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1. Introduction. For a set A of positive integers, define

d(A) = limsup M
x

r—00

Furstenberg [9, Theorem 1.2] and Sarkoézy [21] independently confirmed the
following conjecture of Lovész:

THEOREM 1.1. Suppose that A is a set of positive integers with d(A) > 0.

Then there exist x,y € A and a positive integer z such that x —y = 2°.

In fact, the 2% in Theorem 1.1 can be replaced by an arbitrary integral-
valued polynomial f(z) with f(0) = 0. On the other hand, Sarkozy [22] also
solved a problem of Erddés:

THEOREM 1.2. Suppose that A is a set of positive integers with d(A) > 0.
Then there exist x,y € A and a prime p such that xt —y =p — 1.

For the further developments of Theorems 1.1 and 1.2, the readers are
referred to [23], [18], [1], [11], [16], [17], [20]. In the present paper, we shall
give a common generalization of Theorems 1.1 and 1.2. Define

Apw = {x: Wz + b is prime}
for 1 <b<W with (b,W) = 1.
THEOREM 1.3. Let 1(x) be a polynomial with integral coefficients and

zero constant term. Suppose that A C 77T satisfies d(A) > 0. Then there
exist x,y € A and z € Ay w such that x —y = ¥(z).

COROLLARY 1.1. Let t(x) be a polynomial with rational coefficients and
zero constant term. Suppose that A C ZT satisfies d(A) > 0. Then there
exist x,y € A and a prime p such that x —y = (p — 1).
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Proof. Let W be the least common multiple of the denominators of the
coefficients of 1. Then the coefficients of *(z) = ¥ (Wx) are all integers.
Hence by Theorem 1.3, there exist z,y € A and z € Ay such that

r—y=¢"(2) =¢(p-1)
where p=Wz+1. u

About one month after the first version of this paper was put on the
arXiv server, in [3] Bergelson and Lesigne proved that the set

{(1(p—1),...,Ym(p—1)): p prime}
is an enhanced van der Corput set Z™, where 1, ..., are polynomials
with integral coefficients and zero constant term. Of course, their result can
be extended to the set {(¢1(2),...,¥m(2)) : 2 € Ay w} without any special
difficulty. On the other hand, Kamae and Mendés France [15] proved that
any van der Corput set is also a set of 1-recurrence. Hence Bergelson and
Lesigne’s result also implies our Theorem 1.3 and Corollary 1.1. In fact, they
showed that the set {¢)(p — 1) : p prime} is not only a set of 1-recurrence,
but also a set of strong 1-recurrence.
For two sets A, X of positive integers, define

- ) |[ANX N1,z

dx(A) hgxlis;ip XNz
Let P denote the set of all primes. In [12], Green established a Roth-type
extension of a result of van der Corput [6] on 3-term arithmetic progressions
in primes:

Let P be a set of primes with dp(P) > 0. Then there exists a non-trivial
3-term arithmetic progression contained in P.

The key to Green’s proof is a transference principle, which transfers a
subset P C P to a subset A C Zy = Z/NZ with |A|/N > dp(P)/64, where
N is a large prime. Using Green’s methods, we show:

THEOREM 1.4. Let ¥(x) be a polynomial with integral coefficients and
zero constant term. Suppose that P C P satisfies dp(P) > 0. Then there
exist x,y € P and z € Ay w such that x —y = ¢(z).

Similarly, we have

COROLLARY 1.2. Let 1)(x) be a polynomial with rational coefficients and
zero constant term. Suppose that P C P satisfies dp(P) > 0. Then there
exist x,y € P and a prime p such that x —y =¥ (p — 1).

On the other hand, the well-known Szemerédi theorem [24] asserts that
for any set A of positive integers with d(A) > 0, there exist arbitrarily
long arithmetic progressions contained in A. In [2|, Bergelson and Leibman
extended Theorem 1.1 and Szemerédi’s theorem:
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Let 1 (), ..., Ym(x) be arbitrary integral-valued polynomials with ¢1(0)
= .- = (0) = 0. Then for any set A of positive integers with d(A) > 0,
there exist x € A and an integer z such that x +1(2),..., T+ Ym(z) are all
contained in A.

Recently, Tao and Ziegler [26] proved the following;:

Let (), ..., Ym(x) be arbitrary integral-valued polynomials with 11(0)
= -+ = ,(0) = 0. Then for any set P of primes with dp(P) > 0, there exist
x € P and an integer z such that x4+ 1(2),...,x 4+ ¥m(2) are all contained
n P.

This is a generalization of Green and Tao’s celebrated result [13] that the
primes contain arbitrarily long arithmetic progressions. Furthermore, with
the help of a very deep result due to Green and Tao [14] on the Gowers
norms [10], Frantzikinakis, Host and Kra [8] proved that if d(A) > 0 then A
contains a 3-term arithmetic progression with difference p — 1, where p is a
prime. In fact, using the methods of Green and Tao [14], it is not difficult to
replace A by P with dp(P) > 0 in the result of Frantzikinakis, Host and Kra.

Motivated by the above results, here we propose two conjectures:

CONJECTURE 1.1. Let ¢1(z),...,¥m(z) be arbitrary polynomials with
rational coefficients and zero constant terms. Then for any set A of positive
integers with d(A) >0, there exist x € A and a prime p such that x+1(p—1),
cey T+ Pm(p — 1) are all contained in A.

CONJECTURE 1.2. Let Y1 (x),...,¥m(x) be arbitrary polynomials with
rational coefficients and zero constant terms. Then for any set P of primes
with dp(P) > 0, there exist v € P and a prime p such that x+v1(p—1),...,
T+ Ym(p — 1) are all contained in P.

The proofs of Theorems 1.3 and 1.4 will be given in Sections 3 and 4.
Throughout this paper, without specific mention, the constants implied by
<, > and O(-) will only depend on the degree of .

2. Some lemmas on exponential sums. Let T denote the torus R/Z.
For any function f over Z, define f*(x) = f(z+1)—f(z). Also, we abbreviate
2™V =1 10 e(z). Let

V(x) =ara® + -+ apx
be a polynomial with integral coefficients. In this section, we always assume
that W, |a1|,...,|ax| <log N.

LEMMA 2.1. Suppose that h(z) is an arbitrary polynomial and 0 < v < 1.
Then for any a € T,
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q

N 1 N
> h(@)e(agp(x)) = QZ /9) ) h(@)e((a — a/q)i(x))
=1 =1

r=1
+ Odegn(h(N)N")

provided that |ag — a| < NV /¢P(N) with 1 < a < q < NV.

Proof. Let 6 = a — a/q. Then by partial summation, we have

N
> h(@)e(ath(x)/q)e(0d(x)) = h(N)e(04%(N))Fy(a/q)
=1
N-1
h(y + De(0y(y + 1)) — h(y)e(0v(y))) Fy(a/q),
y:l

where

)

Fy(a/q) =Y e(ap(z)/q)
=1
= 2 e(av(r)/a) +Ola)

r=1

Clearly,
h(y + 1)e(0y(y + 1)) — h(y)e(04(y))
= (h(y +1) — h(y))e(@¥(y + 1))
+ h(y)e(0y(y)) (e(04>(y)) — 1)

= O(h®(y)) + O(h(y)6v>(y)).

This concludes that
q N

Zh q)e(0y(z)) = ;Ze(w(r)/Q) > h(x)e(0())

Define

W

w
Mo () = { M log(Wx +b) if Wz + b is prime,
0 otherwise,

where ¢ is the FEuler totient function.
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LEMMA 2.2. Suppose that h(zx) is an arbitrary polynomial and B > 1.
Then for any o € T,

N

> h@) o (@)e(aty())

= ¢(VV) elap\r 3 rjel(adx —a x
= oVa) 1;@ (ay( )/q);h( Je((a —a/q)v(x))
(Wrtb,g)=1

+ Odegn(R(N)Ne Vs ™)

provided that
lag — a| < (log N)B/yp(N)  with 1<a<q< (logN)5,

where ¢ is a positive constant.

Proof. Let
Fy(a/q) Z)\bW (x)/a)
o(W)q
= —b)y/W A .
1<;Wq e(ay((r —b)/W)/q) xe%:w oW ) wq()
(_7"7‘1_):1 anc-i—rS’W/qy-‘rb
r=b (mod W)

The well-known Siegel-Walfisz theorem (cf. [7]) asserts that

Y. logp= % + O(ye™VIoeY)

p<yisprime
p=b (mod q)

provided that ¢ < (logy)“t, where ¢;, ¢’ are positive constants. Hence

Z )\an(;p) = % + O(Wye—c’ log(Wy))

I‘E/l»,‘Y Wq
Waqr+r<Wy+b

It follows that

Fy(a/q) = z&%);; Z e(a(r)/q) + O(ye—C’\/@/z)‘
1<r<q

(Wr+b,g)=1
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Let § = a — a/q. Then

N
> (@) dow (z)e(otp(x))
=1
= h(N)e(0y(N))Fn(a/q)
N—-1
= ) (h(y+1)e(0y(y + 1)) — h(y)e(0v(v)))Fy(a/q)
y=1
= oW e(lay(r 3 e
= 5070 1;<q (aw( )/q)yzlh(y) (0¢(y))
(Wr+b,g)=1

+ Ogegh(h(N)Ne=¢ Vioe N/3)
by noting that
h(y + 1)e(0y(y + 1)) — h(y)e(6¥(y))
= O(h*(y)) + O(h(y)0Y>(y +1)). =
LEMMA 2.3. For any 0 € T,

N ¥(N)
D 0B (@ = De(B(x) = Y e(0z) + OO(N)Y™(N)).
=1 =1
Proof. Clearly
N Y(N) N ¥A(x—1)-1
YUt (a = De(@(x) = Y e(0x) = Y e(b(z)) Y (1—e(-0y))
=1 =1 =1 y=0

LEMMA 2.4. For any € > 0,

N
> ela(r)) <. N1+a<‘2+f}v{+]\%€>

r=1

provided that | — a/q| < ¢~ 2.

Proof. We leave the proof as an exercise for the readers, since it is just
a little modification of the proof of Weyl’s inequality [27, Lemma 2.4]. m
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LEMMA 2.5 (Hua). Suppose that (q,a1,...,ax) = 1. Then

q
Ze P /q) < ¢ YFE for any e > 0.

r=1

Proof. See |27, Theorem 7.1]. m

LEMMA 2.6.
N p
[ 62 @~ Delav (@) da <, ged(@)u(N)*™ for p= k242,
T z=1
where ged (1) denotes the greatest common divisor of a1, ..., ay.

Proof. Notice that

O ey =
:Q
WE

\i (z ~ De(aay(@))| da = !
r=1 X
a”H

0

So without loss of generality, we may assume that ged(¢)) = 1. Let v =1/5
and ¢ = 27%v — k/(2p). Let

A @ = De(a(@)| da

1

o
8
Il

WE

VA ~ De(ay(@))| da

1

T

Mog={aeT:lag—al SN/O(N)}, M= (] My
1<a<g<N¥
(a,9)=1

and m = T\ M. Clearly mes(IM) < 2N3/1)(N), where mes denotes the
Lebesgue measure.
If @ € m, then by Lemma 2.4 we have

N
> B (@ — De(atp(x))
=1
N N-1 Y
=RV =1 elarp(@) = > (W2 y) =2y — 1)) D e(ath(x))
=1 y=1 =1
< YA (N)NFe2 T
Hence

N
3 980 — efars(e))| da < BN — o).

m z=1
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On the other hand, if & € M, then by Lemmas 2.1 and 2.3,

q P(N)
Z¢A z — e(ay(x c_lz e( Z e((a —a/q)x)
=1 r=1 =1
+OWA(N)NY).
Let L = [p/2]. Obviously
ol p
> vt @~ De(av(x))| da
M z=1
N 21
< U2 |3 0A (@ - De(av (@) da.
M =1

So it suffices to show that

N 2L
} ’Z GRS 1)6(041#(3:))’ da < p(N)*~1

M z=1
Now
N o |1 2 w(N 2L
v Delav(@)| =D elav e((a=a/q)
r=1 r=1 :c:l
+O(P(N)PF 1B (N)NY).
Hence
N
[ 0@ = Detav(@)| da
M z=1
14 P(N) 2L
= Y e/ Y ella—afgw)| da
1§((27§q¢)1§{\f MNMa,q r=1 =1
+ O(Y(N)*E~ 1% (N) NV mes ().
Clearly
P(N)
‘Z (a —a/q)x ‘ ‘Z (a —a/q)x ’ da
Ma,q =1 T z=1
— Z 1< w(N)2L_1'

1<z1,...,x2r, <Y(N)
T1+trp=xr41++T2L
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And by Lemma 2.5,

1 2L B B B -
Y Y ey < Y g 3 gk
1<a<q<N" q r=1 1<a<g<N" 1<qg<NY
(a,9)=1 (a,9)=1
=0.(1)

since L > (1/k —¢)~1. We are done. u

LEMMA 2.7. Supposing that (a,q) = 1, we have
Z e(ap(r)/q) <e ged(h)g'~H/EE+HD+e,

1<r<gq
(Wr+b,q)=1

Proof. Clearly
q

S ea()/g) = e@br)/a) S u(d),

1<r<q r=1 d|(Wr+b,q)
(Wr+b,q)=1

where 4 is the Mobius function. Note that d | (Wr +b) = (d,W) = 1 since
(W,b) = 1. Hence

Yoo eap()/e)= Y wd) Y elad(r)/a),

1<r<q d|q 1<r<q
(Wr+b,q)=1 bq exists r=bg (mod d)

where 1 < by < d is the integer such that Wby + b =0 (mod d).
For those d < ¢*/**+1) for which b exists, we have

q/d—1
> elap(r)/g) = D e(a(dr +ba)/q).
1<r<q r=0

r=bg (mod d)

=
D
_|_
5y
S~—
I
INg
S
|
E
M-
N

. k k .

7 Lo L. 7 o

j> v = E dr? g <]> ap—ip1by
im0 i

oA A+ agy
Notice that
(q,dy,...,at) = (q,d%ay,dby, ... a}) < d*(q,a1,d), ..., d}).
Also
aby = d" Y(ag + kaybg).
Therefore

(Q7a’17al27 s )a;g) = (Qaalvdk_1a27a/37 s 704;{/.) < dk_l(Qa alaa27agu s 7a;§)'
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Similarly, we obtain
(g0}, a) < A" (g a1, ap).
Thus by Lemma 2.5,

q/d—1

1-1/k+e/k
> clavtar +ba)/a) < o/ oai) (o )

e q/d,ay,. .. a})

1—¢

1l—¢ l—¢
< (q,dy,...,a}) ® dF g7 F

(ar, ..., ap) T AT D)1 =152

IA

On the other hand, clearly

q/d—1

’ Z e(ap(dr + bd)/q)’ < % < gt V/k(kt1)
r=0

when d > ¢'/#(+1)  Thus

>oedam/ols > | Y eawt)/a)

1<r<q dlg, d<q/F(+1)  1<r<q
(Wr4b,g)=1 and by exists T=ba (mod d)

+ Y | X eaw)

dlg, d>qL/kk+1) 1<r<q
and by exists  "=ba (mod d)

1—¢ 1fl:£+l:£ 1— 1
< d(q)(ged(y) ® g F TR g D)

< ged(vY)q

where d(q) is the divisor function. m

1
1_1&(1@4-1)"'57

LEMMA 2.8. For any A > 0, there is a B = B(A,k) > 0 such that
N
> Nw(z)e(a(z)) <p N(log N)™4
=1
provided that |a —a/q| < ¢ with1 < a < q, (a,q) =1 and (log N)? < ¢ <

Y(N)(log N)~F.

Proof. Vinogradov dealt with the case ¥(z) = ¥ and W = 1 in [28].
The general proof is standard but long, so we omit it. =

LEMMA 2.9.

N
IS0 68 = Dnar (@lean(@))| da <, ged()u(v)!

T z=1
for p > k2F+2 4 1.
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Proof. Without loss of generality, we assume that ged(y)) = 1. Let B >
2p be a sufficiently large integer satisfying the requirement of Lemma 2.8 for
A =2p. Let

Mag = {a € T:|ag—al < (log N)*P /i(N)},
M = U Mg
1<a<q<(log N)2E
(a,9)=1

and m =T \ M.
If a € m, then there exist (log N)?Z < ¢ < o(N)(logN)™?8 and 1 < a
< ¢ with (a,q) = 1 such that |a — a/q| < ¢~2. By Lemma 2.8,

y
> Xow(@)e(atp(x)) <p y(logy) >
=1

for N(log N)~B/k <y < N. Therefore

N
> B e = Dhaw ()e(ag(@)
r=1

N N-—1 Yy
= AW = DY elav @) Ao (@)= 3 ()2 = DY elav (@) dow ()
=1 y=1 =1
N
<A - DY elav@hw @]+ DD @) - 1)
r=1 1<y<N(log N)~B/k
> @MDY eav@)hw ()]
N(log N)=B/k<y<N =1
< P(N)(log N)~?.
Let L =[(p—1)/2]. Then we have
N P
3002 @ = D @)e(av(@)] da
m x=1
N 2L
<p (W(N)(log N)~2)7 2§37 45 (@ — DAy w(@)e(at(@)| da
m =1

N 2L
<1 GNP (log V)2 {3 w2 = DAy (@)e(av(@))|  da.
T z=1
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Noting that

N A 2L
[ 02 @ = D (@e(an(@)|  da
T z=1
2L
= Z H@Z)A(% = DApw (z;)
1<$1 ..... $2L<N ]:1
p(x1)+Fp(er)=p(xpr1)++(zar)
2L
< (log(WN + b)) > IR
1<z1,...,z2L. <N Jj=1

(x1)++(z)=v(xp41)+ -+ (x2r)

<1 (log NP || = 02 (@ — De(anb())|” dar

T <N

so using Lemma 2.6 we have

I3 vt @ = DA (@)elav(@)| da < $(N)" (log N) 7

m <N

If o € M, 4, then by Lemma 2.2,

|3 w2 - D )e(oy(a)|

<N

_lﬂ% > e/ Y v - De((a - a/api@)|
(eri,gqg:l =t

+ O((N)(log N)~™P).

In view of Lemma 2.7, letting ¢ = (k + 2)~*, we have

P
S 2 S /g

1<a<q<(log N)B ¢(Wq) 1<r<gq
(a,g)=1 (Wr+b,q)=1

1
< Y JrmmE oo,
1<q<(log )7
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Applying Lemma 2.6, we conclude that

S ‘Z ¢A($ — 1))\b’W(x)e(aw(1’))’pda

Mm z<N
oW p
SED SR I S e
1<a<q<(log N)B 9 1<r<gq
(a,q)=1 (Wr+b,q)=1

[ > v = Del(a - a/gp@)| da

Ma,q TN

+ O(mes(9M)y) (N)* (log N) ™)

PW) Z e(av(r)/q)

p
<
<1<a<q§(;og N)B *(Wq) 1<r<q >
(a,9)=1 (Wr+b,q)=
A 1)e(aw(az))\p da + O (N)?(log N) )

T <N
<<,075 'l/}(N)pil n

LEMMA 2.10. Suppose that 1 is positive and strictly increasing on [1, N].
Let p > (N) be a prime. Then

72)2 B2z — DA (2)e(—ri(2)/p)| <, ged(@)(N)P!

r=1 z=1
for p > k2k+2 4 1.

Proof. We require a well-known result of Marcinkiewicz and Zygmund
(cf. |12, Lemma 6.5]):

(S fare(—ar/n)|” <, p 17O a0
T

r€Zly =1

for any function f : Z, = Z/pZ — C, where

Define
V(2 — Dy (z) if 2 =1(z) where 1 < z < N,

0 otherwise.

)= {
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Then
S0 - D Ee(=vE)r/p)|
r€Zy z=1
= S| r@et-ar/p)|” <, § |3 f@)e(—o0)|" a0
TEZP z=1 T z=1

N
P —
= [Do 0~ D (2)e(—v(2)0)| " db <, ged(@)pp (),
T 2=1
where Lemma 2.9 is applied in the last inequality. =

3. Proof of Theorem 1.3. Clearly Theorem 1.3 is a consequence of
the following theorem:

THEOREM 3.1. Suppose that k >t > 1 are integers, ap_;y1 1S @ non-zero
integer and 0 < § < 1. Let ¢(x) = ayz® + agx® 1 4+ - + ap_s1 12" be an
arbitrary polynomial with integral coefficients and positive leading coefficient.
Then for any positive integer W, there exist N (3, W, 1) and ¢(0, ag—¢+1) > 0
satisfying

i : €A zeA —y =
A {(z,y,2) 2,y 2 € Mw, z—y=19(2)}
|[A|>dn
Wn1+1/ka;1/k

2 el Ak-t+1) = Toa

if n > N(6,W,1).

REMARK. We emphasize that in Theorem 3.1 the constant ¢(, ag—¢+1)
only depends on k,d,ar—¢+1. As we will see later, this fact is important in
the proof of Theorem 1.4.

Proof. Similarly to Tao’s arguments [25] on Roth’s theorem [19], we apply
induction on §. Suppose that P(d) is a proposition on 0 < § < 1. Assume
that P(J) satisfies the following conditions:

(i) There exists 0 < dp < 1 such that P(J) holds for any §yp < < 1.
(ii) There exists a continuous function £(d) > 0 such that  +(d) < 1
for any 0 < § < dp and P(d 4 () = P(9).
(iii) If 0 < ¢’ < & <1, then P(¢') = P(9).
Then we claim that P(d) holds for any 0 < ¢ < 1. In fact, suppose on the
contrary that there exists 0 < § <1 such that P(J) does not hold. Let

0= limsup 4.
0<6<1
P(8) does not hold
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From (i), we know that 6* < dp. Since ¢ + ¢(J) is continuous, there exists
0 < &1 < 6* such that

(6" +2(6%) — (61 + ()] < 525",

ie,0< 01 <" <01 +¢e(01) <1. Hence P(é1 +¢(d1)) holds but P(d;1) does
not by the definition of 6*. This obviously contradicts (ii) and (iii).

Suppose that A C {1,...,n} with |A| > dn. Firstly, we shall show that
the conclusion of Theorem 3.1 holds for § > 3/4. Define

rwe(A) = {(z,y,2) 12,y € A, z€ Myw, o —y =9(2)}].
Clearly
1 Wnl/kafl/k
= 4k ¢(W)logn

whenever n is sufficiently large (depending on the coefficients of ). More-
over, for any 1 < z <n/3,

Hze Aiw:1<9Y(z) <n/3} >

H(z,y) z,ye A, z—y=z}
2-3n  4n

n
AN (z+ A)| =2|A| — AU (2 + A)| > 1 3 G

Hence

1 Wn1+1/k —1/k
= 2uk (W )logn

Now we assume that 6 < 3/4. Let € = €(d, ap—¢+1) be a small positive
real number and Q = Q(d,ax_¢+1) be a large integer to be chosen later. We

shall show that if the assertion of Theorem 3.1 holds for é + ¢, it also holds
for 0. Define

rw,p(A4) >

() = (ge)/q" = ard" 2" + -+ ap
By the induction hypothesis on § + ¢, for any 1 < ¢ < Q,

(6 +eap_111) Wq nl—l—l/k(alqk—t)—l/k
2 o(Wq) logn

min 7 A) >
ACA{1,...,n} Wq’wq( )_
provided that

n> max N6 +¢e,Wq,1y).

1<g<
Let A,, (b, d) denote the arithmetic progression {b, b+d, ... ,b+(m—1)d}.
Suppose that

n > max{e (la1|++lar—r+1)Q" ,1046_1Qt 1I<HaX N(0+¢e,Wq,v,)}
<q<
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and A C {1,...,n} with |A] = dn. Let m = [1072cQ'n]. Observe that
H{b:z,y € Ap(b,q")}| < m for every pair (z,y). Let

Ay ={1+@=b)/¢" 2 € ANA,(b,¢")} C{1,...,m}.
Clearly if o',y € Ay 4 and 2’ € Ay g satisty that 2’ —y' = ¢4(2'), then
r=b+ (' -1)q¢, y=b+H -1)decAd z2=ZqeMhw
and  —y = ¢(z). So if there exists 1 < ¢ < @ such that
{1<b<n—mq :|Ayu| > (6+e)m}| > en,

then
rwa(A) = % Y rwaw,(Ang)
1<b<n—mg*
en c(6+eap111) Wg m'Flaght)V*
- 2 d(Wq) logm
N (8 + 67ak_t+1)51+1/k Wn1+1/ka;1/k
- 400Q »(W)logn
So we may assume that
(3.1) H1<b<n—mg :[ANALD,¢")| > (0+e)m}| <en

for each 1 < ¢ < Q. Let
M = max{zx € Z : (x) < n}.
Clearly M = nl/kafl/k(l + 0(1)). We shall show that

S (‘ Z e(OéiL‘)‘2 _ 52‘2 e(aa:)r) (Z 1/}A(z — 1))\1,W(z)e(aw(z))> da
z<n 2<M

T xz€An[ln]

is relatively small.
For 1 < ¢ < @, define

1
Smayq:{a:‘a—a/q]§2qtm1},
Let
M=) Moy m=T\M.

1<a<q<@Q
(a,q9)=1

Let B be a sufficiently large integer. For 1 < ¢ < (log M), define
M., = {o: |ag - af < (log M)P /p(M)}.
Let
m* = U My,  mt=T\M"

1<a<q<(log M)"
(a,9)=1
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Suppose that o € m. We know

lag — af < (log M)* /9 (M)
for some 1 < a < g < ¥(M)(log M)~ P with (a,q) = 1. If a € m*, i.e,
q > (log M)B, then
la—a/ql <q? and (logy)”/* <4(y)(logy) "/

for any M (log M)~ B/(k) < y < M. So applying Lemma 2.8 and partial
summation, we have

> Utz = Daw(2)e(ad(2)) <p (M) (log M)~ < n(log M)~

z<M

whenever B is sufficiently large.
Now suppose that ¢ < (log M)?, i.e., a € 9*. Applying Lemmas 2.2 and
2.3, we have

S wA (- D (2)e(a(2))

z<M

_ ") e(ayp(r Az=De((a—a z

= o0V0) 1<Zr<q (awh( )/q)z%:/) (z = De((a = a/q)i(2))
(Wr+1,q)=1 a

+ O™ (M)M (log M)~*7)

_ W) )
= 5(Wq) 1;<q e(a¢(r)/q);e((a_a/q)z)+O(7;Z)A(M)M(logM) iy

(Wr+1,q9)=1

Since a € m, either ¢ > Q or |a —a/q| > %q_tm_l. If ¢ > @, then in light
of Lemma 2.7,

1
DR B I S T

oWa) 22, 1<r<q
(Wr+1,9)=1 (Wr+1,9)=1
< Chag—gs1|qEET2),
And if |a — a/q| > $¢7'm™!, then
(o —a/q)n) t
— = <4 .
‘Z (a—a/q)z ’ ' 1—ea—a/q) = amem

Hence for oo € m,
> 9z = Daw (2)e(ah(2)) < Chlag—i|Q /)0 4+ 4xm@!
2<M
+ O(n(logn)™h).



42 H. Z. Li and H. Pan

Suppose that o € 9. Let 7 = 14 — 6 where 14(x) = 1 or 0 according to
whether x € A or not. Let

m—1 n
S(a)=> e(ac) and T(a)=> 7(b)e(ab).
=0 b=1
Then
n m—1
S(ag"T(a) = Z 7( e(a(b+ cqh)
b=1 c:O
n—mgq" m—1
= Y elad+(m—1)g")) > 7(b+cq) + R(a)

b=1 c=0

where [R(a)| < 2m?%q'. When |ag’ — ag'™!| < Im™1,

- 1—e(m(ag' —ag"™"))| _ m
1S(ag)| = |S(ag" —ag"™")| “elog' —agD) | = 7
Hence for av € My 4,
m|T(a)| < 7[S(aqg")T ()]
n—mgqt m—1
<7r’ Z NS 7+ ed) ‘+W\R(a)\.
c=0

Notice that [{1 <b<n—mq':z € A, (b,q")}| < m, and the equality holds
if 14+ (m—1)¢* <z <n—mgq'. It follows that

n—mgqt n—mg"
m|A| > Z AN Am(b, ) =D D 1, pan
€A b=1

> m|A| - 2m?d,
whence

n—mgq*

‘ 3 (AN An(b.g)| — (64 )m)| < enm + (2 + 8 + e)m?q!
b=1

By the assumption (3.1), we have

> (JAN A (b, ¢")] = (6 + &)m) < en(1 — §)m.

1<b<n—mqgt
|ANAy, (b,g?)|>(5+€)m
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It follows that
n—mqt n—mqt

> AN Aw(D,¢")| = om[ < > [[ANAn(b,¢")| - (8 + &)m| + enm
b=1 b=1

<2 S (AnAnbd) - G+em)
1<b<n—mg?
|ANA, (b,q?)|>(6+€)m
n—mgq*
+ ‘ Z (AN ALb,¢)| — (6 +&)m)| +enm
b=1

< 4denm + 4m2qt

Thus for any o € 9N,

n—mgq* m—1
T ()] < %(’ Z e(a(b+ (m Z 7(b+ cq' ’ +2m2qt)
b=1 c=0

(Z A A bqt)y—amy+2m2qt)
b=

< dmen + 6rmQ",

ie.,
n n
‘Z 1a(x)e(ax) — 4 Z e(ozx)‘ < 16en.
=1 =1
It is easy to see that
[l = 1yP < || = [yl 2 (] + [y])*>/*
<Az — yIP (PP 4 |yP)

for any p > 2. Let p = k283, Then

(|3 tut@etan)| -] fjemx)f) (iwj A =D (2)e(ay(2)) ) daf
m x=1

< 4(16¢n) Z/Pg(‘zh e(o) ‘2 e g 2/‘)‘2 oz) }2 2/”)

x| S A - DALw (2)e(ai(2)) | da
z=1
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By the Holder inequality,

. 2-2/p) A
| ‘ > 1A($)€(aw)‘ ’ 3 pA (e - 1))\17W(z)e(a¢(z))‘ da

m z=1 z=1

n 1-1/p M p 1/p
< (S ‘ ZlA(az)e(om ‘ ) (S ‘ quA (z—=D)Aw(z)e (alb(z))‘ da) .
T

T z=1 z=1

Lemma 2.9 yields

M
[ 3002 = Daw (e(an(2)| da < Colax—pialw (M),

T z=1
Therefore

n 2-2/p M A
S ‘ Z 1A(x)e(ax)‘ ‘ Zw (z =DM w(z)e(ary(z))| da

m x=1 z=1
< C%/p’akibkl|1/p(5n)171/pn171/p.
Similarly,

‘Z ar) ‘2 2/P‘Z¢ (z = DA w(z)e(ay(2))| da

Mm x=1 z=1
1/p 1/p, 2—2
< Oy Plag—ya |VPnP20.

We conclude that

1 (|3 1a@etan)| ~8] 3 etan)|) (fj A=A w ()e(a(2)) ) daf
m o x=1 z=1 2=1

< SCQI/p’akftHfl/pfo/p@l_l/p + 027%/P)p?

Now we have shown that
’S (‘Z 1,46(041:)‘2 - 52‘2 e(aa:)r) (Z YA (2 — l)Al,W(z)e(aw(z)» da‘
T z<n z<n 2<M
< (2C1 |ag—11|Q*Fn 4 5rmQ")
X S(‘ Z 1Ae(aa:)‘2 + (52‘ Z e(aaz)f) do
T z<n a<n

+ 80y |ay_p41 | VPP (51710 4 6220 )n?
< 401 |ag—111]|Q ™V FFFD 502 4 eon? + 16021/”|ak7t+1‘1/052/P51—1/pn2'
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On the other hand, we have

S ‘ ie(aw)r(i (2 - 1))\1,W(2)6(a1/}(z))) da
=1

T z=1

= Y pre-Dawl) = > R - Dawl(z)

1<zy<n 1<z,y<n
1<2<M M/4+1<2<M /2
T—y=1(2) r—y=1(z)

> 2 (n— p(M/2)9> (M/4).
It follows that
M

S ‘ Z 1,4(36)6(04;5)’2(2 ¢A(z — 1))\1,W(z)e(aw(z))) da
T

rx=1 z=1

> §2 S ’ z”: e(owv)’2 <§/[: z/JA(z — l)Alvw(z)e(aw(z)» do
T z=1 z=1

— 4Cl|ak,t+1\Q_l/k(k+2)5n2 —eon? — 16021/p]ak,t+1]1//)52/”51_1/"712

k&2n?
— gk+1

- 16C’21/p|ak_t+1|1/p52/”(5171/pn2.

— AC |ag—141]Q/F* D gn? — eon?

Let e = 4_(k+2)p5(p+1)/2051/2‘ak_t_l'_l|_1/2 and
Q= 4(k+1)45—2k(k+2)0f(k+2)’akiﬂrl’kz(k-i-?)'
Therefore
|{(CL’,y,Z> 1T,y € A7 S ALW; T —Y= 1/1(2)}’

L Wew)
— YA (M) log(WM + 1)

x| zn: 1A(x)e(aa:)‘2 (f[: 6A (2 = DM w(2)e(at(2)) ) da
z=1

T z=1

We2 n1+1/ka;1/k

>

T 4k 2kp(W) logn
This yields the desired result. =

Finally, let us briefly discuss the bound in Theorem 1.3. Let Ry (d) be

the least integer n such that for any A C {1,...,n}, there exist z,y € A
and z € Ay w satisfying  — y = 1¥(z). In our proof, we choose ¢ = ¢(§) =
O|ak,t|(50k(1)) and Q = Q(0) = O‘ak7t|(5_ok(1)). So the iteration process
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d — 6+ ¢(6) will end after O|ak7t‘(5*0k(1)) steps. Also, clearly for § > 3/4,

Rw,y(8) < (lar| + -+ + |ag—e|) (min{p : p € A1 w H".

-0 (1)
Notice that when the iteration process ends, W becomes WQO‘%*”((S .
O™ D) Hence we have

oy (8704

and a; becomes a;Q

RWJJJ (5) S eXp(OVV,al,...,akit (5

since min{p : p € A w} < eOW) In other words, if a subset A C {1,...,n}
satisfies |A| > Ow.,q,....a,_,(n/logloglogn), then there exist z,y € A and
z € A w such that © —y = (2). Of course, this bound is very rough. We
believe that it could be improved using some more refined estimations (e.g.

(18], [1], [16], [17], [20]).

)

4. Proof of Theorem 1.4. Write 1)(x) = ajz* +agz? 14 4ap_s 112
where ay_y11 # 0. Let § = dp(P). Since dp(P) > 0, there exist infinitely
many n such that
n

49
|PN[Ln]|>— .
5 logn

Define
w(n) = max{w < logloglogn : n > 16W(w)N (6, W(w), Yyyw))};

where N (6, W, 1)) is as defined in Theorem 3.1 and W(w) = Hpgwmprimep.
Clearly lim,_,oc w(n) = 0o. Let w = w(n) and W = W(w). Then

Z logz > Z logz > 3 (IPN[1,n]|—n )Zin
z€PN[L,n] x€PN[n?/3,n]
(z,WV)=1

Hence there exists 1 < b < W' with (b, W) = 1 such that

0
Z logz > .
z€PN[1,n] 2¢(W )
x=b (mod W?)

Let

A={(x-b)/W':2€ Pn[l,n], z=> (mod W')}.
Let N be a prime in the interval (2n/W?, 4n/W"]. Define Ay e v = Apt /N
and a = ]-A)\b,Wt,N' Then

oWV dn 6
D ale) 2 Yoy 26(WH) = 8

Y

T

Let
¢W(SL‘) = @Z)(WSC)/Wt = CLka_tl‘k + -+ CLk_t+1It.
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Clearly ¥y (z) is positive and strictly increasing for z > 1, whenever W is
sufficiently large.
Below we consider A as a subset of Zy. Let

M = max{z € N: ¢(z) < N/2}.

If x,y € Aand 1 <z < M satisfy x — y = Yy (z) in Zy, then we also have
x —y = Yw(z) in Z. In fact, since 1 < z,y < N/2and 1 < z < M, it is
impossible that z — y = ¥y (z) — N in Z. For a function f : Zy — C, define

fr)= "> fla)e(—ar/N).

TELN

LEMMA 4.1 (Bourgain [4], [5] and Green [12]). Suppose that p > 2. Then
> lalr))” < Cp),

where C(p) is a constant only depending on p.

Proof. See [12, Lemma 6.6]. =

LEMMA 4.2.
M P
> e = D el=vw(r/N)| < C(p)la- I N?
reZy z=1
provided that p > k253 where C'(p) is a constant only depending on p.

Proof. This is an immediate consequence of Lemma 2.10 since ged (i)
< ag—i41] =

Let n and € be two positive real numbers to be chosen later. Let
R={reZy:la(r)|>n}, B={x€Zy:|ar/N| <cforalre R},
where ||z|| = min{|z — 2| : z € Z}. Define = 15/|B| and a’ = a % 8 * (3,

where

Frgla)=>" fWglz—y).

YELN
Let o = k 2k+3.
LEMMA 4.3.
Y ([d(@)d (y) - a@)a®)vim(z — Ddww (z) < C(e*n~>% + /0.
T YELN
1<2<M

T—y=1w(2)
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Proof. 1t is not difficult to check that

Z a(@)a(y)in(z — DAww (2)

ff,yEZN
1<z<M
T—y=vyy (2) y
- % Z a(r)a(—r) (Z Uip(z — 1))\1,WW(Z)€(—wW(z)r/N)>.
reZn z=1

Also, it is easy to see that (f xg) = f§g. Then

Y. d@d@unE-DAww(z)— Y a(@aly)viy(z— 1A ww(z)

T, YELN T, YELN
1<z<M 1<2<M
r—y=1y(2) z—y=1w(2)
1 B B ~ ~
=N > a(r)a(—r)(B(r)*B(-r)* — 1)
re€LN

M
x (Z YA (2 — 1)A1,Ww(z)e(—¢w(z)r/1\r>).

z=1

If r € R, then by the proof of Lemma 6.7 of [12], we know that
B(r)?B(—r)? — 1] < 2192

And applying Lemma 2.2 with a =a=¢ =1,
M M
D Uw(e = Ddww (2) = 3 win(z — 1) + O(g (M) Me™ Ve )
z=1 z=1
< 29y (M).
Therefore

M
> ama-=r) (32 8(=% = ) (D ez — Daww R)e(—dw(2)r/N) )|

re€ER

M
< 9162 Z ]d(r)ﬂ Zzpﬁ,(z — 1))\17WW(z)e(—wW(z)r/N)‘

reR z=1

< 272y (M)|R).

In view of Lemma 4.1 with p = 5/2, we have |R| < C"5n~%/2. On the other
hand, by the Hélder inequality,
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| a)a(-—r)(3*B(-r?* - 1)

réR

X (f: Yoy (z — 1))\1,WW(5)6(_wW(Z)T/N)>)

< 2sup\a 1/@(2 a(r) )91
rZR
M
8 (Z ’ Zwe\/(z - 1))\1’WW(Z)C(_1/}W(2)7’/N)’g) /e

r¢R z=1
< 20Y20((20 = 1)/(0 = 1))'V/2(Jar—1+11C"(2)) /2N,
where in the last step we apply Lemma 4.1 with p = (20— 1)/(0 — 1) and
Lemma 4.2 with p = 9. =
LEMMA 4.4. If /Bl > 2loglogw/w, then |a'(x)| < 2/N for any x € Zy.
Proof. See [12, Lemma 6.3]. =
Let A’ = {2 € Zy : d’(z) > {=6N1}. Then
) J
A — 4 > '(z) = > -
2 e A2 Y d) = Y a2 2,

TELN TELN
whence |A'|/N > §/32. Let A = A'N[1,(N —1)/2] and
Ay ={x—(N-1)/2:z2€ AN[(N+1)/2,N —1]}.
Clearly there exists i € {1,2} such that |[A}|/N > /64, say |A}|/N > 6/64.
Applying Theorem 3.1, we know that
|{($7y72) 1T,y € A/la VS Al,WW N [LM]’ r—Yy= ¢W(2’)}|
Ww(N/Q)lJrl/k(alwkft)fl/k
d(WW)log N

2 0(5/64, CLk_t+1)
Let ¢ = 14:¢(8/64, ak—¢41). Clearly

{(z,y,2) s 2,y € A}, z € Apww N[1,M], x —y = Py (2)}]
WW (¢ M)
— p(WW)log M
Therefore

|{(xayaz) B S Allﬂ S ALWW N (C,Mv M]7 r—=y= Q/)W(Z)H

c(6/64, ap_¢y1) WW NIHLE (g Whk=t)=1/k
N 8 d(WW)log N
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It follows that

S vz — D (z)

x,yc Al
1<z<M
T—y=1byy ()
o c(0/64, ar—r11) WW NIFVE(@WFH) =R 8 (¢ M)p(WW) log M
B 8 p(WW)log N 2WW
> c(0/64, ap_y1)c" ! N2,
= 64
So

Y. al@a@viv(z — DA (z)

I7y€ZN
1<z<M
r—y=1w(2)
> Y d@)d ez — Daww(z) — Cn2 409
x:yGZN
1<2<M
r—y=1w(2)
52 3
> v 2 U= D () = G o)
x,ye Al
1<z<M
z—y=vw(z)

> (8, ap—41) — O (2752 + /o).
Finally, we may choose 1, e > 0 satisfying 02 > log log w/w such that
CEn 5% 4 9Me) < (6, ap—141)/2
whenever w is sufficiently large. Hence

CH(57 ak7t+1)

0
5 >

S a@ali(z — DAuww(z) >

x7yEZN
1<2<M

z—y=1w(2)

for sufficiently large N. u
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