Difference sets and polynomials of prime variables

by

HONGZE LI (Shanghai) and HAO PAN (Nanjing)

1. Introduction. For a set A of positive integers, define

$$\overline{d}(A) = \limsup_{x \to \infty} \frac{|A \cap [1, x]|}{x}.$$

Furstenberg [9, Theorem 1.2] and Sárközy [21] independently confirmed the following conjecture of Lovász:

Theorem 1.1. Suppose that A is a set of positive integers with $\overline{d}(A) > 0$. Then there exist $x, y \in A$ and a positive integer z such that $x - y = z^2$.

In fact, the z^2 in Theorem 1.1 can be replaced by an arbitrary integral-valued polynomial $f(z)$ with $f(0) = 0$. On the other hand, Sárközy [22] also solved a problem of Erdős:

Theorem 1.2. Suppose that A is a set of positive integers with $\overline{d}(A) > 0$. Then there exist $x, y \in A$ and a prime p such that $x - y = p - 1$.

For the further developments of Theorems 1.1 and 1.2, the readers are referred to [23], [18], [1], [11], [16], [17], [20]. In the present paper, we shall give a common generalization of Theorems 1.1 and 1.2. Define

$$\Lambda_{b,W} = \{x : Wx + b \text{ is prime}\}$$

for $1 \leq b \leq W$ with $(b, W) = 1$.

Theorem 1.3. Let $\psi(x)$ be a polynomial with integral coefficients and zero constant term. Suppose that $A \subseteq \mathbb{Z}^+$ satisfies $\overline{d}(A) > 0$. Then there exist $x, y \in A$ and $z \in \Lambda_{1,W}$ such that $x - y = \psi(z)$.

Corollary 1.1. Let $\psi(x)$ be a polynomial with rational coefficients and zero constant term. Suppose that $A \subseteq \mathbb{Z}^+$ satisfies $\overline{d}(A) > 0$. Then there exist $x, y \in A$ and a prime p such that $x - y = \psi(p - 1)$.

2000 Mathematics Subject Classification: Primary 11P32; Secondary 05D99, 11P55.

Key words and phrases: difference set, polynomial of prime variable, density.

DOI: 10.4064/aa138-1-2 © Instytut Matematyczny PAN, 2009
Proof. Let W be the least common multiple of the denominators of the coefficients of ψ. Then the coefficients of $\psi^*(x) = \psi(Wx)$ are all integers. Hence by Theorem 1.3, there exist $x, y \in A$ and $z \in A_{1,W}$ such that

$$x - y = \psi^*(z) = \psi(p - 1)$$

where $p = Wz + 1$. ■

About one month after the first version of this paper was put on the arXiv server, in [3] Bergelson and Lesigne proved that the set

$$\{(\psi_1(p-1), \ldots, \psi_m(p-1)) : p \text{ prime}\}$$

is an enhanced van der Corput set \mathbb{Z}^m, where ψ_1, \ldots, ψ_m are polynomials with integral coefficients and zero constant term. Of course, their result can be extended to the set $\{(\psi_1(z), \ldots, \psi_m(z)) : z \in A_{1,W}\}$ without any special difficulty. On the other hand, Kamae and Mendès France [15] proved that any van der Corput set is also a set of 1-recurrence. Hence Bergelson and Lesigne’s result also implies our Theorem 1.3 and Corollary 1.1. In fact, they showed that the set $\{\psi(p-1) : p \text{ prime}\}$ is not only a set of 1-recurrence, but also a set of strong 1-recurrence.

For two sets A, X of positive integers, define

$$d_X(A) = \limsup_{x \to \infty} \frac{|A \cap X \cap [1, x]|}{|X \cap [1, x]|}.$$

Let P denote the set of all primes. In [12], Green established a Roth-type extension of a result of van der Corput [6] on 3-term arithmetic progressions in primes:

Let P be a set of primes with $d_P(P) > 0$. Then there exists a non-trivial 3-term arithmetic progression contained in P.

The key to Green’s proof is a transference principle, which transfers a subset $P \subseteq P$ to a subset $A \subseteq \mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$ with $|A|/N \geq d_P(P)/64$, where N is a large prime. Using Green’s methods, we show:

Theorem 1.4. Let $\psi(x)$ be a polynomial with integral coefficients and zero constant term. Suppose that $P \subseteq P$ satisfies $d_P(P) > 0$. Then there exist $x, y \in P$ and $z \in A_{1,W}$ such that $x - y = \psi(z)$.

Similarly, we have

Corollary 1.2. Let $\psi(x)$ be a polynomial with rational coefficients and zero constant term. Suppose that $P \subseteq P$ satisfies $d_P(P) > 0$. Then there exist $x, y \in P$ and a prime p such that $x - y = \psi(p - 1)$.

On the other hand, the well-known Szemerédi theorem [24] asserts that for any set A of positive integers with $d(A) > 0$, there exist arbitrarily long arithmetic progressions contained in A. In [2], Bergelson and Leibman extended Theorem 1.1 and Szemerédi’s theorem:
Let $\psi_1(x), \ldots, \psi_m(x)$ be arbitrary integral-valued polynomials with $\psi_1(0) = \cdots = \psi_m(0) = 0$. Then for any set A of positive integers with $\bar{d}(A) > 0$, there exist $x \in A$ and an integer z such that $x + \psi_1(z), \ldots, x + \psi_m(z)$ are all contained in A.

Recently, Tao and Ziegler [26] proved the following:

Let $\psi_1(x), \ldots, \psi_m(x)$ be arbitrary integral-valued polynomials with $\psi_1(0) = \cdots = \psi_m(0) = 0$. Then for any set P of primes with $\bar{d}_P(P) > 0$, there exist $x \in P$ and an integer z such that $x + \psi_1(z), \ldots, x + \psi_m(z)$ are all contained in P.

This is a generalization of Green and Tao’s celebrated result [13] that the primes contain arbitrarily long arithmetic progressions. Furthermore, with the help of a very deep result due to Green and Tao [14] on the Gowers norms [10], Frantzikinakis, Host and Kra [8] proved that if $\bar{d}(A) > 0$ then A contains a 3-term arithmetic progression with difference $p - 1$, where p is a prime. In fact, using the methods of Green and Tao [14], it is not difficult to replace A by P with $\bar{d}_P(P) > 0$ in the result of Frantzikinakis, Host and Kra.

Motivated by the above results, here we propose two conjectures:

Conjecture 1.1. Let $\psi_1(x), \ldots, \psi_m(x)$ be arbitrary polynomials with rational coefficients and zero constant terms. Then for any set A of positive integers with $\bar{d}(A) > 0$, there exist $x \in A$ and a prime p such that $x + \psi_1(p-1), \ldots, x + \psi_m(p-1)$ are all contained in A.

Conjecture 1.2. Let $\psi_1(x), \ldots, \psi_m(x)$ be arbitrary polynomials with rational coefficients and zero constant terms. Then for any set P of primes with $\bar{d}_P(P) > 0$, there exist $x \in P$ and a prime p such that $x + \psi_1(p-1), \ldots, x + \psi_m(p-1)$ are all contained in P.

The proofs of Theorems 1.3 and 1.4 will be given in Sections 3 and 4. Throughout this paper, without specific mention, the constants implied by \ll, \gg and $O(\cdot)$ will only depend on the degree of ψ.

2. Some lemmas on exponential sums. Let \mathbb{T} denote the torus \mathbb{R}/\mathbb{Z}. For any function f over \mathbb{Z}, define $f^\Delta(x) = f(x+1) - f(x)$. Also, we abbreviate $e^{2\pi \sqrt{-1} x}$ to $e(x)$. Let

$$\psi(x) = a_1 x^k + \cdots + a_k x$$

be a polynomial with integral coefficients. In this section, we always assume that $W, |a_1|, \ldots, |a_k| \leq \log N$.

Lemma 2.1. Suppose that $h(x)$ is an arbitrary polynomial and $0 < \nu < 1$. Then for any $\alpha \in \mathbb{T}$,
\[
\sum_{x=1}^{N} h(x)e(\alpha \psi(x)) = \frac{1}{q} \sum_{r=1}^{q} e(\frac{a \psi(r)}{q}) \sum_{x=1}^{N} h(x)e((\alpha - \frac{a}{q}) \psi(x)) \\
+ O_{\deg h}(h(N)N^\nu)
\]

provided that \(|\alpha q - a| \leq N^\nu/\psi(N)\) with \(1 \leq a \leq q \leq N^\nu\).

Proof. Let \(\theta = \alpha - a/q\). Then by partial summation, we have

\[
\sum_{x=1}^{N} h(x)e(\frac{a \psi(x)}{q})e(\theta \psi(x)) = h(N)e(\theta \psi(N))F_N(a/q) \\
- \sum_{y=1}^{N-1} \left(h(y+1)e(\theta \psi(y+1)) - h(y)e(\theta \psi(y)) \right) F_y(a/q),
\]

where

\[
F_y(a/q) := \sum_{x=1}^{y} e(\frac{a \psi(x)}{q}) = \frac{y}{q} \sum_{r=1}^{q} e(\frac{a \psi(r)}{q}) + O(q).
\]

Clearly,

\[
\begin{align*}
\quad & h(y+1)e(\theta \psi(y+1)) - h(y)e(\theta \psi(y)) \\
& \quad = (h(y+1) - h(y))e(\theta \psi(y+1)) \\
& \quad \quad + h(y)e(\theta \psi(y))(e(\theta \psi^\Delta(y)) - 1) \\
& \quad = O(h^\Delta(y)) + O(h(y)\theta \psi^\Delta(y)).
\end{align*}
\]

This concludes that

\[
\sum_{x=1}^{N} h(x)e(\frac{a \psi(x)}{q})e(\theta \psi(x)) = \frac{1}{q} \sum_{r=1}^{q} e(\frac{a \psi(r)}{q}) \sum_{x=1}^{N} h(x)e(\theta \psi(x)) \\
+ O(\theta qN\psi^\Delta(N)h(N)) + O(qh^\Delta(N)N). \quad \blacksquare
\]

Define

\[
\lambda_{b,W}(x) = \begin{cases}
\frac{\phi(W)}{W} \log(Wx + b) & \text{if } Wx + b \text{ is prime,} \\
0 & \text{otherwise,}
\end{cases}
\]

where \(\phi\) is the Euler totient function.
Lemma 2.2. Suppose that \(h(x) \) is an arbitrary polynomial and \(B > 1 \). Then for any \(\alpha \in \mathbb{T} \),

\[
\sum_{x=1}^{N} h(x) \lambda_{b,W}(x) e(\alpha \psi(x)) = \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (Wr+b,q)=1} e(a \psi(r)/q) \sum_{x=1}^{N} h(x) e((\alpha - a/q) \psi(x)) \]

\[
+ O_{\text{deg } h}(h(N)N e^{-c\sqrt{\log N}})
\]

provided that

\[|\alpha q - a| \leq (\log N)^B / \psi(N) \quad \text{with} \quad 1 \leq a \leq q \leq (\log N)^B, \]

where \(c \) is a positive constant.

Proof. Let

\[
F_y(a/q) = \sum_{x=1}^{y} \lambda_{b,W}(x) e(a \psi(x)/q)
\]

\[
= \sum_{1 \leq r \leq Wq \atop (r,q)=1 \atop r \equiv b \pmod{W}} e(a \psi((r-b)/W)/q) \sum_{x \in A_{r,Wq} \atop Wqx+r \leq Wy+b} \frac{\phi(Wq)}{\phi(W)} \lambda_{r,Wq}(x).
\]

The well-known Siegel–Walfisz theorem (cf. [7]) asserts that

\[
\sum_{p \leq y \text{ is prime} \atop p \equiv b \pmod{q}} \log p = \frac{y}{\phi(q)} + O(\frac{ye^{-c'\sqrt{\log y}}}{2})
\]

provided that \(q \leq (\log y)^{c_1} \), where \(c_1, c' \) are positive constants. Hence

\[
\sum_{x \in A_{r,Wq} \atop Wqx+r \leq Wy+b} \lambda_{r,Wq}(x) = \frac{y}{q} + O(W^2 ye^{-c'\sqrt{\log(Wy)}}).
\]

It follows that

\[
F_y(a/q) = \frac{\phi(W)y}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (Wr+b,q)=1} e(a \psi(r)/q) + O(\frac{ye^{-c'\sqrt{\log y}}}{2}).
\]
Let $\theta = \alpha - a/q$. Then
\[
\sum_{x=1}^{N} h(x) \lambda_{b,W}(x)e(\alpha \psi(x)) \\
= h(N) e(\theta \psi(N)) F_N(a/q) \\
- \sum_{y=1}^{N-1} (h(y + 1)e(\theta \psi(y + 1)) - h(y)e(\theta \psi(y))) F_y(a/q) \\
= \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (Wr + b,q) = 1} e(\frac{a \psi(r)}{q}) \sum_{y=1}^{N} h(y)e(\theta \psi(y)) \\
+ O_{\deg h}(h(N) Ne^{-c' \sqrt{\log N}/3})
\]

by noting that
\[
h(y + 1)e(\theta \psi(y + 1)) - h(y)e(\theta \psi(y)) = O(h(\Delta(y)) + O(h(y) \theta \psi(\Delta(y + 1))). \]

Lemma 2.3. For any $\theta \in \mathbb{T}$,
\[
\sum_{x=1}^{N} \psi^\Delta(x-1)e(\theta \psi(x)) = \sum_{x=1}^{\psi(N)} e(\theta x) + O(\theta \psi(N) \psi^\Delta(N)).
\]

Proof. Clearly
\[
\sum_{x=1}^{N} \psi^\Delta(x-1)e(\theta \psi(x)) - \sum_{x=1}^{\psi(N)} e(\theta x) = \sum_{x=1}^{N} e(\theta \psi(x)) \sum_{y=0}^{\psi(x-1) - 1} (1 - e(-\theta y)) \\
= O\left(\sum_{x=1}^{N} \sum_{y=0}^{\psi(x-1) - 1} \theta y\right) \\
= O(\theta \psi(N) \psi^\Delta(N)).
\]

Lemma 2.4. For any $\varepsilon > 0$,
\[
\sum_{x=1}^{N} e(\alpha \psi(x)) \ll_\varepsilon N^{1+\varepsilon} \left(\frac{a_1}{q} + \frac{a_1}{N} + \frac{q}{N^k}\right)^{2^{1-k}}
\]
provided that $|\alpha - a/q| \leq q^{-2}$.

Proof. We leave the proof as an exercise for the readers, since it is just a little modification of the proof of Weyl’s inequality [27, Lemma 2.4].
Lemma 2.5 (Hua). Suppose that \((q, a_1, \ldots, a_k) = 1\). Then
\[
\sum_{r=1}^{q} e(\psi(r)/q) \ll_{\varepsilon} q^{1-1/k+\varepsilon} \quad \text{for any } \varepsilon > 0.
\]

Proof. See [27, Theorem 7.1].

Lemma 2.6. \[
\left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha\psi(x)) \right|^\rho \, d\alpha \ll_{\rho} \gcd(\psi) \psi(N)^{\rho-1} \quad \text{for } \rho \geq k \cdot 2^{k+2},
\]
where \(\gcd(\psi)\) denotes the greatest common divisor of \(a_1, \ldots, a_k\).

Proof. Notice that
\[
\left| \sum_{x=1}^{N} (\alpha\psi)^\Delta(x-1)e(\alpha a\psi(x)) \right|^\rho \, d\alpha = a^{\rho-1} \left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha\psi(x)) \right|^\rho \, d\alpha \Rightarrow a^{\rho} \left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha\psi(x)) \right|^\rho \, d\alpha.
\]

So without loss of generality, we may assume that \(\gcd(\psi) = 1\). Let \(\nu = 1/5\) and \(\varepsilon = 2^{-k\nu} - k/(2\rho)\). Let
\[
\mathcal{M}_{a,q} = \{ \alpha \in \mathbb{T} : |\alpha q - a| \leq N^\nu/\psi(N) \}, \quad \mathcal{M} = \bigcup_{1 \leq a \leq q \leq N^\nu} \mathcal{M}_{a,q}
\]
and \(\mathfrak{m} = \mathbb{T} \setminus \mathcal{M}\). Clearly \(\text{mes}(\mathcal{M}) \leq 2N^{3\nu}/\psi(N)\), where \(\text{mes}\) denotes the Lebesgue measure.

If \(\alpha \in \mathfrak{m}\), then by Lemma 2.4 we have
\[
\sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha\psi(x)) \ll_{\varepsilon} \psi^\Delta(N) N^{1+\varepsilon-2^{1-k}\nu}.
\]

Hence
\[
\left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha\psi(x)) \right|^\rho \, d\alpha \ll_{\varepsilon} \psi(N)^\rho N^{\rho(\varepsilon-2^{1-k}\nu)} = o(\psi(N)^{\rho-1}).
\]
On the other hand, if $\alpha \in \mathfrak{M}$, then by Lemmas 2.1 and 2.3,

$$
\sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha \psi(x)) = \frac{1}{q} \sum_{r=1}^{q} e(\alpha \psi(r)/q) \sum_{x=1}^{\psi(N)} e((\alpha - a/q)x) + O(\psi^{\Delta}(N)N^\nu).
$$

Let $L = \lfloor \rho/2 \rfloor$. Obviously

$$
\left| \sum_{x=1}^{\mathfrak{M}} \psi^\Delta(x-1)e(\alpha \psi(x)) \right|^\rho d\alpha \\
\ll \psi(N)^{\rho-2L} \int \left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha \psi(x)) \right|^{2L} d\alpha.
$$

So it suffices to show that

$$
\int \left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha \psi(x)) \right|^{2L} d\alpha \ll L \psi(N)^{2L-1}.
$$

Now

$$
\left| \sum_{x=1}^{N} \psi^\Delta(x-1)e(\alpha \psi(x)) \right|^{2L} = \left| \frac{1}{q} \sum_{r=1}^{q} e(\alpha \psi(r)/q) \sum_{x=1}^{\psi(N)} e((\alpha - a/q)x) \right|^{2L} \\
+ O(\psi(N)^{2L-1}\psi^\Delta(N)N^\nu).
$$

Hence

$$
\int \left| \sum_{x=1}^{\mathfrak{M}} \psi^\Delta(x-1)e(\alpha \psi(x)) \right|^{2L} d\alpha \\
= \sum_{1 \leq a \leq q \leq N^\nu, (a,q)=1} \int \left| \frac{1}{q} \sum_{r=1}^{q} e(\alpha \psi(r)/q) \sum_{x=1}^{\psi(N)} e((\alpha - a/q)x) \right|^{2L} d\alpha \\
+ O(\psi(N)^{2L-1}\psi^\Delta(N)N^\nu \text{mes}(\mathfrak{M}))
$$

Clearly

$$
\int \left| \sum_{\mathfrak{M}_{a,q}} e((\alpha - a/q)x) \right|^{2L} d\alpha \leq \int \left| \sum_{x=1}^{\psi(N)} e((\alpha - a/q)x) \right|^{2L} d\alpha \\
= \sum_{1 \leq x_1, \ldots, x_{2L} \leq \psi(N)} 1 \leq \psi(N)^{2L-1}.
$$
And by Lemma 2.5,
\[
\sum_{1 \leq a \leq q \leq N^\nu \atop (a,q) = 1} \left| \frac{1}{q} \sum_{r=1}^q e(a \psi(r)/q) \right|^{2L} \ll \varepsilon \sum_{1 \leq a \leq q \leq N^\nu \atop (a,q) = 1} q^{-2L(1/k - \varepsilon)} \leq \sum_{1 \leq q \leq N^\nu} q^{1-2L(1/k - \varepsilon)} = O_L(1)
\]
since \(L > (1/k - \varepsilon)^{-1} \). We are done. \(\blacksquare \)

Lemma 2.7. Supposing that \((a,q) = 1\), we have
\[
\sum_{1 \leq r \leq q \atop (Wr+b,q) = 1} e(a \psi(r)/q) \ll \varepsilon \gcd(\psi)q^{1-1/k(k+1)+\varepsilon}.
\]

Proof. Clearly
\[
\sum_{1 \leq r \leq q \atop (Wr+b,q) = 1} e(a \psi(r)/q) = \sum_{r=1}^q e(a \psi(r)/q) \sum_{d \mid \gcd(Wr+b,q)} \mu(d),
\]
where \(\mu \) is the Möbius function. Note that \(d \mid (Wr+b) \Rightarrow (d,W) = 1 \) since \((W,b) = 1 \). Hence
\[
\sum_{1 \leq r \leq q \atop (Wr+b,q) = 1} e(a \psi(r)/q) = \sum_{d \mid q} \mu(d) \sum_{b \equiv b_d \pmod{d}} \sum_{1 \leq r \leq q} e(a \psi(r)/q),
\]
where \(1 \leq b_d \leq d \) is the integer such that \(Wb_d + b \equiv 0 \pmod{d} \).

For those \(d \leq q^{1/(k+1)} \) for which \(b_d \) exists, we have
\[
\sum_{1 \leq r \leq q \atop r \equiv b_d \pmod{d}} e(a \psi(r)/q) = \sum_{r=0}^{q/d-1} e(a \psi(dr+b_d)/q).
\]
Write
\[
\psi(dr+b_d) = \sum_{i=1}^{k} a_{k-i+1} \sum_{j=0}^{i} \binom{i}{j} d^j r^j b_d^{i-j} = \sum_{j=0}^{k} d^j r^j \sum_{i=j}^{k} \binom{i}{j} a_{k-i+1} b_d^{i-j} = a_1' r^k + a_2' r^{k-1} + \cdots + a_k' r + a_{k+1}'.
\]
Notice that
\[
(q, a_1', \ldots, a_k') = (q, d^k a_1, a_2', \ldots, a_k') \leq d^k (q, a_1, a_2', \ldots, a_k').
\]
Also
\[
a_2' = d^{k-1}(a_2 + ka_1 b_d).
\]
Therefore
\[
(q, a_1, a_2', \ldots, a_k') = (q, a_1, d^{k-1}a_2, a_3', \ldots, a_k') \leq d^{k-1}(q, a_1, a_2, a_3', \ldots, a_k').
\]
Similarly, we obtain
\[(q, a_1', \ldots, a_k') \leq d^{k(k+1)/2}(q, a_1, \ldots, a_k).\]
Thus by Lemma 2.5,
\[
\sum_{r=0}^{q/d-1} e(a\psi(dr + b_d)/q) \ll_{\epsilon} (q/d, a_1', \ldots, a_k') \left(\frac{q/d}{(q/d, a_1', \ldots, a_k')}\right)^{1-1/k+\epsilon/k}
\leq (q, a_1', \ldots, a_k') \frac{1-\epsilon}{k} d_{1-\epsilon/k}^{1-k} q^{1-1/k}
\leq (a_1, \ldots, a_k) \frac{1-\epsilon}{k} d_{1-\epsilon/k}^{1-k} q^{1-1/k}.
\]
On the other hand, clearly
\[
\left| \sum_{1 \leq r \leq q} e(a\psi(r)/q) \right| \leq \frac{q}{d} < q^{1-1/k(k+1)}
\]
when \(d > q^{1/k(k+1)}\). Thus
\[
\left| \sum_{1 \leq r \leq q} e(a\psi(r)/q) \right| \leq \sum_{d|q, d \leq q^{1/k(k+1)} \text{ and } b_d \text{ exists}} \sum_{1 \leq r \leq q} e(a\psi(r)/q)
\leq \frac{d(q)(\gcd(\psi))^1}{\rho d\alpha} \ll_{\epsilon} \psi(N)(\log N)^{-A}
\ll_{\epsilon} \gcd(\psi) q^{1-1/k(k+1)} + \epsilon,
\]
where \(d(q)\) is the divisor function. □

Lemma 2.8. For any \(A > 0\), there is a \(B = B(A, k) > 0\) such that
\[
\sum_{x=1}^{N} \lambda_{b,W}(x)e(\alpha\psi(x)) \ll_{B} N(\log N)^{-A}
\]
provided that \(|\alpha - a/q| \leq q^{-2}\) with \(1 \leq a \leq q\), \((a, q) = 1\) and \((\log N)^B \leq q \leq \psi(N)(\log N)^{-B}\).

Proof. Vinogradov dealt with the case \(\psi(x) = x^k\) and \(W = 1\) in [28]. The general proof is standard but long, so we omit it. □

Lemma 2.9.
\[
\int_{T} \left| \sum_{x=1}^{N} \psi^\Delta(x-1)\lambda_{b,W}(x)e(\alpha\psi(x)) \right|^\rho \, d\alpha \ll_{T} \gcd(\psi)\psi(N)^{\rho-1}
\]
for \(\rho \geq k2^{k+2} + 1\).
Proof. Without loss of generality, we assume that gcd\((\psi)\) = 1. Let \(B > 2\rho\) be a sufficiently large integer satisfying the requirement of Lemma 2.8 for \(A = 2\rho\). Let

\[
\mathcal{M}_{a,q} = \{ \alpha \in \mathbb{T} : |\alpha q - a| \leq (\log N)^{2B}/\psi(N) \},
\]

\[
\mathcal{M} = \bigcup_{1 \leq a \leq q \leq (\log N)^{2B}, (a,q) = 1} \mathcal{M}_{a,q}
\]

and \(m = \mathbb{T} \setminus \mathcal{M}\).

If \(\alpha \in m\), then there exist \((\log N)^{2B} \leq q \leq \psi(N)(\log N)^{-2B}\) and \(1 \leq a \leq q\) with \((a,q) = 1\) such that \(|\alpha - a/q| \leq q^{-2}\). By Lemma 2.8,

\[
\sum_{x=1}^{y} \lambda_{b,W}(x)e(\alpha\psi(x)) \ll_{B} y(\log y)^{-2\rho}
\]

for \(N(\log N)^{-B/k} \leq y \leq N\). Therefore

\[
\left| \sum_{x=1}^{N} \psi^{\Delta}(x-1)\lambda_{b,W}(x)e(\alpha\psi(x)) \right|
\]

\[
= \left| \psi^{\Delta}(N-1) \sum_{x=1}^{N} e(\alpha\psi(x))\lambda_{b,W}(x) - \sum_{y=1}^{N-1} (\psi^{\Delta})^{\Delta}(y-1) \sum_{x=1}^{y} e(\alpha\psi(x))\lambda_{b,W}(x) \right|
\]

\[
\leq \psi^{\Delta}(N-1) \left| \sum_{x=1}^{N} e(\alpha\psi(x))\lambda_{b,W}(x) \right| + \sum_{1 \leq y < N(\log N)^{-B/k}} |y(\psi^{\Delta})^{\Delta}(y-1)|
\]

\[
\leq B \psi(N)(\log N)^{-2\rho}.
\]

Let \(L = \lfloor(a - 1)/2 \rfloor\). Then we have

\[
\int_{m} \left| \sum_{x=1}^{N} \psi^{\Delta}(x-1)\lambda_{b,W}(x)e(\alpha\psi(x)) \right|^{\rho} d\alpha
\]

\[
\ll_{B} (\psi(N)(\log N)^{-2\rho})^{\rho-2L} \int_{m} \left| \sum_{x=1}^{N} \psi^{\Delta}(x-1)\lambda_{b,W}(x)e(\alpha\psi(x)) \right|^{2L} d\alpha
\]

\[
\ll_{L} \psi(N)^{\rho-2L}(\log N)^{-2\rho} \int_{\mathbb{T}} \left| \sum_{x=1}^{N} \psi^{\Delta}(x-1)\lambda_{b,W}(x)e(\alpha\psi(x)) \right|^{2L} d\alpha.
\]
Noting that
\[
\int \left| \sum_{x=1}^{N} \psi^\Delta(x-1)\lambda_{b,W}(x)e(\alpha \psi(x)) \right|^2 \ d\alpha
\]
\[
= \sum_{1 \leq x_1, \ldots, x_{2L} \leq N} \prod_{j=1}^{2L} \psi^\Delta(x_j-1)\lambda_{b,W}(x_j)
\]
\[
\lesssim_L (\log (WN+b))^{2L} \int \left| \sum_{x \leq N} \psi^\Delta(x-1)e(\alpha \psi(x)) \right|^2 \ d\alpha,
\]
so using Lemma 2.6 we have
\[
\int m^{1 \leq x_1, \ldots, x_{2L} \leq N} \psi^\Delta(x-1)\lambda_{b,W}(x_j)e(\alpha \psi(x_j)) \right|^\rho \ d\alpha \ll_L \psi(N)^{\rho-1}(\log N)^{-\rho}.
\]

If \(\alpha \in \mathcal{M}_{a,q} \), then by Lemma 2.2,
\[
\left| \sum_{x \leq N} \psi^\Delta(x-1)\lambda_{b,W}(x)e(\alpha \psi(x)) \right|^\rho
\]
\[
= \left| \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q, (Wr+b,q)=1} e(\alpha q/(Wr+b,q)) \sum_{x \leq N} \psi^\Delta(x-1)e((\alpha-a/q)\psi(x)) \right|^\rho
\]
\[
+ O(\psi(N)^{\rho} (\log N)^{-7B}).
\]
In view of Lemma 2.7, letting \(\varepsilon = (k+2)^{-4} \), we have
\[
\sum_{1 \leq a \leq q \leq (\log N)^B} \left| \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q, (Wr+b,q)=1} e(\alpha q/(Wr+b,q)) \right|^\rho
\]
\[
\ll \varepsilon \sum_{1 \leq q \leq (\log N)^B} q^{1-\rho(\frac{1}{k(k+1)}-2\varepsilon)} = O_{\rho,\varepsilon}(1).
\]
Applying Lemma 2.6, we conclude that

\[
\int |\sum_{x \leq N} \psi^\Delta(x - 1) \lambda_{b,W}(x) e(\alpha \psi(x))|^\rho \, d\alpha
= \sum_{1 / \phi(Wq) \sum_{1 \leq r \leq q \atop (W, r) = 1} e(a \psi(r)/q) |^\rho \\
\times \int \left| \sum_{x \leq N} \psi^\Delta(x - 1) e((\alpha - a/q) \psi(x)) \right|^\rho \, d\alpha \\
+ O(\text{mes}(\mathfrak{M}) \psi(N)^\rho (\log N)^{-7B})
\leq \left(\sum_{1 \leq a \leq q \leq (\log N)^B \atop (a, q) = 1} \left| \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (W, r) = 1} e(a \psi(r)/q) \right|^\rho \right) \\
\times \int \left| \sum_{x \leq N} \psi^\Delta(x - 1) e(\alpha \psi(x)) \right|^\rho \, d\alpha + O(\psi(N)^{\rho - 1} (\log N)^{-B})
\ll_{\rho, \varepsilon} \psi(N)^{\rho - 1}. \quad \blacksquare
\]

Lemma 2.10. Suppose that \(\psi \) is positive and strictly increasing on \([1, N]\). Let \(p \geq \psi(N) \) be a prime. Then

\[
\frac{1}{p} \sum_{r=1}^{p} \left| \sum_{z=1}^{N} \psi^\Delta(z - 1) \lambda_{b,W}(z) e(-r \psi(z)/p) \right|^\rho \ll_{\rho} \gcd(\psi) \psi(N)^{\rho - 1}
\]

for \(\rho \geq k^2 + 2 + 1 \).

Proof. We require a well-known result of Marcinkiewicz and Zygmund (cf. [12, Lemma 6.5]):

\[
\sum_{r \in \mathbb{Z}_p} \left| \sum_{x=1}^{p} f(x) e(-xr/p) \right|^\rho \ll_{\rho} p \int_{\mathbb{T}} |\hat{f}(\theta)|^\rho \, d\theta
\]

for any function \(f : \mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z} \rightarrow \mathbb{C} \), where

\[
\hat{f}(\theta) = \sum_{x=1}^{p} f(x) e(-\theta x).
\]

Define

\[
f(x) = \begin{cases}
\psi^\Delta(z - 1) \lambda_{b,W}(z) & \text{if } x = \psi(z) \text{ where } 1 \leq z \leq N, \\
0 & \text{otherwise}.
\end{cases}
\]
Then
\[
\sum_{r \in \mathbb{Z}_p} \left| \sum_{z=1}^N \psi^\Delta(z - 1) \lambda_{b,W}(z)e(-\psi(z)r/p) \right|^\rho = \sum_{r \in \mathbb{Z}_p} \left| \sum_{x=1}^p f(x)e(-xr/p) \right|^\rho \ll \rho \int_\mathbb{T} \left| f(x)e(-x\theta) \right|^\rho d\theta
\]
\[
= p \int_\mathbb{T} \left| \sum_{z=1}^N \psi^\Delta(z - 1) \lambda_{b,W}(z)e(-\psi(z)\theta) \right|^\rho d\theta \ll \rho \gcd(\psi)p\psi(N)^{\rho-1},
\]
where Lemma 2.9 is applied in the last inequality. □

3. Proof of Theorem 1.3

Clearly Theorem 1.3 is a consequence of the following theorem:

Theorem 3.1. Suppose that \(k \geq t \geq 1\) are integers, \(a_{k-t+1}\) is a non-zero integer and \(0 < \delta \leq 1\). Let \(\psi(x) = a_1x^k + a_2x^{k-1} + \cdots + a_{k-t+1}x^t\) be an arbitrary polynomial with integral coefficients and positive leading coefficient. Then for any positive integer \(W\), there exist \(N(\delta, W, \psi)\) and \(c(\delta, a_{k-t+1}) > 0\) satisfying
\[
\min_{A \subseteq \{1, \ldots, n\} \atop |A| \geq \delta n} |\{(x, y, z) : x, y \in A, z \in A_{1,W}, x - y = \psi(z)\}| \geq c(\delta, a_{k-t+1}) \frac{WN^{1+1/k}a_1^{-1/k}}{\phi(W) \log n}
\]
if \(n \geq N(\delta, W, \psi)\).

Remark. We emphasize that in Theorem 3.1 the constant \(c(\delta, a_{k-t+1})\) only depends on \(k, \delta, a_{k-t+1}\). As we will see later, this fact is important in the proof of Theorem 1.4.

Proof. Similarly to Tao’s arguments [25] on Roth’s theorem [19], we apply induction on \(\delta\). Suppose that \(P(\delta)\) is a proposition on \(0 < \delta \leq 1\). Assume that \(P(\delta)\) satisfies the following conditions:

(i) There exists \(0 < \delta_0 < 1\) such that \(P(\delta)\) holds for any \(\delta_0 \leq \delta \leq 1\).

(ii) There exists a continuous function \(\varepsilon(\delta) > 0\) such that \(\delta + \varepsilon(\delta) \leq 1\) for any \(0 < \delta \leq \delta_0\) and \(P(\delta + \varepsilon(\delta)) \Rightarrow P(\delta)\).

(iii) If \(0 < \delta' < \delta \leq 1\), then \(P(\delta') \Rightarrow P(\delta)\).

Then we claim that \(P(\delta)\) holds for any \(0 < \delta \leq 1\). In fact, suppose on the contrary that there exists \(0 < \delta \leq 1\) such that \(P(\delta)\) does not hold. Let
\[
\delta^* = \limsup_{0 < \delta \leq 1} \delta.
\]

Since \(\delta^* \neq 1\), there exists \(0 < \delta^* < 1\) such that \(P(\delta^*)\) does not hold. If \(\delta^* \neq 0\), then \(\delta^* \neq 0\) and \(P(\delta^*) \Rightarrow P(\delta^*)\), which contradicts the choice of \(\delta^*\). Therefore, \(\delta^* = 0\), and the proof is complete.
From (i), we know that $\delta^* \leq \delta_0$. Since $\delta + \varepsilon(\delta)$ is continuous, there exists $0 < \delta_1 < \delta^*$ such that

$$|\delta^* + \varepsilon(\delta^*) - (\delta_1 + \varepsilon(\delta_1))| < \frac{1}{2} \varepsilon(\delta^*),$$

i.e., $0 < \delta_1 < \delta^* < \delta_1 + \varepsilon(\delta_1) \leq 1$. Hence $P(\delta_1 + \varepsilon(\delta_1))$ holds but $P(\delta_1)$ does not by the definition of δ^*. This obviously contradicts (ii) and (iii).

Suppose that $A \subset \{1, \ldots, n\}$ with $|A| \geq \delta n$. Firstly, we shall show that the conclusion of Theorem 3.1 holds for $\delta \geq 3/4$. Define

$$r_{W,\psi}(A) = |\{(x, y, z) : x, y \in A, z \in A_1, W, x - y = \psi(z)\}|.$$

Clearly

$$|\{z \in A_1, W : 1 \leq \psi(z) \leq n/3\}| \geq \frac{1}{4k} \frac{W n^{1/k} a_1^{-1/k}}{\phi(W) \log n},$$

whenever n is sufficiently large (depending on the coefficients of ψ). Moreover, for any $1 \leq z \leq n/3$,

$$|\{(x, y) : x, y \in A, x - y = z\}| = |A \cap (z + A)| - |A \cup (z + A)| \geq \frac{2 \cdot 3n}{4} - \frac{4n}{3} = \frac{n}{6}.$$

Hence

$$r_{W,\psi}(A) \geq \frac{1}{24k} \frac{W n^{1+1/k} a_1^{-1/k}}{\phi(W) \log n}.$$

Now we assume that $\delta < 3/4$. Let $\varepsilon = \varepsilon(\delta, a_{k-t+1})$ be a small positive real number and $Q = Q(\delta, a_{k-t+1})$ be a large integer to be chosen later. We shall show that if the assertion of Theorem 3.1 holds for $\delta + \varepsilon$, it also holds for δ. Define

$$\psi_q(x) = \psi(qx)/q^t = a_1 q^{k-t} x^k + \cdots + a_{k-t+1} x^t.$$

By the induction hypothesis on $\delta + \varepsilon$, for any $1 \leq q \leq Q$,

$$\min_{A \subseteq \{1, \ldots, n\} \atop |A| \geq (\delta + \varepsilon)n} r_{W_q,\psi_q}(A) \geq \frac{c(\delta + \varepsilon, a_{k-t+1})}{2} \frac{W_q}{\phi(W_q)} \frac{n^{1+1/k}(a_1 q^{k-t})^{-1/k}}{\log n},$$

provided that

$$n \geq \max_{1 \leq q \leq Q} N(\delta + \varepsilon, W_q, \psi_q).$$

Let $A_m(b, d)$ denote the arithmetic progression $\{b, b+d, \ldots, b+(m-1)d\}$. Suppose that

$$n \geq \max\{e^{k(|a_1| + \cdots + |a_{k-t+1}|)Q^{k-t}}, 10^4 \varepsilon^{-1} Q^t \max_{1 \leq q \leq Q} N(\delta + \varepsilon, W_q, \psi_q)\}$$
and $A \subseteq \{1, \ldots, n\}$ with $|A| = \delta n$. Let $m = \lfloor 10^{-2} \varepsilon Q^{-t} n \rfloor$. Observe that $|\{b : x, y \in \mathbb{A}_m(b, q^t)\}| \leq m$ for every pair (x, y). Let

$$A_{b, q^t} = \{1 + (x - b)/q^t : x \in A \cap \mathbb{A}_m(b, q^t)\} \subseteq \{1, \ldots, m\}.$$

Clearly if $x', y' \in A_{b, q^t}$ and $z' \in A_{1, W_q}$ satisfy that $x' - y' = \psi_q(z')$, then $x = b + (x' - 1)q^t$, $y = b + (y' - 1)q^t \in A$, $z = z'q \in A_{1, W}$ and $x - y = \psi(z)$. So if there exists $1 \leq q \leq Q$ such that

$$|\{1 \leq b \leq n - mq^t : |A_{b, q^t}| \geq (\delta + \varepsilon)m\}| \geq \varepsilon n,$$

then

$$r_{W, \psi}(A) \geq \frac{1}{m} \sum_{1 \leq b \leq n - mq^t} r_{W_q, \psi_q}(A_{b, q^t}) \geq \varepsilon n \frac{c(\delta + \varepsilon, a_{k-t+1})}{2} \frac{W_q}{\phi(W_q)} \frac{m^{1/k} (a_1 q^{k-t} - 1/k)}{\log m} \geq \varepsilon n \frac{c(\delta + \varepsilon, a_{k-t+1}) \varepsilon^{1+1/k}}{400Q} \frac{W n^{1+1/k} a_1^{-1/k}}{\phi(W) \log n}.$$

So we may assume that

$$|\{1 \leq b \leq n - mq^t : |A \cap \mathbb{A}_m(b, q^t)| \geq (\delta + \varepsilon)m\}| < \varepsilon n \quad (3.1)$$

for each $1 \leq q \leq Q$. Let

$$M = \max\{x \in \mathbb{Z} : \psi(x) \leq n\}.$$

Clearly $M = n^{1/k} a_1^{-1/k} (1 + o(1))$. We shall show that

$$\int_{T} \left(\left| \sum_{x \in A \cap [1, n]} e(\alpha x) \right|^2 - \delta^2 \left| \sum_{x \leq n} e(\alpha x) \right|^2 \right) \left(\sum_{z \leq M} \psi(z - 1) \lambda_{1, W}(z) e(\alpha \psi(z)) \right) d\alpha$$

is relatively small.

For $1 \leq q \leq Q$, define

$$\mathcal{M}_{a, q} = \left\{ \alpha : |\alpha - a/q| \leq \frac{1}{2} q^{-t} m^{-1} \right\}.$$

Let

$$M = \bigcup_{1 \leq a \leq q \leq Q \atop (a, q) = 1} \mathcal{M}_{a, q}, \quad m = T \setminus M.$$

Let B be a sufficiently large integer. For $1 \leq q \leq (\log M)^B$, define

$$\mathcal{M}_{a, q}^* = \{ \alpha : |\alpha q - a| \leq (\log M)^B / \psi(M) \}.$$

Let

$$\mathcal{M}^* = \bigcup_{1 \leq a \leq q \leq (\log M)^B \atop (a, q) = 1} \mathcal{M}_{a, q}^*,$$

$$m^* = T \setminus \mathcal{M}^*.$$
Suppose that $\alpha \in m$. We know

$$|\alpha q - a| \leq (\log M)^B / \psi(M)$$

for some $1 \leq a \leq q < \psi(M)(\log M)^{-B}$ with $(a, q) = 1$. If $\alpha \in m^*$, i.e., $q > (\log M)^B$, then

$$|\alpha - a/q| \leq q^{-2} \quad \text{and} \quad (\log y)^{B/2} \leq \psi(y)(\log y)^{-B/2}$$

for any $M(\log M)^{-B/(2k)} \leq y \leq M$. So applying Lemma 2.8 and partial summation, we have

$$\sum_{z \leq M} \psi^\Delta(z - 1) \lambda_{1,W}(z)e(\alpha\psi(z)) \ll_B \psi(M)(\log M)^{-1} \leq n(\log M)^{-1}$$

whenever B is sufficiently large.

Now suppose that $q < (\log M)^B$, i.e., $\alpha \in \mathfrak{m}^*$. Applying Lemmas 2.2 and 2.3, we have

$$\sum_{z \leq M} \psi^\Delta(z - 1) \lambda_{1,W}(z)e(\alpha\psi(z))$$

$$= \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (Wr+1,q)=1} e(a\psi(r)/q) \sum_{z \leq M} \psi^\Delta(z - 1)e((\alpha - a/q)\psi(z))$$

$$+ O(\psi^\Delta(M)M(\log M)^{-4B})$$

$$= \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (Wr+1,q)=1} e(a\psi(r)/q) \sum_{z \leq n} e((\alpha - a/q)z) + O(\psi^\Delta(M)M(\log M)^{-4B}).$$

Since $\alpha \in m$, either $q > Q$ or $|\alpha - a/q| > \frac{1}{2}q^{-t}m^{-1}$. If $q > Q$, then in light of Lemma 2.7,

$$\left| \frac{\phi(W)}{\phi(Wq)} \sum_{1 \leq r \leq q \atop (Wr+1,q)=1} e(a\psi(r)/q) \right| \leq \frac{1}{\phi(q)} \sum_{1 \leq r \leq q \atop (Wr+1,q)=1} e(a\psi(r)/q)$$

$$\leq C_1 |a_k - t+1| q^{-1/k(k+2)}.$$

And if $|\alpha - a/q| > \frac{1}{2}q^{-t}m^{-1}$, then

$$\left| \sum_{z = 1}^n e((\alpha - a/q)z) \right| = \left| \frac{1 - e((\alpha - a/q)n)}{1 - e(\alpha - a/q)} \right| \leq 4\pi q^t m.$$

Hence for $\alpha \in m$,

$$\sum_{z \leq M} \psi^\Delta(z - 1) \lambda_{1,W}(z)e(\alpha\psi(z)) \leq C_1 |a_k - t+1| Q^{-1/k(k+2)}n + 4\pi mQ^t$$

$$+ O(n(\log n)^{-1}).$$
Suppose that $\alpha \in \mathcal{M}$. Let $\tau = 1_A - \delta$ where $1_A(x) = 1$ or 0 according to whether $x \in A$ or not. Let

$$S(\alpha) = \sum_{c=0}^{m-1} e(\alpha c) \quad \text{and} \quad T(\alpha) = \sum_{b=1}^{n} \tau(b)e(\alpha b).$$

Then

$$S(\alpha q^t)T(\alpha) = \sum_{b=1}^{n} \tau(b) \sum_{c=0}^{m-1} e(\alpha(b + cq^t)) = \sum_{b=1}^{n-mq^t} e(\alpha(b + (m-1)q^t)) \sum_{c=0}^{m-1} \tau(b + cq^t) + R(\alpha),$$

where $|R(\alpha)| \leq 2m^2q^t$. When $|\alpha q^t - aq^{t-1}| \leq \frac{1}{2}m^{-1}$,

$$|S(\alpha q^t)| = |S(\alpha q^t - aq^{t-1})| = \left| \frac{1 - e(m(\alpha q^t - aq^{t-1}))}{1 - e(\alpha q^t - aq^{t-1})} \right| \geq \frac{m}{\pi}.$$

Hence for $\alpha \in \mathcal{M}_{a,q}$,

$$m|T(\alpha)| \leq \pi|S(\alpha q^t)T(\alpha)|$$

$$\leq \pi \left| \sum_{b=1}^{n-mq^t} e(\alpha(b + (m-1)q^t)) \sum_{c=0}^{m-1} \tau(b + cq^t) \right| + \pi|R(\alpha)|.$$

Notice that $|\{1 \leq b \leq n - mq^t : x \in \mathbb{A}_m(b, q^t)\}| \leq m$, and the equality holds if $1 + (m-1)q^t \leq x \leq n - mq^t$. It follows that

$$m|A| \geq \sum_{b=1}^{n-mq^t} |A \cap \mathbb{A}_m(b, q^t)| = \sum_{x \in A} \sum_{b=1}^{n-mq^t} 1_{\mathbb{A}_m(b, q^t)}(x)$$

$$\geq m|A| - 2m^2q^t,$$

whence

$$\sum_{1 \leq b \leq n-mq^t \atop |A \cap \mathbb{A}_m(b, q^t)| \geq (\delta + \varepsilon)m} (|A \cap \mathbb{A}_m(b, q^t)| - (\delta + \varepsilon)m) \leq \varepsilon n(1 - \delta)m.$$
It follows that
\[
\sum_{b=1}^{n-mq^t} \left| |A \cap \mathbb{A}_m(b, q^t)| - \delta m \right|
\leq \sum_{b=1}^{n-mq^t} \left| |A \cap \mathbb{A}_m(b, q^t)| - (\delta + \varepsilon)m \right| + \varepsilon nm
\leq 2 \sum_{1 \leq b \leq n-mq^t} (|A \cap \mathbb{A}_m(b, q^t)| - (\delta + \varepsilon)m) + \varepsilon nm
\leq 4\varepsilon nm + 4m^2q^t.
\]

Thus for any \(\alpha \in \mathfrak{M} \),
\[
|T(\alpha)| \leq \frac{\pi}{m} \left(\sum_{b=1}^{n-mq^t} e(\alpha(b + (m - 1)q^t)) \sum_{c=0}^{m-1} \tau(b + cq^t) \right) + 2m^2q^t
\leq \frac{\pi}{m} \left(\sum_{b=1}^{n-mq^t} |A \cap \mathbb{A}_m(b, q^t)| - \delta m \right) + 2m^2q^t
\leq 4\pi\varepsilon n + 6\pi mQ^t,
\]
i.e.,
\[
\left| \sum_{x=1}^{n} 1_A(x)e(\alpha x) - \delta \sum_{x=1}^{n} e(\alpha x) \right| \leq 16\varepsilon n.
\]

It is easy to see that
\[
||x||^2 - |y|^2 \leq |x - y|^{2/\rho}(|x| + |y|)^{2-2/\rho} + 4|x - y|^{2-2/\rho}(|x|^{2-2/\rho} + |y|^{2-2/\rho})
\]
for any \(\rho \geq 2 \). Let \(\rho = k2^{k+3} \). Then
\[
\left| \int_{\mathfrak{M}} \left(\sum_{x=1}^{n} 1_A(x)e(\alpha x) \right)^2 - \delta^2 \right| \sum_{x=1}^{n} e(\alpha x)^2 \left(\sum_{z=1}^{M} \psi^{\Delta}(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right) d\alpha \right|
\leq 4(16\varepsilon n)^{2/\rho} \int_{\mathfrak{M}} \left(\sum_{x=1}^{n} 1_A(x)e(\alpha x) \right)^{2-2/\rho} + \delta^{2-2/\rho} \left| \sum_{x=1}^{n} e(\alpha x) \right|^{2-2/\rho}
\times \left| \sum_{z=1}^{M} \psi^{\Delta}(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right| d\alpha .
\]
By the Hölder inequality,
\[
\left| \sum_{x=1}^{n} 1_A(x)e(\alpha x) \right|^{2-2/\rho} \left| \sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right| \, d\alpha \\
\leq \left(\int_{T} \left| \sum_{x=1}^{n} 1_A(x)e(\alpha x) \right|^{2} \, d\alpha \right)^{1-1/\rho} \left(\int_{T} \left| \sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right|^\rho \, d\alpha \right)^{1/\rho}.
\]

Lemma 2.9 yields
\[
\int_{T} \left| \sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right|^\rho \, d\alpha \leq C_2 |a_{k-t+1}|^{1/\rho} (\delta n)^{1-1/\rho} n^{1-1/\rho}.
\]

Therefore
\[
\int_{T} \left| \sum_{x=1}^{n} 1_A(x)e(\alpha x) \right|^{2-2/\rho} \left| \sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right| \, d\alpha \\
\leq C_2^{1/\rho} |a_{k-t+1}|^{1/\rho} (\delta n)^{1-1/\rho} n^{1-2/\rho}.
\]

Similarly,
\[
\left| \int_{\mathbb{R}} \left(\sum_{x=1}^{n} 1_A(x)e(\alpha x) \right)^{2} - \delta^2 \sum_{x=1}^{n} e(\alpha x)^2 \right) \left(\sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right) \, d\alpha \\
\leq 8C_2^{1/\rho} |a_{k-t+1}|^{1/\rho} \varepsilon^2/\rho (\delta^{1-1/\rho} + \delta^{2-2/\rho}) n^2.
\]

We conclude that
\[
\left| \int_{\mathbb{R}} \left(\sum_{x=1}^{n} 1_A(x)e(\alpha x) \right)^{2} - \delta^2 \sum_{x=1}^{n} e(\alpha x)^2 \right) \left(\sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right) \, d\alpha \\
\times \left| \sum_{x=1}^{n} 1_A(x)e(\alpha x) \right|^{2} \left| \sum_{x=1}^{n} e(\alpha x) \right|^{2} \left(\sum_{z=1}^{M} \psi^\Delta(z-1)\lambda_{1,W}(z)e(\alpha\psi(z)) \right) \, d\alpha \\
+ 8C_2^{1/\rho} |a_{k-t+1}|^{1/\rho} \varepsilon^2/\rho (\delta^{1-1/\rho} + \delta^{2-2/\rho}) n^2 \\
\leq 4C_1 |a_{k-t+1}| Q^{-1/k(k+2)} \delta n^2 + \varepsilon \delta n^2 + 16C_2^{1/\rho} |a_{k-t+1}|^{1/\rho} \varepsilon^2/\rho \delta^{1-1/\rho} n^2.
\]
On the other hand, we have

\[
\int \left| \sum_{x=1}^{n} e(\alpha x) \right|^2 \left(\sum_{z=1}^{M} \psi^\Delta(z-1) \lambda_{1,W}(z) e(\alpha \psi(z)) \right) d\alpha \\
= \sum_{1 \leq x, y \leq n, \frac{1}{M} \leq z \leq M} \psi^\Delta(z-1) \lambda_{1,W}(z) \geq \sum_{1 \leq x, y \leq n, M/4+1 \leq z \leq M/2} \psi^\Delta(z-1) \lambda_{1,W}(z) \\
\geq \frac{M}{8} (n - \psi(M/2)) \psi^\Delta(M/4).
\]

It follows that

\[
\int \left| \sum_{x=1}^{n} 1_A(x) e(\alpha x) \right|^2 \left(\sum_{z=1}^{M} \psi^\Delta(z-1) \lambda_{1,W}(z) e(\alpha \psi(z)) \right) d\alpha \\
\geq \delta^2 \int \left| \sum_{x=1}^{n} e(\alpha x) \right|^2 \left(\sum_{z=1}^{M} \psi^\Delta(z-1) \lambda_{1,W}(z) e(\alpha \psi(z)) \right) d\alpha \\
- 4C_1 |a_{k-t+1}| Q^{-1/k(k+2)} \delta n^2 - \varepsilon \delta n^2 - 16C_2^{1/\rho} |a_{k-t+1}|^{1/\rho} \epsilon^2 / \rho \delta^{1-1/\rho} n^2 \\
\geq \frac{k \delta^2 n^2}{4k+1} - 4C_1 |a_{k-t+1}| Q^{-1/k(k+2)} \delta n^2 - \varepsilon \delta n^2 \\
- 16C_2^{1/\rho} |a_{k-t+1}|^{1/\rho} \epsilon^2 / \rho \delta^{1-1/\rho} n^2.
\]

Let \(\varepsilon = 4^{-(k+2) \rho \delta^{(\rho+1)/2}} C_2^{-1/2} |a_{k-t+1}|^{-1/2} \) and

\[Q = 4^{(k+1)^4} \delta^{-2(k+2)} C_1^{k(k+2)} |a_{k-t+1}|^{k(k+2)}. \]

Therefore

\[
\{|(x, y, z) : x, y \in A, z \in \Lambda_{1,W}, x - y = \psi(z)\} \\
\geq \frac{W/\phi(W)}{\psi^\Delta(M) \log(WM + 1)} \\
\times \left\| \sum_{x=1}^{n} 1_A(x) e(\alpha x) \right\|^2 \left(\sum_{z=1}^{M} \psi^\Delta(z-1) \lambda_{1,W}(z) e(\alpha \psi(z)) \right) d\alpha \\
\geq \frac{W \delta^2}{4k+2k\phi(W)} \frac{n^{1+1/k} a_{1}^{-1/k}}{\log n}.
\]

This yields the desired result.

Finally, let us briefly discuss the bound in Theorem 1.3. Let \(R_{W,\psi}(\delta) \) be the least integer \(n \) such that for any \(A \subseteq \{1, \ldots, n\} \), there exist \(x,y \in A \) and \(z \in \Lambda_{1,W} \) satisfying \(x - y = \psi(z) \). In our proof, we choose \(\varepsilon = \varepsilon(\delta) = O_{|a_{k-t}|}(\delta O_k^{(1)}) \) and \(Q = Q(\delta) = O_{|a_{k-t}|}(\delta^{-O_k^{(1)}}) \). So the iteration process
\[\delta \rightarrow \delta + \varepsilon(\delta) \] will end after \(O_{|a_{k-t}|}(\delta^{-O_k(1)}) \) steps. Also, clearly for \(\delta > 3/4 \),
\[R_{W,\psi}(\delta) \ll (|a_1| + \cdots + |a_{k-t}|)(\min\{p : p \in A_1, W\})^k. \]

Notice that when the iteration process ends, \(W \) becomes \(WQ^O_{|a_{k-t}|}(\delta^{-O_k(1)}) \) and \(a_i \) becomes \(a_i Q^O_{|a_{k-t}|}(\delta^{-O_k(1)}) \). Hence we have
\[R_{W,\psi}(\delta) \leq \exp(O_{W,a_1,\ldots,a_{k-t}}(\delta^{-O_k(1)})), \]
since \(\min\{p : p \in A_1, W\} \leq e^{O(W)} \). In other words, if a subset \(A \subseteq \{1, \ldots, n\} \) satisfies \(|A| \geq O_{W,a_1,\ldots,a_{k-t}}(n/\log \log \log n) \), then there exist \(x, y \in A \) and \(z \in A_1, W \) such that \(x - y = \psi(z) \). Of course, this bound is very rough. We believe that it could be improved using some more refined estimations (e.g. \[H. Z. Li and H. Pan \]
\[4. \text{Proof of Theorem 1.4.} \] Write \(\psi(x) = a_1x^k + a_2x^{k-1} + \cdots + a_{k-t+1}x^t \) where \(a_{k-t+1} \neq 0 \). Let \(\delta = \bar{d}_P(P) \). Since \(\bar{d}_P(P) > 0 \), there exist infinitely many \(n \) such that
\[|P \cap [1, n]| \geq \frac{4\delta}{5} \frac{n}{\log n}. \]

Define
\[w(n) = \max\{w \leq \log \log \log n : n \geq 16W(w)N(\delta, W(w), \psi_{W(w)})\}, \]
where \(N(\delta, W, \psi) \) is as defined in Theorem 3.1 and \(W(w) = \prod_{p \leq \psi, p \text{ prime}} p \). Clearly \(\lim_{n \to \infty} w(n) = \infty \). Let \(w = w(n) \) and \(W = W(w) \). Then
\[\sum_{\substack{x \in P \cap [1, n] \quad \text{(mod } W^t)} \log x \geq \frac{2\log n}{3} (|P \cap [1, n]| - n^{2/3}) \geq \frac{\delta}{2} n. \]

Hence there exists \(1 \leq b \leq W^t \) with \((b, W) = 1 \) such that
\[\sum_{x \in P \cap [1, n] \quad x \equiv b \text{ (mod } W^t)} \log x \geq \frac{\delta}{2\phi(W^t)} n. \]

Let
\[A = \{(x - b)/W^t : x \in P \cap [1, n], x \equiv b \text{ (mod } W^t)\}. \]

Let \(N \) be a prime in the interval \((2n/W^t, 4n/W^t)\). Define \(\lambda_{b,W^t,N} = \lambda_{b,W^t}/N \) and \(a = 1_A \lambda_{b,W^t,N} \). Then
\[\sum_{x} a(x) \geq \frac{\phi(W^t)}{W^t N} \frac{\delta n}{2\phi(W^t)} \geq \frac{\delta}{8}. \]

Let \(\psi_W(x) = \psi(Wx)/W^t = a_1W^{k-t}x^k + \cdots + a_{k-t+1}x^t \).
Clearly $\psi_W(z)$ is positive and strictly increasing for $z \geq 1$, whenever W is sufficiently large.

Below we consider A as a subset of \mathbb{Z}_N. Let

$$M = \max\{z \in \mathbb{N} : \psi_W(z) < N/2\}.$$

If $x, y \in A$ and $1 \leq z \leq M$ satisfy $x - y = \psi_W(z)$ in \mathbb{Z}_N, then we also have $x - y = \psi_W(z)$ in \mathbb{Z}. In fact, since $1 \leq x, y < N/2$ and $1 \leq z \leq M$, it is impossible that $x - y = \psi_W(z) - N$ in \mathbb{Z}. For a function $f : \mathbb{Z}_N \to \mathbb{C}$, define

$$\hat{f}(r) = \sum_{x \in \mathbb{Z}_N} f(x)e(-xr/N).$$

Lemma 4.1 (Bourgain [4], [5] and Green [12]). Suppose that $\rho > 2$. Then

$$\sum_r |\hat{a}(r)|^\rho \leq C(\rho),$$

where $C(\rho)$ is a constant only depending on ρ.

Proof. See [12, Lemma 6.6].

Lemma 4.2.

$$\sum_{r \in \mathbb{Z}_N} \left| \sum_{z=1}^M \psi_W^A(z - 1)\lambda_{1,WW}(z)e(-\psi_W(z)r/N) \right|^{\rho} \leq C'(\rho)|a_{k-t+1}|N^\rho$$

provided that $\rho \geq k2^{k+3}$, where $C'(\rho)$ is a constant only depending on ρ.

Proof. This is an immediate consequence of Lemma 2.10 since $\gcd(\psi_W) \leq |a_{k-t+1}|$.

Let η and ε be two positive real numbers to be chosen later. Let

$$R = \{r \in \mathbb{Z}_N : |\hat{a}(r)| \geq \eta\}, \quad B = \{x \in \mathbb{Z}_N : \|xr/N\| \leq \varepsilon \text{ for all } r \in R\},$$

where $\|x\| = \min\{|x - z| : z \in \mathbb{Z}\}$. Define $\beta = 1_B/|B|$ and $a' = a \ast \beta \ast \beta$, where

$$f \ast g(x) = \sum_{y \in \mathbb{Z}_N} f(y)g(x - y).$$

Let $\varrho = k2^{k+3}$.

Lemma 4.3.

$$\sum_{\substack{x, y \in \mathbb{Z}_N \\ 1 \leq z \leq M \\ x - y = \psi_W(z)}} (a'(x)a'(y) - a(x)a(y))\psi_W^A(z - 1)\lambda_{1,WW}(z) \leq C(\varepsilon^2\eta^{-5/2} + \eta^{1/\varrho}).$$
Proof. It is not difficult to check that
\[
\sum_{x,y \in \mathbb{Z}_N, 1 \leq z \leq M} a(x) a(y) \psi_W^\Delta(z-1) \lambda_{1,wW}(z)
\]
\[
= \frac{1}{N} \sum_{r \in \mathbb{Z}_N} \tilde{a}(r) \tilde{a}(-r) \left(\sum_{z=1}^M \psi_W^\Delta(z-1) \lambda_{1,wW}(z) e(-\psi_W(z)r/N) \right).
\]

Also, it is easy to see that \((f * g)^- = \tilde{f} \tilde{g}\). Then
\[
\sum_{x,y \in \mathbb{Z}_N, 1 \leq z \leq M} a'(x) a'(y) \psi_W^\Delta(z-1) \lambda_{1,wW}(z) - \sum_{x,y \in \mathbb{Z}_N, x-y=\psi_W(z)} a(x) a(y) \psi_W^\Delta(z-1) \lambda_{1,wW}(z)
\]
\[
= \frac{1}{N} \sum_{r \in \mathbb{Z}_N} \tilde{a}(r) \tilde{a}(-r) (\tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 - 1)
\]
\[
\times \left(\sum_{z=1}^M \psi_W^\Delta(z-1) \lambda_{1,wW}(z) e(-\psi_W(z)r/N) \right).
\]

If \(r \in R\), then by the proof of Lemma 6.7 of [12], we know that
\[
|\tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 - 1| \leq 2^{16} \varepsilon^2.
\]

And applying Lemma 2.2 with \(\alpha = a = q = 1\),
\[
\sum_{z=1}^M \psi_W^\Delta(z-1) \lambda_{1,wW}(z) = \sum_{z=1}^M \psi_W^\Delta(z-1) + O(\psi_W^\Delta(M) Me^{-c\sqrt{\log M}})
\]
\[
\leq 2\psi_W(M).
\]

Therefore
\[
\left| \sum_{r \in R} \tilde{a}(r) \tilde{a}(-r) (\tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 - 1) \left(\sum_{z=1}^M \psi_W^\Delta(z-1) \lambda_{1,wW}(z) e(-\psi_W(z)r/N) \right) \right|
\]
\[
\leq 2^{16} \varepsilon^2 \sum_{r \in R} |\tilde{a}(r)|^2 \left| \sum_{z=1}^M \psi_W^\Delta(z-1) \lambda_{1,wW}(z) e(-\psi_W(z)r/N) \right|
\]
\[
\leq 2^{17} \varepsilon^2 \psi_W(M) |R|.
\]

In view of Lemma 4.1 with \(\rho = 5/2\), we have \(|R| \leq C'' \eta^{-5/2}\). On the other hand, by the Hölder inequality,
\[\left| \sum_{r \not\in R} \bar{a}(r) \tilde{a}(-r)(\bar{\beta}(r)^2 - 1) \right| \]
\[\times \left(\sum_{z=1}^{M} \psi_{WW}(z-1)\lambda_{1,WW}(z)e(-\psi_{WW}(z)r/N) \right) \]
\[\leq 2 \sup_{r \not\in R} |\bar{a}(r)|^{1/\rho} \left(\sum_{r \not\in R} |\bar{a}(r)|^{2\rho-1} \right)^{\frac{\rho-1}{\rho}} \]
\[\times \left(\sum_{r \not\in R} \sum_{z=1}^{M} \psi_{WW}(z-1)\lambda_{1,WW}(z)e(-\psi_{WW}(z)r/N) \right)^{1/\rho} \]
\[\leq 2\eta^{1/\rho} C((2\rho - 1)/(\rho - 1))^{1-1/\rho} (|a_{k-t+1}| C'(\varrho))^{1/\rho} N, \]
where in the last step we apply Lemma 4.1 with \(\rho = (2\varrho - 1)/(\varrho - 1) \) and Lemma 4.2 with \(\rho = \varrho \).

Lemma 4.4. If \(\varepsilon |R| \geq 2 \log \log w/w \), then \(|a'(x)| \leq 2/N \) for any \(x \in \mathbb{Z}_N \).

Proof. See [12, Lemma 6.3].

Let \(A' = \{ x \in \mathbb{Z}_N : a'(x) \geq \frac{1}{16} \delta N^{-1} \} \). Then
\[\frac{2}{N} |A'| + \frac{\delta}{16N} (N - |A'|) \geq \sum_{x \in \mathbb{Z}_N} a'(x) = \sum_{x \in \mathbb{Z}_N} a(x) \geq \frac{\delta}{8}, \]
whence \(|A'|/N \geq \delta/32 \). Let \(A'_1 = A' \cap [1, (N - 1)/2] \) and \(A'_2 = \{ x - (N - 1)/2 : x \in A' \cap [(N + 1)/2, N - 1] \} \). Clearly there exists \(i \in \{1, 2\} \) such that \(|A'_i|/N \geq \delta/64 \), say \(|A'_i|/N \geq \delta/64 \).
Applying Theorem 3.1, we know that
\[|\{(x, y, z) : x, y \in A'_1, z \in A_{1,WW} \cap [1, M], x - y = \psi_{WW}(z)\}| \]
\[\geq \frac{c(\delta/64, a_{k-t+1})}{8} WW(N/2)^{1+k} (a_1 WW^{k-t})^{-1/k} \phi(WW) \log N. \]

Let \(c' = \frac{1}{10k} c(\delta/64, a_{k-t+1}) \). Clearly
\[|\{(x, y, z) : x, y \in A'_1, z \in A_{1,WW} \cap [1, c'M], x - y = \psi_{WW}(z)\}| \]
\[\leq \frac{WW(c'M)}{\phi(WW) \log M} N. \]

Therefore
\[|\{(x, y, z) : x, y \in A'_1, z \in A_{1,WW} \cap (c'M, M), x - y = \psi_{WW}(z)\}| \]
\[\geq \frac{c(\delta/64, a_{k-t+1})}{8} WW N^{1+k} (a_1 WW^{k-t})^{-1/k} \phi(WW) \log N. \]
It follows that
\[
\sum_{\substack{x,y\in A_1' \\ 1\leq z\leq M \\ x-y=\psi_W(z) \atop x,y\in Z_N}} \psi_1^\Delta_W(z-1)\lambda_{1,WW}(z)
\geq \frac{c(\delta/64, a_{k-t+1})}{8} \frac{WW.N^{1+1/k}(a_1W^{k-t})^{-1/k}}{\phi(WW)\log N} \frac{\psi_1^\Delta_W(c'M)\phi(WW)\log M}{2WW}
\geq \frac{c(\delta/64, a_{k-t+1})c'^{k-1}}{64} N^2.
\]
So
\[
\sum_{\substack{x,y\in Z_N \\ 1\leq z\leq M \\ x-y=\psi_W(z) \atop x,y\in A_1'}} a(x)a(y)\psi_1^\Delta_W(z-1)\lambda_{1,WW}(z)
\geq \sum_{\substack{x,y\in Z_N \\ 1\leq z\leq M \\ x-y=\psi_W(z) \atop x,y\in A_1'}} a'(x)a'(y)\psi_1^\Delta_W(z-1)\lambda_{1,WW}(z) - C(\varepsilon^2\eta^{-5/2} + \eta^{1/2})
\geq \frac{\delta^2}{28N^2} \sum_{\substack{x,y\in A_1' \\ 1\leq z\leq M \\ x-y=\psi_W(z) \atop x,y\in Z_N}} \psi_1^\Delta_W(z-1)\lambda_{1,WW}(z) - C(\varepsilon^2\eta^{-5/2} + \eta^{1/2})
\geq c''(\delta, a_{k-t+1}) - C(\varepsilon^2\eta^{-5/2} + \eta^{1/2}).
\]
Finally, we may choose \(\eta, \varepsilon > 0\) satisfying \(\varepsilon C''\eta^{-5/2} \geq 2\log\log w/w\) such that
\(C(\varepsilon^2\eta^{-5/2} + \eta^{1/2}) < c''(\delta, a_{k-t+1})/2\)
whenever \(w\) is sufficiently large. Hence
\[
\sum_{\substack{x,y\in Z_N \\ 1\leq z\leq M \\ x-y=\psi_W(z) \atop x,y\in A_1'}} a(x)a(y)\psi_1^\Delta_W(z-1)\lambda_{1,WW}(z) \geq \frac{c''(\delta, a_{k-t+1})}{2} > 0
\]
for sufficiently large \(N\). ■

Acknowledgements. We thank Professor Emmanuel Lesigne for his useful comments on our paper.

This work was supported by the National Natural Science Foundation of China (Grant No. 10771135).
References

Department of Mathematics
Shanghai Jiaotong University
Shanghai 200240, P.R. China
E-mail: lihz@sjtu.edu.cn

Department of Mathematics
Nanjing University
Nanjing 210093, P.R. China
E-mail: haopan79@yahoo.com.cn

Received on 5.6.2008