is

d—1
agRd!
10 < —.
(10) < W
Proof. Consider d integer points x1,...,Xy4 lying on a hyperplane face
with primitive normal vector (A1, ..., Ay), where the d-integer points form a

simplex with (d — 1)-dimensional volume V(=1 and X4+1, an integer point
lying off the hyperplane face. The perpendicular distance from x441 to the
hyperplane face is

k
NF—s

for some positive integer k. We chose x411 so that the distance is minimal
and so k = 1. Then the d-dimensional volume V(@ of the convex hull of
these d + 1 points satisfies

(11) D=

1
VWD(xy, ... xg) = p DVUD(xy, ..., xg).

Since the volume of a d-simplex whose vertices are integer points is at least
1/d!, we have

d 1 1
(12) V(d—l)(xl’,xd)z(d)'D:(d_l)'\/(A%-f-_|_A?l)
S N
~ (d-1)!
by the conditions of the lemma.

The (d — 1)-dimensional hypervolume of the hyperplane faces of the
convex polytope must be less than or equal to the (d — 1)-hypervolume of
the surface of the d-dimensional hypersphere enclosing it. Let A; be the
hypervolume of each hyperplane face of the polytope; then by equation (7)
we have

(13) Z AZ' < Sd e dOéde_l.
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We obtain an upper bound for the number of large hyperplane faces of the

convex polytope by dividing the lower bound (12) into the upper bound (13)

to obtain

< dogR&(d — 1)!

- N
THEOREM 3.4. Let H be a convex polytope contained in a d-sphere of

radius R. Then H has at most

(15) 2(3aqd!) ¥/ (@+D) RAd-1)/(d+1)

(14)

hyperplane faces.
Proof. We take

! 1/(d+1) 1)/ (e
1V—<3d> RU-D/(+1)
in (9) of Lemma 3.1 and (10) of Lemma 3.3. The total number of hyperplane

faces is the sum of bounds for those with long normal vectors in (9) and those
with short normal vectors in (10), and is

Ozde_ld!

- N
LEMMA 3.5. Let H be a convex d-polytope with vertices at integer points.
From each j-face F; of H, we pick out j + 1 vertices v;1,...,V;jy1 that do

not all lie on a (j — 1)-dimensional plane. Let w; be the centroid of these
vertices:

(16) Ww;

+ (3N)4 = 2(3agd!)¥/ (@) gAd-D/(d+1)

1

IR
Let T = {wi,...,wp} be the set of centroids associated with all the j-faces
of H. For a set U, let conv{U} denote the smallest convex set containing

all the elements of U. Then the centroids w; are true vertices of conv{T},
in the sense that for anyt =1,...,h,

conv{T \ {wp}} # conv{T}.
Proof. We must rule out the possibility that

(Vii+ -+ Vijt1)-

h
(17) w; = Z AgWg,
g=1
with
h
(18) 0< X <1, ) A=
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Substituting for w, using (16) and multiplying by j + 1 to clear fractions
yields
hoj+l

(19) vitt -+ Vijt1 = Z Z /\gvg,f.

g=1f=1
Each j-face F; is the intersection of at least d — j facets or hyperplanes of H,
and our j + 1 vertices of F; are also vertices of each of these hyperplanes.
We label these hyperplanes Iy, ..., I, ..., II; with primitive integer normal
vectors ng, so that any point r lying on II; satisfies the equation

r-nk:Dk.

As H is convex, all the II; are supporting hyperplanes of P. Hence, for any
point x in H we have

(20) x-ny < Dy,
where we have assumed (using a suitable integer vector translation) that H
contains the origin. Applying (20) to (19) yields
h j+1
(Vig + -+ vigp1) ng = Dp(j+1) = ZZ)\gvgf ng
g=1f=1

h
< +1)Y AgDr = Dl +1),
g=1
implying that
j+1

(21) ZA ngf ny, < Dy(j +1).
g=1 f=1

This equality is only satisfied if all of the vertices v, y for which A\, # 0 are
on the hyperplanes II;,1 < k <'t.

Now any j-face F; of a convex d-polytope H can be defined as the in-
tersection of the g-faces that contain F; with j7 < ¢ < d — 1. Therefore, as
the vertices v, ¢ lie on such an intersection with ¢ = d — 1, we deduce that
the vertices v, y for which Ay # 0 are all vertices of our j-face F;. That is,
Vg1,---,Vgj+1 are vertices of Fj.

This implies that for g # i in equation (19) we must have A\; = 0, as two
distinct j-faces of H cannot share j + 1 vertices. Hence there is only one
term, Ay, with g = ¢ and \; = 1 yielding the trivial expression, right hand
side is identical to left hand side in (19).

Therefore, w; has only one expression as a convex sum of

T={wi,...,wp},

and thus w; is not in the convex hull of T — w;. =
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Theorem 3.6 is a version of Andrew’s Theorem [1] with explicit constants.
The second statement regarding the number of faces was not stated in [1].
McMullen [16] has upper bounds for the number of faces in terms of the
vertices. These bounds can be attained by polytopes with integer vertices
lying on a twisted quantic curve, but the parameter R is very large. Hence,
for a spherically contained convex d-polytope, there exist triples, (d, fo,7),
for which the second statement of Theorem 3.6 is an improvement on the
general upper bound stated by McMullen in [16].

THEOREM 3.6. In d-dimensional space, a convexr polytope H with fo
vertices, all at integer points, contained in a hypersphere of radius R satisfies

Let 1 < j < d— 2. Under the conditions of the theorem, the number f; of
j-faces of P satisfies

(23) £i < 2(3agd)) Y@t (2(f 4 1) R)Ud-1/(@+1)

Proof. Let T be the set of midpoints of edges of H, and let H' be the
convex hull of 7. By Lemma 3.5 each point of T is a vertex of H'. Let V
be the vertex of H where edges e1,..., e, meet and let Wy,..., W, be the
respective midpoints of these edges. The Wy,..., W, are all vertices of H'
but not necessarily of the same facet.

By construction, each vertex V' of H is truncated by a facet F of H' and
we say that V belongs to the facet F. Geometrically we can think of V' as
lying above the facet F. The supporting hyperplane IT of H' containing F
cuts H in a (d — 1)-dimensional convex polytope Q. The join of V' to any
other vertex V' of H cuts I within this convex polytope. We now show that
V' cannot lie above the facet F'. The vertices of @ are points Xi,..., X, on
e1,...,e. and X; is either W;, the midpoint of e;, or between V and W;.
Therefore, if V' lies above F', then V' lies in conv(Q,V) and so V' lies in
conv(V, X1,...,X,). The only vertex of H in this list is V, so V' = V.

This implies that the number of facets of H’ is greater than or equal to
the number of vertices of H.

Now 2H’ is a polytope with integer vertices lying in a d-sphere of radius
2R, so the number of faces of H' is given by (15) of Theorem 3.4, but with
a larger implied constant. We deduce the result (22).

For each j-face G of H we choose j + 1 vertices that do not all lie on the
same (j — 1)-plane and construct C(G), the centroid of the j + 1 vertices.
Since C(G) does not lie on the (j — 1)-dimensional boundary of G, we see
that C(G) cannot lie on any other j-face. Let U be the set of centroids C(G)
constructed from the j-faces of H.

By Lemma 3.5, U is a strictly convex set and we define H” to be the
convex hull of the points C(G) in U. Then (5 + 1)H” is a polytope with
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integer point vertices lying in a sphere of radius (j + 1) R, so that the num-
ber of vertices of H” is given by equation (22), but with a larger implied
constant. Each j-face G gives a distinct point C'(G) in U which is a vertex
of the convex polytope H”. We deduce the result (23). m

4. Major arcs and lattices. Throughout this section H is the convex
hull of the set S of integer points inside the shell E. It is helpful in many
problems to separate “major arcs”, regions where there is good Diophantine
approximation, from “minor arcs”, regions where there is not. In this paper a
major arc can be described informally as a region U of the shell E such that
the convex hull of all the integer points in U is contained in the intersection
of E with some hyperplane. In three dimensions, major arcs on the plane
faces and edges of the convex hull H can have dimension 1 or 2.

LEMMA 4.1. The maximum length of a straight line segment in E is

(24) < 4y\/dc1 M.
A chord AB of Cy tangent to Cy has length
(25) 4y/6coM < AB < 4+/5¢c1 M.
X
-
h 26

r |

Fig. 1. Section by 2-plane II through [ and X

Proof. Let R = ¢1M and let II be a two-dimensional plane containing
the normal vector at a point X on C; and any other point A also on the
outer boundary Cy. The two-dimensional section £* of the shell E in II is
depicted in Figure 1. We consider the line segment AB when it is wholly
contained within E* and so the perpendicular distance XY from AB to X
must be < 2J. Applying circular geometry to the circle of radius R with
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respect to the mid-point Y of chord AB we find that

AB\?
(26) <2> = AY? = XY (2R - XY),
and for fixed R, this is maximal when XY = R. Hence we take XY as large
as possible in (26), yielding the required result.

The lower bound in (25) corresponds to the case when the cross-sectional
curve is a circle of minimal radius of curvature R = coM + 1/2. In this case,
by (26),

AB = 2AY = 4\/5(R — 6) > 4\/dcoM,
by (4) and (5). =

LEMMA 4.2. Let R =c1M and let F be a facet or hyperplane face of H
that lies in a hyperplane ¥ with outward normal n. Let X be the point of Cy
at which n s the outward normal. Let h be the distance from X along the
inward normal to the nearest point Y on the hyperplane W. Let E' be the
(d—1)-dimensional section of E contained in ¥, so that E' contains all parts
of the face F that lie in the shell E. Then the (d — 1)-dimensional volume
V of E' is bounded above by

(27) V < 20d+9)/2 g5 pld=1)/2p,(d=3)/2

Proof. Let II be a two-dimensional plane through XY, and let E* be the
two-dimensional section of E by II (Figure 1). Then IT cuts ¥ in a straight
line | which meets C in two distinct points A and B. The points A and B
lie inside the circle of radius R through X with n as outward normal at X.
For clarity, the curves Cy and C} in Figure 1 are drawn as circles. From (26)
in the proof of Lemma 4.1 we have

(28) AY < \/h(2R—h) =k.
Hence the set B/ = E N lies within a (d — 1)-sphere with centre Y and
radius < v2Rh.

CASE 1. When h < 2§, the plane ¥ does not cut Cy and, by (6), the
diameter of E’ satisfies (24). This implies that the whole of the facet F is
contained within the shell E. Therefore, the (d—1)-dimensional volume V' of
E’ is less than or equal to that of a (d — 1)-sphere of radius v2hR. Applying
(7) yields
(29) V < ag_1(2hR)14D/2 < 9(d+9)/2(p R)(d=1)/2,

CASE 2. When h > 20, the hyperplane ¥ meets Cy, and the line [ in the
two-dimensional plane IT cuts Cy in two distinct points Ag and By. Let AgT

be the normal from Ay to Cq, so the distance AyT is 2§, and let C* be the
hypersphere of radius R touching Cy at T'. Let II; be the two-dimensional
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.
N,

A7 A /A er B\t B B

line 1

Fig. 2. Section by 2-plane II; through [ and T’

plane through the line [ and the point 7" (Figure 2). Then C} and the shell £
are contained within C*. The line [ cuts C* at A* and B*, so that by the
geometry of circles

(30) AAg- AgB < A*Ag - AgB* = 25(2R — 26) < 40R.

On the line [, the point A lies between A* and Ag, with AAy = 1 (say) and
n > 0. Hence

(31) n < A*Ap.

We also have

(32) AgB* > YB* =k = \/h(2R — h).

Each point of E’ lies within a distance n of the (d — 2)-dimensional surface
of C; NV¥. The (d — 2)-dimensional volume of C; N¥ is at most the surface
content of a (d — 1)-dimensional sphere of radius k, which by (7) is equal to

(d—1)ag_ k%2

Therefore, the (d — 1)-dimensional volume V of E’ satisfies

(33) V < (d—1)ag_1nk®2.
From (30)-(32) we have
(34) nk < A*AO . AOB* S 40R.

Hence we can write
V < (d—1)ag_1(406R)k373,
which simplifies to
(35) 14 < 2(d+7)/2(d o 1)5R(d71)/2h(d73)/2.
Combining (29) and (35) yields
Vv < 2(d+9)/2d6R(d71)/2h(d73)/2
and hence the result. »

LEMMA 4.3. In d-dimensional space, the number of integer points of S
in E that lie strictly inside the convex hull H of S is

(36) < 20dlorgd(cy ML
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In particular, if d = 3, then the number of integer points lying within a short
distance § of the convex hull H is

(37) < 4876 (e M),

Proof. Given that the integer point vertices of our convex hull H lie
within a distance § from the closed convex hypersurface C, we can associate
a hyperslab of width 20 with each facet of the polytopal convex hull where
the hyperslabs will overlap.

Any integer points H N E must lie within a distance 24 of the nearest
polytope facet F; with hypersurface area A;. The internal or “dihedral”
angles between facets are < 180° due to convexity. Let P be such a point with
nearest hyperface Fj, so that the perpendicular from P to the hyperplane F;
actually hits F;. If not, then some other hyperplane is nearer (F} say) under
the distance equation (11) defined in Lemma 3.3.

Therefore each integer point P lying inside the convex hull can be asso-
ciated uniquely with a nearest hyperface Fj.

Corresponding to each hyperface F; we have a hyperslab S; consisting
of two completely parallel hyperfaces F; and F; shifted by 20 in the normal
direction to the hyperplane. The hypervolume of S; equals 26 A; where A; is
the hypersurface area of Fj.

We know from Lemma 3.2 that in d-dimensions, K points that do not all
lie on the same hyperplane form at least K — d non-overlapping simplices.
Each simplex has hypervolume 1/d! multiplied by an integer so that each of
these simplices has hypervolume > 1/dl!.

Therefore, if K; is the number of internal integer points associated
uniquely with the hyperface F;, which itself has at least d integer point
vertices, then the total number of internal and boundary integer points of
the hyperface is

so that we have at least K; non-overlapping simplicies, yielding
K;

which implies
K; <2dl6A;.

Hence the total number of integer points lying within a short distance § of
the convex hull H is
<Y K < 2dI6A;
i i

The boundary content of our convex d-polytope H is less than or equal to
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that of the hypersphere with radius of curvature ¢c; M enclosing it. Therefore

> K < 2dl60gd(c M) -
(2
The next two lemmas are commonplaces of integer geometry, so we
merely sketch the proofs.

LEMMA 4.4. Let II be a hyperplane with equation
n-x=2D,

where n is a primitive integer vector, and D is an integer. Then the integer
points of II form a lattice with determinant |n|.

Proof. The lattice of integers on II is congruent to the lattice of integers
on the plane n-x = 0. Let m = n - n. The lattice of integer vectors with
n-x = 0 (mod m) consists of (d — 1)-dimensional lattices on the plane
n - x = 0 and on parallel planes at distance |n|. =

LEMMA 4.5. Let A be a j-dimensional lattice of determinantn, 1 < j < d.
Let U be a convex set in the j-plane of A, with j-dimensional volume V,
containing K points of the lattice A. Then one of the following two cases

holds:

(1) Major arc case: All the points of A in the set U lie on a (j — 1)-
dimensional plane.
(2) Minor arc case:
ng!K+j§(j—|—1)!K.
n n
Proof. In the minor arc case, by Lemma 3.2, there is a simplicial complex
of at least K — j non-overlapping simplices, each of volume at least n/j!,
whose vertices are the K points of U. The union of these simplices lies inside
U and this gives the first inequality. There is at least one such simplex, so
V > n/j!, and we deduce the second inequality. m

5. Vertex components. From this point on, we are restricted to three
dimensions.

For each point P in our shell E, there exists a normal to the outer
boundary surface C7, meeting C7 at a point R;. We call Ry the normal
projection of P onto C7 and Ry the normal projection of P onto Cy. The
vertices of our polyhedron must, by definition, lie in F, and for every other
non-vertex integer point in E there must exist a nearest vertex. We now
formalise this concept with the following definition.

DEFINITION. Let P be a point of S in the shell £ and R; be the normal
projection of P onto C'y. Let V' be a vertex of the convex polyhedral hull H
and E’ be the plane sectional strip of E containing V', P and R;. If the line
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segment R1V lies entirely within the closed strip E’, then we say that P lies
in the component S(V') of S.

LEMMA 5.1. Every point P of S belongs to some vertex component S(V').

Proof. The line segment PR; cuts the boundary of the polyhedral hull H
at some point () between P and R; inside F, so that () lies in some plane
face F' of H. If Q is a vertex of H then P belongs to S(Q) as QR; will lie
on the line segment RyR; inside F.

We now assume that @) is not a vertex of H and triangulate the face F
of H containing ) so that Q lies in some triangle W = V1 Vo V5. If QV; does
not enter the interior of the convex set bounded by Cj then neither does
R1V;, implying that P lies in S(V;).

If P lies in no S(V;) then each line segment QV; on F' cuts the interior
of Cp in some point @); also on F' but not in E. The whole convex triangle
Q1Q2Q3 therefore lies strictly inside Cy and contains ). Hence, @ is not
in F, which is impossible, since @ lies on the line segment RyR;, which is
strictly inside E. This contradiction shows that for some ¢, the line segment
Vi@ lies in E and so V; Ry lies in E and P is in the component corresponding
toV;,. m

LEMMA 5.2 (Spacing lemma). Let V' be a vertex of the convex hull H.
Let P be a point of S not in the component S(V) of V.. Let Ry and Ry be
the respective normal projections of P and V' onto Cy. Then

(38) RiRy > \/cod M
and the angle between the normals to C1 at Ry and Ry is

1 605
39 —A\/ .
(39) ey

Proof. Since P is not in the component of V', the line RV cuts Cy in two
points Wi and Ws. Let E' be the plane sectional closed strip of E defined
by the line RV and the point Rs, so that E’ also contains the points W;
and Ws. Between W7 and W on Cj is a point W where the tangent to Cy
in £’ passes through R;. Then

RV > RiWy > R{W > 24/dcoM
by (25). Hence, by (4) and (5),
RiRs > RV — 28 > 2/dcoM — 28 > 2v/6coM — \/dcoM = \/dcoM,

which is (38).

To obtain (39) we consider the sphere B with centre on RoV, and radius
c1 M, touching C at Ro. There is a point R} on B where the outward normal
is parallel to the outward normal to C7 at R;, making some angle 6 with
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the outward normal at Rs. Since C; has sectional radius of curvature less
than or equal to ¢; M, the radius of B, we have

RiRy < Rlle.
The shortest distance from R} to Rs along the surface of B is 6¢1 M, so

0l > BBy > RuRy > e, thatis, 0> /0
1
as required. m

As each integer point P in S belongs to at least one component S(V')
labelled by some vertex V of the convex hull H, components labelled by
different vertices may well overlap and different vertices of the convex hull
may be close together. We pick a well-spaced set of vertices of H as follows.
Pick a vertex Vi, and let the enlarged component S’(V7) be the union of all
components S(V) with V in S(11).

Now pick a vertex V5 not in S’(V}), and form the enlarged component
S'(Va). We pick Viy1 not in S’ (V1),...,5(Vi), and so on until all of the
vertices V of the convex hull H lie in some enlarged component.

LEMMA 5.3 (Thickness lemma). Let S'(V) be an enlarged component
and let Ry be the normal projection of V onto Cyi. Let P be a point in
S (V). Then the distance h of P from the tangent plane at Ry satisfies

(40) h S 52501 .
Co

Proof. The integer point P lies in some component S(V') with V' in
S'(V). Let Ry and R} be the respective normal projections of P and V'
onto Cj. The line segments RV’ and R,V lie inside the shell E, so by

Lemma 4.1,
RlV’ S 4\/ 501M, R/QV S 4\/ (501M.
The distances V'RY, and V Ry are at most 26, so

(41)  RiRe < R\V'+ V'Ry+ RV + VRy < 8y/dc1 M + 46 < 101/6e1 M,

where we have used (4) and (5).

Let E’ be the plane sectional strip of E defined by R;, V' and the normal
projection Ry of V onto C7. Let C’ be the convex curve defined by the
intersection of C; and E'.

For fixed distance Ry Ry = D, the distance of Ry from the tangent to C’
at Ry in E’ is greatest when the radius of curvature is least, which is when
(' is an arc of a circle of radius coM. Let a be the angle between Ry Ry and
the tangent at Rs. In the extreme case when C’ is a circle of radius coM,
the chord R;Rs subtends an angle 2« at the centre of the circle, so

D = 2¢oM sin
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and the distance of Ry from the tangent at Rs is
D? - 1006ci M 506¢q

Dsina = —
S 2cgM —  2¢coM Co
The distance of P from the tangent plane to C at Ry is therefore
< 50501 +25 S 52(561. .
€o €o

REMARK. If we can obtain a bound valid for § sufficiently small, then we
can deduce a possible weaker bound for large § by dividing the shell F into
concentric shells F,, 1 < r < R, of thickness §g, bounded by shrunken copies
of the exterior surface Cy of E. By inequality (6), we have a uniform upper
bound of ¢; M for the sectional radius of curvature at any point on each
shell F,.. Hence, when regarding maximum sectional radius of curvature, we
can work within the general shell boundary C7, whose sectional radius of
curvature is also < ¢i M.

LEMMA 5.4 (Flatness lemma). Let S’(V') be an enlarged vertex compo-
nent of our convexr polyhedral hull H. If

Co 1
42 0 <= . ,
(42) 07\ 273.5213¢; e M

then all the points of S'(V') lie on a plane through the vertez V.

Proof. Let Rs be the normal projection of V' onto C;. All points P of

S’(V) lie within a distance 52dc;/co from the tangent plane at Rs, and
by (41),

PV < PRy + R1V’ + V,RQ + RV < 8\/dc1 M + 46 < 10/ dc1 M.

Hence, the set S'(V) of integer points lies within a rectangular box L, of
volume Vol(L), with

520 1
(43) Vol(L) < 222 (20/5e1 M)? < o
o
where we have used the assumption (42). Therefore, by Lemma 4.5 the

major arc case holds, and all points of the enlarged vertex component S’(V),
including V itself, lie on a plane. =

LEMMA 5.5 (Approximate tangency). Let S’(V') be an enlarged compo-
nent. Let T be the point of Cy closest to V. Let P be another point of S'(V),
and let g be the integer vector V. P. Then the angle o between VP and the
normal to Cy at T satisfies

(44) |cos a <

Proof. Let II be the plane through P and the normal to C; at T through V.
Then C will appear in IT as a convex curve C’. Let | be the tangent to C’
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at T, and let U be the foot of the perpendicular from P to [ in II. If W
is the foot of the perpendicular from V' to PU then VI'UW is a rectangle
in I1.

By Lemma 5.3 we have

PU < 526c1/co.
Now if P is between W and U, then
VP|cosa| = PW < WU =VT < 20,
and if W is between P and U then
V P|cosa| = PW < PU < 52dc1/co.
The inequality (44) holds in both cases. =

LEMMA 5.6 (Sums of reciprocals). We have

1
45 — < 25F2
(45 > obs
1<|e|<E
Proof. Applying the Cauchy condensation method, we divide the normal
vectors into ranges

F/2<|e|<F, F=124,...,2K

where 2K is the largest power of 2 less than or equal to E. The number of
integer vectors in this range is

<(2F +1) — (F+1)3 < 19F3
so that
1 3 2 2
> = <19F%. = =38F2
le] F
F/2<|e|<F
Summing over the ranges for F', we have
39(22K+2 _ 1)

Zf<38 14+4+16+---422F) < y—

< 13-4(2*K) < 20F?. «

6. Plane faces and edges. In Lemma 4.3, we counted all of the integer
points in the extended vertex components that lie strictly inside the convex
hull H. Therefore we need only consider the set S(H) of integer points in our
extended vertex components that lie strictly on the plane faces and edges
of H in S.

Let S*(V;) be the subset of S’(V;) consisting of integer points on the
boundary of H. We will call this a boundary component. We have shown
that for each extended vertex component S’(V;), if § is sufficiently small
then S’(V;) lies in a plane and so S*(V;) lies in the same plane.
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LEMMA 6.1. The number of integer points on one-dimensional boundary
components is estimated by

216 3
(46) S5 < 2T (e
dim §*(V;)=1 K

Proof. First we note that at most two one-dimensional components can
lie on the same straight line. If this were not the case and there were more
than two, then there would exist at least two seperate sections of a straight
line segment that do not lie in the shell E. This in turn means that there
exists a straight line segment that cuts Cy or C7; more than twice, which
contradicts the convexity property assumed.

We consider all the boundary components S*(V;) which are one-dimen-
sional lying parallel to some primitive integer vector e. Suppose that the
component contains [ points of S(H ), where

(47) L+1<1<2L
for some L equal to a power of two. We can take g = (I —1)e in Lemma 5.5,
with

gl > (I—1)|e| = Lle].
In Lemma 5.5 the angle a between the vector e and the normal to Cy at T,
the point of C] nearest to V, satisfies

lcosa < %
C()L|e‘
Hence
T 26c1 7o
48 ol <« 22222
(48) ) O" = coLle]

We want to discuss the spacing of the vertices V; that label the enlarged
components S’(V;) and so the boundary components S*(V;). Each V; has a
normal projection T; on C;. Consider a sphere B of radius ¢ M. We map T;
on C to the point W; on B where the outward normal n to B is parallel to
the outward normal to C; at T;.

Let V; and V; be distinct vertices labelling enlarged vertex components.

Since V; ¢ S(V;), we have
T;T; > \/cod M,
by (38) of Lemma 5.2. Since C; has sectional radii of curvature at most
01]\47
Win > TZTJ > \/codM.
Hence balls B; of radii %\/ co0M centred at the points W; on B are disjoint.

The ball B; intersects with the surface of the sphere B in a set A; which
contains the centre W, of B; and is a two-dimensional ball in spherical
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geometry. As the B; are disjoint, the areas A;, on the surface of the sphere B
are also disjoint and do not overlap. Hence different sets S’(V;) correspond
to disjoint sets A;, centred at W;, on the surface of the sphere B. The area of
A; is greater than the area of the intersection of a plane through W; with B;,
which is

(49) mcod M /4.

As V; € S*(V;) and S*(V;) C S'(V;), different sets S*(V;) also correspond to
disjoint sets A;, centred at WW;, on the surface of the sphere B.

For each vector e, there is an equatorial plane of the sphere B at right
angles to e. By (48) the point W; on the surface of B, where the normal is
parallel to the normal n to C at T, lies within a distance

267 601M
C()L|e|
from the equatorial plane measured along the surface of B. As stated, the
set A; is the intersection of the surface of B with a ball of radius %\/ co0 M,

so it forms a two-dimensional ball in the spherical geometry of the surface
of B, whose radius in spherical geometry is

< ™ \/00(5M < \/Co(SM 4\/(561M 7T(501M Co < 71'501M
—_ s . — _
-2 4 - 16 Lle| Lle| c1 ~ colLle|’

by equation (4) and Lemma 4.1.
Hence, each point of A; lies within a distance

267T(561M 7T(501M _ 277T501M
coLle] coLle|  coLle

from the equatorial plane, measured along the surface of the sphere B.

We consider the “girdle” of one-dimensional boundary components S*(V;)
which are parallel to the fixed vector e. The components in the girdle satis-
fying (47) correspond to points W; and disjoint sets A; on the surface of B,
such that every point of A; lies close to the equatorial plane perpendicu-
lar to e. The disjoint sets A; lie in an annulus whose volume in spherical
geometry is at most

(2me1 M) <

By formula (49) the number of disjoint sets A; in the girdle is at most

22 27(2m)%5 (a1 M) 27(4mer)* M
m(cod M) coLle| ~ wcille|

547r561M> _27(2m)26(c1 M )?

coLlel coLle]

(50)

so the boundary components S*(V;) in the girdle for which the number [ of
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points is in the range (47) contribute at most
2

(51) 54#(4;61) M

cplel
integer points. The estimate (51) refers only to components in the girdle for
which [ lies in the range (47).

We keep the condition (47), and sum over primitive integer vectors e.
Since each component is a straight line segment lying within the strip E, by
Lemma 4.1 we have

Lie| < (I—1)le|] <4y dc1 M.
We note that if two boundary components lie on the same line, then the
vertices V; which label the boundary components S*(V;) must be different,
so they are counted separately in this argument. We use Lemma 5.6 to
sum over e, so that the number of points on one-dimensional boundary
components with { in the range (47) is at most

547T(401)2M 26 4\/(561M 2_ 21533017T5(61M)2
2 L N cAL? )
Finally, we remove the condition (47) by summing L through powers
of 2, and noting that

1 1 1 ok
(1+++ +-~->§ < 2.

(52)

ok T4k T gk 2k — 1~
Hence the total number of integer points of S(H) which lie on one-dimen-
sional boundary components is at most

1693 1693
(2 3261”)5(@1\4)2 < (2 32“1>5(01M)2. .

0 0
LEMMA 6.2. The number of integer points lying on the plane boundary
components s

(53) < 295(c; M2

Proof. For each plane boundary component, by (43) of Lemma 5.4, the
integer points will all lie in a square of area

4000c1 M.

The boundary components are convex sets lying on the convex hull H. Hence
the convex hull of the plane boundary components, H' say, is a convex
polyhedron contained within H, and the boundary components lie on the
boundary planes of H'. If the boundary of the convex polyhedron H’' contains
two parallel planes, then the convex body includes all points of the joins
of any point on one plane with any point on the other plane. It follows
that the outward normal vectors must be in opposite directions. Boundary



20 M. C. Lettington

components lie on boundary planes of H’, so the direction of the outward
normal determines the boundary plane.

Therefore, either the plane boundary components will all have different
outward normal vectors n;, or some will share vectors and so form convex
sets that all lie on the same plane. In the latter instance, these plane bound-
ary components will all lie in an annulus as described in Lemma 4.2. As
each component is convex in this annulus we can apply Lemma 4.5, and
summing over all possible normal vectors gives the total number of integer
points to be

1
54 < 3120361 M Y —.
(54 <3230 ) o
Applying similar logic to the former case yields
1
55 < 314006¢1 M
o = SO ]

integer points. The constant in (55) is greater than that in (54) and for each
n; only one of the cases can occur. Hence we need only calculate the sum
n (55). We note that the sum over all possible short normal vectors (length
< N) will be greater than the sum over all possible long normal vectors
(length > N) and so we consider twice the sum over the short normal
vectors, giving

1
< 2-314006¢; M Z —

1<ien il
where, by Theorem 3.4,
87\ /4
N=2K=(2 M)Y2,
<27> (crM)
Applying Lemma 5.6 yields
1
2-314006c, M > — <2"3.5%6c, MN?
1<|n;|<N [
< 2123.525(c; M)? < 2196(c; M)?,
as required. =

LEMMA 6.3. The number of integer points on three-dimensional bound-
ary components, when § = dy, is estimated by

(56) Z 1S*(V3)] < 8 - 243/4(2¢; M)3/2 < 2%(c1 M)3/2.
dim §*(Vi)=3
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Proof. From (43), the three-dimensional boundary component S*(V;)
will have a volume Vol(H;), with

Vol(H;) < 520c1 (201/dc1 M),

€o

Since § = Jp this gives a volume of at most 1/6. Applying the minor arc
case of Lemma 4.5 then gives

(57) K; < 24Vol(H;) < 4,

where K; is the number of integer points contained in S*(V;). However, the
existence of a three-dimensional S*(V;) in S’(V;) requires that K; > 4, and so
if we consider § = dg, then K, the number of integer points in the boundary
component, is exactly 4. The number of vertices of the convex hull is

< 2.24%4(2¢, M)*/?,

by (22) in Theorem 3.6. Hence, when § = 4y, the total number of integer
points in the three-dimensional boundary components is

(58) < 8-24%4(2e, M)?? < 22(e1M)?/?. w

We now collect together the terms (22), (46), (53), (56) and (36) to
obtain an upper bound for the total number of integer points contributed
from the j-dimensional extended vertex components, 0 < j < 3, along with
the internal integer points, when § < §p. This gives

CUNEN

?) (27 +2%)(cx M) + (219 + 2'98% 7 4 25) 5 (1 M)?)
0

< (2) (210(c1 M)/ 4 2238, (c1 M)?).
This result is valid for a shell of thickness § = dp and consists of terms
independent of § (degree zero), and those with a factor of ¢ (degree one).

We cover the shell E of all extended vertex components, bounded inter-
nally by Cy and externally by C1, by R thinner concentric shells Fy, ..., Er
of thickness dp. The distance between C; and Cj along any inward normal
vector to these two surfaces is 2. Hence we choose R to be the smallest
such integer with

Ry > 26, (R—1)dy < 20,
so that
(60) R <26/6p + 1.

The shell E, consists of the points on some inward normal whose distance [
from the surface C lies in the range

(7’ — 1)50 § l S 7’50.
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When we replace § with rdy in Lemma 2.1, we see that each shell E, will
satisfy the Curvature Condition, so that any plane sectional curve of E, will
lie in the range

coM < o< ci M.

Therefore, expression (59) gives a uniform upper bound for the number of
integer points contributed by any shell F,.. We note that

(61) (50\/01M < ﬂ : i

Co 28
and
(62) (Sor/c1 M)~ < Zi 99,
0

THEOREM 6.4. The number of integer points lying on or within a short
distance § from a convex closed surface that is contained in a sphere of radius
c1M in three-dimensional Euclidean space is

2
< <Zl> 216((c1 M)3/2 + 2°5(c1 M)?).
0
Proof. We multiply the upper bound (59) by the maximum number of
shells given by (60). This yields

<§5 - 1) Z—l (2101 M )32 4 2B65(c1 M)?).
0 0

Simplifying using (61) and (62) and combining terms we have at most

<Cl> (e M)+ B
co

integer points. m

This paper forms part of INTAS research project 03-51-5070 on analytic
and combinatorial methods in number theory and geometry as well as part
of my PhD thesis in the University of Wales.

I would like to thank my supervisor Professor M. N. Huxley for all his
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