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1. Introduction. Quadratic twists of L-functions have been widely
studied by many people; some of the motivating problems involve ranks
of elliptic curves, and connections to Landau–Siegel zeros. In this article we
consider the first moment of the family of quadratic Dirichlet L-functions.
Our main result is

Theorem 1.1. Let Φ : R+ → R be a smooth function of compact support.
Then

(1.1)
∑∗

(d,2)=1

L(1/2, χ8d)Φ
(
d

X

)
= XP (logX) +O(X1/2+ε)

for some linear polynomial P (depending on Φ).

Jutila [J] and Vinogradov–Takhtadzhyan [VT] obtained a similar result
but with an error term of size X3/4+ε, and Goldfeld–Hoffstein [GH] obtained
an error of size X19/32+ε, using properties of certain Eisenstein series (one
difference to note is that these authors considered the unsmoothed moment).
A. Kontorovich has informed me that an error term of size O(X1/2+ε) is
essentially implicit in [GH], so that Theorem 1.1 does not constitute an
improvement of the error term in the smoothed version of the first moment.
However, our method seems to have some novelty and can almost surely
be used to improve the error terms in other moment problems involving
primitive quadratic twists.

Our approach is most similar to the work of Soundararajan [S], who
obtained an asymptotic formula with a power saving for the third moment
of this family. Indeed, the proof of Theorem 1.1 required significant “off-
diagonal” analysis of the same type performed by Soundararajan. Actually,
we required two new ingredients not found in [S]: most importantly, we used
recursion to successively improve the exponent in the error term which in
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the limit converges to 1/2. Secondly, we performed an intricate analysis of
certain subsidiary terms that can be rather easily bounded by O(X3/4+ε),
but seem to rely on the Riemann Hypothesis to be improved (on an indi-
vidual basis); fortunately, it turns out that these terms all cancel out! (See
Section 6.)

The use of recursion to study mean values of real characters was fruit-
fully applied by Heath-Brown in his work on the large sieve for quadratic
characters [H-B]. One of the primary difficulties when studying mean val-
ues of quadratic characters (and more generally, characters of fixed order)
is treating the squarefree (more generally, primitivity) condition. Heath-
Brown succeeded at this problem in [H-B] by relaxing the condition that d
is squarefree to the condition that the square divisors of d are small (note
that this uses positivity and the fact that he is obtaining an upper bound
and not an asymptotic formula). In a sense, the use of recursion in the proof
of Theorem 1.1 is what allows us to treat the squarefree condition in an
essentially optimal way. Soundararajan (private communication) has also
indicated to us that an iterative method can potentially be useful in these
moment problems. The paper [BY] also used recursion in the study of the
first moment of cubic Dirichlet L-functions, but in that work we did not
identify the cancellation between various subsidiary terms.

Goldfeld and Hoffstein [GH] point out that it seems unlikely to improve
(1.1) without some substantial improvement in the zero-free region for the
Riemann zeta function, simply due to the state of knowledge on the distri-
bution of squarefree integers.

2. Preliminaries. Let χd be the quadratic Dirichlet character associ-
ated to the fundamental discriminant d. We shall work with discriminants
of the form 8d where d is odd, squarefree, and positive, so that χ8d is an
even, primitive character of conductor 8d.

The functional equation for such quadratic Dirichlet L-functions reads

Λ(s, χ8d) = (8d/π)s/2Γ (s/2)L(s, χ8d) = Λ(1− s, χ8d),

or in its asymmetric form

L(s, χ8d) = X(s)L(1− s, χ8d),

where

X(1/2 + u) =
(

8d
π

)−u Γ (1/2−u
2

)
Γ
(1/2+u

2

) .
2.1. Approximate functional equation. Our basic formula to represent a

value of the L-functions inside the critical strip is the following (Theorem
5.3 of [IK]).
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Proposition 2.1 (Approximate functional equation). Let G(s) be an
entire, even function, bounded in any strip −A ≤ Re(s) ≤ A. Then

L(1/2 + α, χ8d) =
∑
n

χ8d(n)
n1/2+α

Vα

(
n

d1/2

)
+Xα

∑
n

χ8d(n)
n1/2−α V−α

(
n

d1/2

)
,

where V , g, and Xα are given by the following :

Vα(x) =
1

2πi

�

(1)

G(s)
s

gα(s)x−s ds,(2.1)

gα(s) =
(

8
π

)s/2 Γ (1/2+α+s
2

)
Γ
(1/2+α

2

) ,

Xα =
(

8d
π

)−α Γ (1/2−α
2

)
Γ
(1/2+α

2

) .
Remark 2.2. We also choose G so that G(±α) = G(1/2 ± α) = 0; for

definiteness, one can take

G(s) = es
2 (α2 − s2)((s− 1/2)2 − α2)((s+ 1/2)2 − α2)

α2(1/4− α2)2
.

The purpose of this remark is to simplify certain future calculations (these
zeros may cancel certain poles that arise).

2.2. Poisson summation formula. We now quote Soundararajan’s result
(see the proof of Lemma 2.6 of [S]).

Lemma 2.3. Let F be a smooth function with compact support on the
positive real numbers, and suppose that n is an odd integer. Then∑

(d,2)=1

(
d

n

)
F

(
d

Z

)
=

Z

2n

(
2
n

)∑
k∈Z

(−1)kGk(n)F̂
(
kZ

2n

)
,

where

Gk(n) =
(

1− i
2

+
(
−1
n

)
1 + i

2

) ∑
a (modn)

(
a

n

)
e

(
ak

n

)
,

and

F̂ (y) =
∞�

−∞
(cos(2πxy) + sin(2πxy))F (x) dx

is a Fourier-type transform of F .

The Gauss-type sum is calculated exactly with the following (which is
Lemma 2.3 of [S]).

Lemma 2.4. If m and n are relatively prime odd integers, then Gk(mn) =
Gk(m)Gk(n), and if pα is the largest power of p dividing k (setting α = ∞
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if k = 0), then

Gk(pβ) =



0 if β ≤ α is odd ,
φ(pβ) if β ≤ α is even,
−pα if β = α+ 1 is even,(
kp−α

p

)
pα
√
p if β = α+ 1 is odd ,

0 if β ≥ α+ 2.

3. Setting up the problem. We generalize the basic quantity of study
(1.1), and consider

M(α, l) =
∑∗

(d,2)=1

χ8d(l)L(1/2 + α, χ8d)Φ
(
d

X

)
for l odd squarefree. This can be thought of as a “twisted” moment, which
appears naturally when mollifying and amplifying central values. Our anal-
ysis of M(0, 1) leads to general quantities M(α, l), so our method requires
to study these more general expressions.

3.1. Averaging the approximate functional equation. Using the approx-
imate functional equation, write M(α, l) = M1(α, l) +M2(α, l), where

M1(α, l) =
∑∗

(d,2)=1

Φ

(
d

X

)∑
n

χ8d(nl)
n1/2+α

Vα

(
n

d1/2

)
,

M2(α, l) =
∑∗

(d,2)=1

Φ

(
d

X

)
Xα

∑
n

χ8d(nl)
n1/2−α V−α

(
n

d1/2

)
.

We can reduce M2 to a version of M1 but with slightly different param-
eters, namely

M2(α, l) = γαX
−α
∑∗

(d,2)=1

Φ−α

(
d

X

)∑
n

χ8d(nl)
n1/2−α V−α

(
n

d1/2

)
,

where Φs(x) = xsΦ(x) and

γα =
(

8
π

)−α Γ (1/2−α
2

)
Γ
(1/2+α

2

) .
For ease of reference, we state this simple development as follows.

Remark 3.1. To derive an expression for M2 via a corresponding term
from M1 involves swapping α and −α, replacing Φ(x) by Φ−α(x) = x−αΦ(x),
and multiplying by γαX

−α (in that order). Note that this operation is an
involution.
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As a convention, we shall often not write the dependence on α and l and
instead simply write M1, M2, etc.

3.2. The main term. For convenience we state the following

Conjecture 3.2. The conjecture of [CFKRS] and [DGH] is

∑∗

(d,2)=1

L(1/2 + α, χ8d)Φ
(
d

X

)
=
XΦ̃(1)
2ζ2(2)

ζ2(1 + 2α)Bα

+
X1−αΦ̃(1− α)γα

2ζ2(2)
ζ2(1− 2α)B−α +O(X1/2+ε),

where Φ̃ is the Mellin transform of Φ, and

ζ2(1 + 2α)Bα :=
∑

(n,2)=1

1
n1+2α

∏
p|n

(1 + p−1)−1.

Here and throughout this paper , we use the notation Lq(s) to denote the
modification of an L-series L(s) obtained by removing the Euler factors for
primes p dividing q. Here Bα has an absolutely convergent Euler product
for α in a right half-plane containing the origin. Furthermore, the estimate
holds uniformly for |Re(α)| � (logX)−1 and |Im(α)| � (logX)2, say.

This conjecture was essentially proved by [GH] (though the main term is
different since they averaged over all fundamental discriminants); we quote
it here (as a conjecture) simply as a means to quickly produce the main
term with general α. We emphasize that our result is unconditional.

One can derive this conjecture from the recipe of [CFKRS] using the
orthogonality relation

Σ :=
∑∗

(d,2)=1

χ8d(m)Φ
(
d

X

)
∼ XΦ̃(1)

2ζ2(2)

∏
p|m

(1 + p−1)−1

for m an odd square, and Σ = o(X) otherwise (for fixed m).
Actually we need the “twisted” moment conjecture (see [HY, Section 7]),

which states

Conjecture 3.3. For any odd squarefree l, the following holds uni-
formly for |Re(α)| � (logX)−1 and |Im(α)| � (logX)2:

(3.1) M(α, l) =
XΦ̃(1)
2ζ2(2)

l−1/2−αζ2(1 + 2α)Bα(l)

+
X1−αΦ̃(1− α)γα

2ζ2(2)
l−1/2+αζ2(1− 2α)B−α(l) +O((lX)1/2+ε),
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where

ζ2(1 + 2α)Bα(l) =
∑

(n,2)=1

1
n1+2α

∏
p|nl

(1 + p−1)−1.

We shall prove Conjecture 3.3 with the stated error term by use of the
following

Theorem 3.4. Suppose that Conjecture 3.3 holds but with an error term
of size l1/2+εXf+ε for some 1/2 ≤ f ≤ 1. Then Conjecture 3.3 holds with
an error of size l1/2+εX(f+1/2)/2+ε.

We will obtain the exponent f0 = 1 as an initial estimate, which leads
to the sequence f1 = 3/4, f2 = 5/8, . . . , where clearly limn→∞ fn = 1/2,
and whence Conjecture 3.3 follows. Specializing to α = 0, l = 1 gives Theo-
rem 1.1.

Note that Theorem 3.4 gives an asymptotic formula for M(α, l) with a
main term larger than the error term provided l � X1/2−ε. Furthermore,
the error term is o(X) provided l� X1−ε. The significance of allowing large
l can be seen in the context of the mollifier method, where it is critical to
obtain precise asymptotics on these twisted moments with twisting integers
as large as possible.

In what follows we assume that |α| � (logX)−1, |Im(α)| � (logX)2, and
|Re(α)| � (logX)−1 in order to claim uniformity in terms of α; note that α
being close to zero is problematic in two ways, namely because of the pole
of ζ(1 + 2α), and because of the uniformity of G(s) in terms of α. Once we
establish (3.1) uniformly for such α, we extend the result to |α| � (logX)−1

with the same quoted error term in the following way. Since M(α, l) and the
main term of (3.1) are holomorphic for α near 0, we see that the error term
must also be holomorphic in terms of α. Then apply the maximum modulus
principle to the error term, with respect to the disk |α| � (logX)−1.

3.3. A short calculation of Bα(l). In order to recognize certain other
expressions in terms of Bα, and also to observe the absolute and uniform
convergence of Bα(l) for α in a neighborhood of the origin, we now state

Lemma 3.5. We have

(3.2) Bα(l) =
∏
p|l

(1 + p−1)−1
∏
p-2l

(1− p−2−2α(1 + p−1)−1)

and

(3.3)
1

ζ2(2)
Bα(l) =

φ(l)
l

∏
p-2l

(1− p−2 − p−2−2α + p−3−2α).
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Proof. We have

ζ2(1 + 2α)Bα(l) =
∑

(n,2)=1

1
n1+2α

∏
p|nl

(1 + p−1)−1

=
∏
p|l

(1 + p−1)−1
∑

(n,2)=1

1
n1+2α

∏
p|n, p-l

(1 + p−1)−1

=
∏
p|l

(1 + p−1)−1(1− p−1−2α)−1
∑

(n,2l)=1

1
n1+2α

∏
p|n

(1 + p−1)−1,

which upon performing the sum over n becomes∏
p|l

(1 + p−1)−1(1− p−1−2α)−1
∏
p-2l

(
1 +

p−1−2α

1− p−1−2α
(1 + p−1)−1

)
= ζ2(1 + 2α)

∏
p|l

(1 + p−1)−1
∏
p-2l

(1− p−1−2α + p−1−2α(1 + p−1)−1)

= ζ2(1 + 2α)
∏
p|l

(1 + p−1)−1
∏
p-2l

(1− p−2−2α(1 + p−1)−1),

which is (3.2). Continuing, we also have
1

ζ2(2)
Bα(l) =

∏
p|l

(1 + p−1)−1
∏
p-2l

(1− p−2−2α(1 + p−1)−1)
∏
p-2

(1− p−2)

=
∏
p|l

(1− p−1)
∏
p-2l

(1− p−2)(1− p−2−2α(1 + p−1)−1)

=
φ(l)
l

∏
p-2l

(1− p−2 − p−2−2α + p−3−2α).

3.4. Removing the squarefree condition. Our basic strategy is to employ
Poisson summation to the sum over d. Of course, one must remove the
squarefree condition in some way. Naturally we shall use Möbius inversion.
In this way we obtain

M1 =
∑

(a,2l)=1

µ(a)
∑

(d,2)=1

Φ

(
da2

X

) ∑
(n,2a)=1

χ8d(nl)
n1/2+α

Vα

(
n

ad1/2

)
.

Now we separate the terms with a ≤ Y and with a > Y (Y a parameter
to be chosen later), writing M1 = MN + MR, respectively. We shall treat
these two terms with completely different methods. We also set the notation
M2 = M−N +M−R.

3.5. Outline of the rest of the paper. We compute MR in Section 4, and
MN in Section 5. These are completely different computations, as we use
Poisson summation on MN , while we reduce MR to an expression similar
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to the original moment M(α, l) for which we extract a main term using
Conjecture 3.3 but with an error term of size O(l1/2+εXf+ε). This analysis
naturally expresses each of MR and MN as the sum of certain contour inte-
grals which are individually difficult (if not impossible) to estimate to our
desired degree of accuracy, plus an acceptable error term. For example, the
familiar main term obtained by taking the k = 0 term after Poisson summa-
tion (here k is the “dual” variable) is given, after some simplifications, by
(5.1). A standard contour shift and estimation of the tail of the sum over a
easily expresses this term as one of the main terms of Conjecture 3.3, plus
an error of size O(X3/4+ε) +O(X/Y ) (taking l = 1 for ease of exposition).
The other terms are similar, although some do not contribute a main term.
Although we cannot estimate each of the various contour integrals with an
error better than O(X3/4+ε), it turns out that there is a lot of simplification
that occurs by summing the integrals; we exhibit this pleasant behavior in
Section 6.

4. Estimating MR. Our plan in analyzing MR is to go back to square-
free integers but where the variables are significantly smaller than before (as-
suming Y is moderately large), an idea that seems to go back to Iwaniec [I].
We shall use a refinement that was recently used in [BY], whereby one goes
a step further and uses a known estimate for M(α, l) (in this case an asymp-
totic formula) to obtain an improved result. In this article we will extract a
kind of main term that naturally combines with the main term of MN . In
this manner we can vastly improve the size of the error term in this analysis.

4.1. Reintroducing squarefrees. To go back to squarefree integers, let
d 7→ b2d, which gives

MR =
∑∗

(d,2)=1

∑
(b,2l)=1

∑
(a,2l)=1
a>Y

µ(a)Φ
(
d(ab)2

X

) ∑
(n,ab)=1

χ8d(nl)
n1/2+α

Vα

(
n

ab
√
d

)
.

Letting c = ab be a new variable, we get

MR =
∑

(c,2l)=1

(∑
a|c
a>Y

µ(a)
) ∑∗

(d,2)=1

Φ

(
dc2

X

) ∑
(n,c)=1

χ8d(nl)
n1/2+α

Vα

(
n

c
√
d

)
.

Now use the integral representation of Vα (i.e. (2.1)) to get

MR =
∑

(c,2l)=1

(∑
a|c
a>Y

µ(a)
) ∑∗

(d,2)=1

Φ

(
dc2

X

)

×
∑

(n,c)=1

χ8d(nl)
n1/2+α

1
2πi

�

(1/2+ε)

(
c
√
d

n

)sG(s)
s

gα(s) ds.
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Moving the sum over n inside the integral, we get

MR =
∑

(c,2l)=1

(∑
a|c
a>Y

µ(a)
) ∑∗

(d,2)=1

χ8d(l)Φ
(
dc2

X

)

× 1
2πi

�

(1/2+ε)

(c
√
d)sL(1/2 + α+ s, χ8dχ0,c)

G(s)
s

gα(s) ds,

where χ0,c is the principal character to modulus c. Now move the line of
integration to ε without crossing any poles in this process (by Remark 2.2).
Then express the Dirichlet L-function in terms of its associated primitive
one, getting

(4.1) MR =
∑

(c,2l)=1

(∑
a|c
a>Y

µ(a)
)∑

r|c

µ(r)
r1/2+α

∑∗

(d,2)=1

χ8d(lr)Φ
(
dc2

X

)

× 1
2πi

�

(ε)

(
c
√
d

r

)s
L(1/2 + α+ s, χ8d)

G(s)
s

gα(s) ds,

where ε � (logX)−1.

4.2. Using the recursion. Observe that the sum over d takes the form∑∗

(d,2)=1

χ8d(lr)Φ
(
dc2

X

)
(c
√
d)sL(1/2 + α+ s, χ8d)

= Xs/2
∑∗

(d,2)=1

χ8d(lr)Φs/2

(
d

X ′

)
L(1/2 + α+ s, χ8d),

where recall Φs(x) = xsΦ(x) and X ′ = X/c2. At this point we apply our
inductive hypothesis, namely that∑∗

(d,2)=1

χ8d(lr)Φs/2

(
d

X ′

)
L(1/2 + α+ s, χ8d) = M.T.+O((lr)1/2+εX ′

f+ε),

where f ≥ 1/2 is some constant, and Im(s) � (logX)2. Note that due to
the exponential decay of gα(s) as |Im(s)| → ∞, we may truncate the integral
appearing in (4.1) for Im(s)� (logX)2 at no cost.

As the basis step one can take f = 1 due to known estimates for the
second moment of this family due to Jutila [J] (with only slightly more
work the treatment in this article can also establish this initial estimate
for the first moment). Here the M.T. is given by the main term appearing
in Conjecture 3.3 (note that to establish the intial case, using f = 1, no
knowledge of M.T. is required other than M.T.� X1+ε). To be completely
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explicit, we have

M.T. =
X

c2
Φ̃s/2(1)
2ζ2(2)

(lr)−1/2−α−sζ2(1 + 2α+ 2s)Bα+s(lr)

+
(
X

c2

)1−α−s Φ̃s/2(1− α− s)
2ζ2(2)

γα+s(lr)−1/2+α+sζ2(1− 2α− 2s)B−α−s(lr).

Note Φ̃s/2(1) = Φ̃(1 + s/2) and Φ̃s/2(1− α− s) = Φ̃(1− α− s/2).
Inserting this calculation into the computation for MR gives that MR =

MR1 +MR2 + E.T., say, where we compute (using the assumption f ≥ 1/2)

E.T.� Xε
∑

(c,2l)=1

(∑
a|c
a>Y

1
)∑

r|c

1
r1/2

(lr)1/2+ε

(
X

c2

)f+ε

� Xf+ε

Y 2f−1
l1/2+ε.

We compute the main term MR1 as follows:

MR1 =
X

2ζ2(2)l1/2+α

∑
(c,2l)=1

c−2
(∑

a|c
a>Y

µ(a)
)∑

r|c

µ(r)
r1+2α

× 1
2πi

�

(ε)

Xs/2r−2sl−s
G(s)
s

gα(s)Φ̃(1 + s/2)ζ2(1 + 2α+ 2s)Bα+s(lr) ds.

Here we freely extended the integration back to |Im(s)| � (logX)2, again
at no cost.

Similarly, we have

MR2 =
X

2ζ2(2)l1/2−α
∑

(c,2l)=1

c−2
(∑

a|c
a>Y

µ(a)
)∑

r|c

µ(r)
r

1
2πi

×
�

(ε)

Xs/2ls
G(s)
s

gα(s)Φ̃(1−α−s/2)ζ2(1−2α−2s)B−α−s(lr)
(
X

c2

)−α−s
γα+s ds.

That is,

MR2 =
X1−α

2ζ2(2)l1/2−α
∑

(c,2l)=1

c−2
(∑

a|c
a>Y

µ(a)
)∑

r|c

µ(r)
r

1
2πi

×
�

(ε)

X−s/2lsc2α+2s G(s)
s

gα(s)Φ̃(1−α−s/2)ζ2(1−2α−2s)B−α−s(lr)γα+s ds.

4.3. Simplifying the Dirichlet series. At this point we shall simplify the
Dirichlet series appearing in the above expressions for MR1 and MR2. We
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need to compute

C(w,α+ s) :=
∑

(c,2l)=1

1
c2+w−α−s

∑
a|c
a>Y

µ(a)
∑
r|c

µ(r)
r1+α+s+w

ζ2(1 + 2w)Bw(lr),

where w = ±(α+ s). Now we compute

C(w,α+s) =
∑

(c,2l)=1

1
c2+w−α−s

∑
a|c, r|c
a>Y

µ(a)µ(r)
r1+α+s+w

∑
(n,2)=1

1
n1+2w

∏
p|lrn

(1+p−1)−1

=
∑

a>Y, r≥1

µ(a)µ(r)
r1+α+s+w

∑
(c,2l)=1

c≡0 (mod a)
c≡0 (mod r)

1
c2+w−α−s

∑
(n,2)=1

1
n1+2w

∏
p|lrn

(1 + p−1)−1,

which simplifies to

C(w,α+ s) = ζ2l(2 + w − α− s)
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2+w−α−s

×
∑

(r,2l)=1

µ(r)
r1+α+s+w

(
(a, r)
r

)2+w−α−s ∑
(n,2)=1

1
n1+2w

∏
p|nr, p-l

(1 + p−1)−1.

Thus we get

C(w,α+s) = ζ2l(2+w−α−s)
∏
p|l

(1+p−1)−1(1−p−1−2w)−1
∑

(a,2l)=1
a>Y

µ(a)
a2+w−α−s

×
∑

(r,2l)=1

µ(r)
r1+α+s+w

(
(a, r)
r

)2+w−α−s ∑
(n,2l)=1

1
n1+2w

∏
p|nr, p-l

(1 + p−1)−1.

Using joint multiplicativity, we compute that

(4.2)
∑

(r,2l)=1

∑
(n,2l)=1

µ(r)
r1+α+s+w

(
(a, r)
r

)2+w−α−s 1
n1+2w

∏
p|nr

(1 + p−1)−1

=
∏
p-2l

∑
0≤r≤1

∑
0≤j<∞

(−1)r[(1 + p−1)−1]j+r>0

pr(1+α+s+w)+j(1+2w)

(
(a, pr)
pr

)2+w−α−s
,

where [A]∗ = A if ∗ is true, and = 1 otherwise. Now (4.2) becomes

∏
p-2l

( ∑
0≤j<∞

[(1 + p−1)−1]j>0

pj(1+2w)
−

∑
0≤j<∞

( (a,p)
p

)2+w−α−s(1 + p−1)−1

pj(1+2w)+1+α+s+w

)
,
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which in turn is∏
p-2l

(
1 +

p−1−2w(1 + p−1)−1

1− p−1−2w
− p−1−α−s−w(1 + p−1)−1

1− p−1−2w

(
(a, p)
p

)2+w−α−s)
.

We can simplify this as∏
p-2l

(1− p−1−2w)−1

(
1− p−1−2w +

p−1−2w

1 + p−1
− p−1−α−s−w

1 + p−1

(
(a, p)
p

)2+w−α−s)
.

Thus we have

C(w,α+ s) = ζ2l(2 +w− α− s)ζ2(1 + 2w)
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2+w−α−s

×
∏
p-2l

(
1− p−1−2w +

p−1−2w

1 + p−1
− p−1−α−s−w

1 + p−1

(
(a, p)
p

)2+w−α−s)
.

Simplifying a little bit, we get

C(α+ s, α+ s) = ζ2l(2)ζ2(1 + 2α+ 2s)
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2

×
∏
p-2l

(
1− p−1−2α−2s +

p−1−2α−2s

1 + p−1
− p−1−2α−2s

1 + p−1

(a, p)2

p2

)
.

Note

1− p−1−2α−2s +
p−1−2α−2s

1 + p−1
− p−1−2α−2s

1 + p−1

(a, p)2

p2

=
{

1− p−1−2α−2s if p | a,
1− p−2−2α−2s if p - a.

Furthermore, note
ζ2l(2)

∏
p|l

(1 + p−1)−1 = ζ2(2)
φ(l)
l
.

Thus we have

C(α+ s, α+ s) = ζ2(2)
φ(l)
l

∑
(a,2l)=1
a>Y

µ(a)
a2

ζ2a(1 + 2α+ 2s)
ζ2al(2 + 2α+ 2s)

,

and hence

(4.3) MR1 =
∑

(a,2l)=1
a>Y

µ(a)φ(l)
l

2a2

× 1
2πi

�

(ε)

X1+s/2 G(s)
s

gα(s)
Φ̃(1 + s/2)
l1/2+α+s

ζ2a(1 + 2α+ 2s)
ζ2al(2 + 2α+ 2s)

ds.
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Similarly, we require C(−α− s, α+ s), which is

C(−α− s, α+ s) = ζ2l(2− 2α− 2s)ζ2(1− 2α− 2s)
∏
p|l

(1 + p−1)−1

×
∑

(a,2l)=1
a>Y

µ(a)
a2−2α−2s

∏
p-2l

(
1− p−1+2α+2s +

p−1+2α+2s

1 + p−1
−
p−1
( (a,p)

p

)2−2α−2s

1 + p−1

)
.

For p - a we get

1− p−1+2α+2s + p−1+2α+2s(1 + p−1)−1− p−1

(
(a, p)
p

)2−2α−2s

(1 + p−1)−1

= 1− p−2+2α+2s.
For p | a it is

1− p−1+2α+2s + p−1+2α+2s(1 + p−1)−1 − p−1(1 + p−1)−1

= (1 + p−1)−1(1− p−2+2α+2s).

Thus we have

MR2 =
X1−α

2ζ2(2)l1/2−α
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2

× 1
2πi

�

(ε)

X−s/2lsa2α+2s G(s)
s

gα(s)Φ̃(1− α− s/2)ζ2(1− 2α− 2s)

× ζ2l(2− 2α− 2s)γα+s

∏
p-2al

(1− p−2+2α+2s)
∏
p|a

1− p−2+2α+2s

1 + p−1
ds,

which simplifies to

(4.4) MR2 =
X1−α

2ζ2(2)l1/2−α
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2

∏
p|a

(1 + p−1)−1

× 1
2πi

�

(ε)

X−s/2lsa2α+2s G(s)
s

gα(s)Φ̃(1− α− s/2)ζ2(1− 2α− 2s)γα+s ds.

In summary, we have shown

Proposition 4.1. Suppose that Conjecture 3.3 holds but with an error
of size O(l1/2+εXf+ε). Then

MR = MR1 +MR2 +O

(
Xf+ε

Y 2f−1
l1/2+ε

)
,

where MR1 and MR2 are given by (4.3) and (4.4).
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4.4. Computing M−R. We can get M−R from Proposition 4.1 using Re-
mark 3.1. Here we compute M−R2. We get

M−R2 =
X

2ζ2(2)l1/2+α

∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2

∏
p|a

(1 + p−1)−1

× 1
2πi

�

(ε)

X−s/2lsa−2α+2s G(s)
s

g−α(s)Φ̃(1− s/2)ζ2(1 + 2α− 2s)γ−α+sγα ds.

Now apply the change of variables s 7→ −s to get

M−R2 = − X

2ζ2(2)l1/2+α

∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2

∏
p|a

(1 + p−1)−1

× 1
2πi

�

(−ε)

Xs/2l−sa−2α−2s G(s)
s

g−α(−s)Φ̃(1+s/2)ζ2(1+2α+2s)γ−α−sγα ds.

Next notice that

g−α(−s)γ−α−sγα = gα(s),

so we get

(4.5) M−R2 = − X

2ζ2(2)l1/2
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a>Y

µ(a)
a2

∏
p|a

(1 + p−1)−1

× 1
2πi

�

(−ε)

Xs/2l−α−sa−2α−2s G(s)
s

gα(s)Φ̃(1 + s/2)ζ2(1 + 2α+ 2s) ds.

5. Computing MN . Recall

MN =
∑

(a,2l)=1
a≤Y

µ(a)
∑

(n,2a)=1

(
8
ln

)
n1/2+α

∑
(d,2)=1

(
d

ln

)
Φ

(
da2

X

)
Vα

(
n

a
√
d

)
.

5.1. Application of Poisson summation. The Poisson summation for-
mula (Lemma 2.3) shows∑
(d,2)=1

(
d

ln

)
Φ

(
da2

X

)
Vα

(
n

a
√
d

)

=

(
2
ln

)
2ln

∑
k∈Z

(−1)kGk(ln)
∞�

−∞
(C + S)

(
2πkx
2ln

)
Φ

(
xa2

X

)
Vα

(
n

a
√
x

)
dx.
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Here (C + S)(t) means cos(t) + sin(t). Thus we have

MN =
X

2

∑
(a,2l)=1
a≤Y

µ(a)
a2

∑
(n,2a)=1

1
n1/2+α

∑
k∈Z

(−1)k
Gk(ln)
ln

×
∞�

−∞
(C + S)

(
2πkxX
2lna2

)
Φ(x)Vα

(
n√
xX

)
dx.

Now write MN = MN (k = 0) +MN (k 6= 0), where naturally MN (k = 0)
corresponds to the term with k = 0.

5.2. Computation of MN (k = 0). By Lemma 2.4 we haveG0(ln) = φ(ln)
if ln = � (i.e. n = l�, since l is odd and squarefree), and 0 otherwise. Thus
we get

MN (k = 0) =
X

2l1/2+α

∑
(a,2l)=1
a≤Y

µ(a)
a2

∑
(n,2a)=1

φ(ln)/ln
n1+2α

∞�

0

Φ(x)Vα

(
ln2

√
xX

)
dx.

Now we compute the relevant Dirichlet series as follows:∑
(n,2a)=1

φ(ln)/ln
n1+2α+2s

=
φ(l)
l

∏
p-2al

1− p−2−2α−2s

1− p−1−2α−2s

∏
p-2a, p|l

(1− p−1−2α−2s)−1,

which simplifies to
φ(l)
l
ζ2a(1 + 2α+ 2s)

∏
p-2al

(1− p−2−2α−2s) =
φ(l)
l

ζ2a(1 + 2α+ 2s)
ζ2al(2 + 2α+ 2s)

.

Using the integral representation of V (i.e. (2.1)), and the Mellin transform
of Φ, we get

(5.1) MN (k = 0) =
Xφ(l)/l
2l1/2+α

∑
(a,2l)=1
a≤Y

µ(a)
a2

× 1
2πi

�

(ε)

Φ̃(1 + s/2)
G(s)
s

gα(s)Xs/2l−s
ζ2a(1 + 2α+ 2s)
ζ2al(2 + 2α+ 2s)

ds.

5.3. Extracting a secondary term from MN (k 6= 0). It turns out, but is
not at all obvious, that MN (k = 0) and M−N (k 6= 0) combine naturally.
The reason for this simplification has to do with the sum over k’s that are
squares. In his work on the mollified second moment (and the third moment)
of this family, Soundararajan extracted certain main terms from such square
k’s [S]. The situation here is somewhat different, in that both MN (k = 0)
and the sum over square k’s seem to be individually intractable beyond an
error term of O(X3/4+ε), at least with our present knowledge of the zero-free
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region of the Riemann zeta function (here by intractable we simply mean
that the usual procedure of moving contours of integration leads naturally
to an error of O(X3/4+ε), and the presence of a factor ζ−1 prevents moving
the contour any further).

Recall

MN (k 6= 0) =
X

2

∑
(a,2l)=1
a≤Y

µ(a)
a2

∑
(n,2a)=1

1
n1/2+α

∑
k 6=0

(−1)k
Gk(ln)
ln

×
∞�

−∞
(C + S)

(
2πkxX
2lna2

)
Φ(x)Vα

(
n√
xX

)
dx.

5.4. Manipulations with the test functions. In this section we replace
the previous Fourier-type integral transform with a Mellin-type integral. By
using the Mellin transforms of Φ and Vα, we get

(5.2)
∞�

−∞
(C + S)

(
2πxkX
2lna2

)
Φ(x)Vα

(
n

(xX)1/2

)
dx

=
∞�

0

(C + S)
(

2πxkX
2lna2

)
1

(2πi)2
�

(cu)

�

(c2)

Φ̃(u)
G(s)
s

gα(s)
(xX)s/2

xuns
ds du dx,

which after the change of variables u 7→ u+ 1 becomes
∞�

0

(C + S)(sgn(k)x)

× 1
(2πi)2

�

(cu)

�

(cs)

Φ̃(1 + u)
Xu

ns

(
lna2x

π|k|

)−u+s/2 G(s)
s

gα(s) ds du
dx

x
.

From [GR, 17.43.3, 17.43.4], we have (where CS stands for cos or sin),
∞�

0

CS(x)xw
dx

x
= Γ (w)CS(πw/2)

for 0 < Re(w) < 1. By interchanging the orders of integration (justified, say,
by dissecting the x-integral into x ≤ A and x > A; one treats the x > A
integral by a contour shift, while the x ≤ A integral is interchanged with
the s and u integrals, and then extended to all x by integration by parts),
we see that (5.2) is

1
(2πi)2

�

(cu)

�

(cs)

Φ̃(1 + u)Xu

(
lna2

π|k|

)s/2−uG(s)
s

gα(s)n−s

× Γ
(
s
2 − u

)
(C + sgn(k)S)

(
π
2

(
s
2 − u

))
ds du.
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Here the requirement is 0 < 1
2cs − cu < 1. We initially take cu = 0, cs = ε.

Consequently, we get

MN (k 6= 0) =
X

2

∑
(a,2l)=1
a≤Y

µ(a)
a2

∑
(n,2a)=1
k 6=0

(−1)kGk(ln)
n1/2+αln

(5.3)

× 1
(2πi)2

�

(cu)

�

(cs)

Φ̃(1 + u)
Xu

ns

(
lna2

π|k|

)s/2−u G(s)
s

g(s)

× Γ (s/2− u)(C + sgn(k)S)
(

1
2π(s/2− u)

)
ds du.

Next we take cs sufficiently large so that the sums over n and k converge
absolutely.

5.5. A Dirichlet series computation. We need to compute

H(k1, l; v, w) =
∞∑
k2=1

∑
(n,2a)=1

Gk1k2
2
(ln)/ln

kv2n
w

,

where k1 is squarefree, and recall that l is odd and squarefree. It is clear
from Lemma 2.4 that Gk1k2

2
(n) is multiplicative in k2 and n. The analogous

computation over squares here was necessary for Soundararajan to obtain
the full main term in the mollified second moment of this family [S], while
here we require it to cancel certain other terms; it does not give a main
term.

In this section, we show

Lemma 5.1. We have

H(k1, l; v, w) =
ζl(v)ζ2al(v + 2w)L2al(1/2 + w,χk1)
ζ2al(1 + 2w)L2al(1/2 + v + w,χk1)

∏
p|l

Jp(k1; v, w),

where

Jp(k1; v, w)

=
−(1− p−v−2w)

(
1−

(
k1
p

)
p−1/2−w)+ (1− p−1−2w)

(
1−

(
k1
p

)
p−1/2−v−w)

p−w(1− p−v)(1− p−v−2w)
(
1−

(
k1
p

)
p−1/2−w

) .

Furthermore,

(5.4) Jp(k1; v, w)� p−1/2

for Re(v) ≥ 2, Re(w) ≥ 0.
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Proof. To begin, we factor H as follows:

H(k1, l; v, w) =
∏
p|2a

(1− p−v)−1
∑

(k2,2a)=1

∑
(n,2a)=1

Gk1k2
2
(ln)/ln

kv2n
w

=
∏
p|2a

(1− p−v)−1

( ∑
(k2,2al)=1

∑
(n,2al)=1

Gk1k2
2
(n)/n

kv2n
w

)( ∏
k2, n|l∞

Gk1k2
2
(ln)/ln

kv2n
w

)
.

Now we need to compute

Hp(k1; v, w) =
∞∑
j=0

∞∑
r=0

Gk1p2j (pr)/pr

pjv+rw
,

where there are two cases depending on whether p - k1 or p | k1. If p - k1,
we get

Hp(k1; v, w) =
∑

0≤r≤j<∞

φ(p2r)/p2r

pjv+2rw
+
(
k1

p

) ∞∑
j=0

p2j+1/2p−2j−1

pjv+(2j+1)w
.

Summing over j gives

(5.5) Hp(k1; v, w)

= (1− p−v)−1
∞∑
r=0

φ(p2r)/p2r

pr(2w+v)
+
(
k1

p

)
p−1/2−w(1− p−v−2w)−1.

Note
∞∑
r=0

φ(p2r)/p2r

pr(2w+v)
= 1 +

(
1− 1

p

)
p−v−2w

1− p−v−2w
,

and thus

(1− p−v)−1
∞∑
r=0

φ(p2r)/p2r

pr(2w+v)
= (1− p−v−2w)−1(1− p−v)−1(1− p−1−v−2w).

Inserting this calculation into (5.5), we get

Hp(k1; v, w)

= (1− p−v−2w)−1(1− p−v)−1

(
1− p−1−v−2w + (1− p−v)

(
k1
p

)
p1/2+w

)
.

Next pull out the factor
(
1−

(
k1
p

)
p−1/2−w)−1, and note(

1−
(
k1
p

)
p1/2+w

)(
1− p−1−v−2w + (1− p−v)

(
k1
p

)
p1/2+w

)
= (1− p−1−2w)

(
1−

(
k1

p

)
p−1/2−v−w

)
.
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In conclusion, we get

(5.6) Hp(k1; v, w) =
(1− p−1−2w)

(
1−

(
k1
p

)
p−1/2−v−w)

(1− p−v)(1− p−v−2w)
(
1−

(
k1
p

)
p−1/2−w

)
for p - k1.

The case where p | k1 is similar, and we compute in this situation that

Hp(k1; v, w) =
∑

0≤r≤j<∞

φ(p2r)/p2r

pjv+2rw
−
∞∑
j=0

p2j+1p−2j−2

pjv+(2j+2)w

= (1− p−v)−1

(
1 +

(
1− 1

p

)
p−v−2w

1− p−v−2w

)
− p−1−2w

1− p−v−2w

= (1− p−v−2w)−1(1− p−v)−1(1− p−1−2w).

Notice that the expression (5.6) reduces to this one for p | k1, so we may
actually use (5.6) for all k1.

Finally, we need to compute the contribution from n, k | l∞ (the notation
meaning all the primes dividing n and k also divide l). In this case the
computation reduces to

Jp(k1; v, w) :=
∞∑
j=0

∞∑
r=0

Gk1p2j (pr+1)/pr+1

pjv+rw
= pw

∞∑
j=0

∞∑
r=1

Gk1p2j (pr)/pr

pjv+rw

= pw
(
− 1

1− p−v
+

(1− p−1−2w)
(
1−

(
k1
p

)
p−1/2−v−w)

(1− p−v)(1− p−v−2w)
(
1−

(
k1
p

)
p−1/2−w

))

=
−(1− p−v−2w)

(
1−

(
k1
p

)
p−1/2−w)+ (1− p−1−2w)

(
1−

(
k1
p

)
p−1/2−v−w)

p−w(1− p−v)(1− p−v−2w)
(
1−

(
k1
p

)
p−1/2−w

) .

The estimate (5.4) is clear from the previous representation.

5.6. Another Dirichlet series computation. We need to slightly general-
ize the computation from the previous section. Namely, we require a formula
for

Aε,l(u,w) :=
∑

(n,2a)=1

∞∑
k=1

(−1)k
Gεk(ln)/ln
|k|unw

,

where ε = ±1. Of course it is also natural to write k = k1k
2
2 where k1

is squarefree. Then we sum over k1 odd and k1 even separately. Thus
we get
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(5.7) Aε,l(u,w) =
∑∗

k1>0

1
|k1|u

∑
(n,2a)=1

∞∑
k2=1

(−1)k1k2
Gεk1k2

2
(ln)/ln

|k2|2unw

=
∑∗

k1 even

1
|k1|u

∑
(n,2a)=1

∞∑
k2=1

Gεk1k2
2
(ln)

ln|k2|2unw

+
∑∗

k1 odd

1
|k1|u

∑
(n,2a)=1

∞∑
k2=1

(−1)k2
Gεk1k2

2
(ln)

ln|k2|2unw
.

For each fixed k1 we have computed the inner Dirichlet series of (5.7)2
(it is H(εk1, l; v, w)). We need to compute

H−1(εk1, l; v, w) :=
∑

(n,2a)=1

∞∑
k2=1

(−1)k2
Gεk1k2

2
(ln)/ln

kv2n
w

.

We first do some simple manipulations to get rid of the (−1)k2 factor, getting

H−1(εk1, l; v, w) =
∑
k2 even

∑
(n,2a)=1

Gεk1k2
2
(ln)/ln

kv2n
w

−
∑
k2 odd

∑
(n,2a)=1

Gεk1k2
2
(ln)/ln

kv2n
w

.

For the latter sum we use inclusion-exclusion to remove the condition that
k2 is odd and then for the sum over k2 even we apply the change of variables
k2 7→ 2k2, using G4εk1k2

2
(ln) = Gεk1k2

2
(ln) since ln is odd, to get

H−1(εk1, l; v, w) = 2−v
∞∑
k2=1

∑
(n,2a)=1

Gεk1k2
2
(ln)/ln

kv2n
w

− (1− 2−v)
∞∑
k2=1

∑
(n,2a)=1

Gεk1k2
2
(ln)/ln

kv2n
w

,

whence
H−1(εk1, l; v, w) = (21−v − 1)H(εk1, l; v, w).

Thus we have

Al,ε(u,w) =
∑∗

k1 even

1
|k1|u

H(εk1, l; 2u,w) +
∑∗

k1 odd

21−2u − 1
|k1|u

H(εk1, l; 2u,w).

Using our computation of H(εk1, l; v, w), we get

Al,ε(u,w) =
ζl(2u)ζ2al(2u+ 2w)

ζ2al(1 + 2w)

( ∑∗

k1 even

1
|k1|u

+
∑∗

k1 odd

21−2u − 1
|k1|u

)
× L2al(1/2 + w,χεk1)
L2al(1/2 + 2u+ w,χεk1)

∏
p|l

Jp(εk1; 2u,w).



First moment of Dirichlet L-functions 93

5.7. Calculating MN (k 6= 0). With these Dirichlet series in hand, we
now return to our calculation of MN (k 6= 0) from (5.3), giving, with cu = 0
and cs = 2,

(5.8) MN (k 6= 0)

=
X

2

∑
(a,2l)=1
a≤Y

µ(a)
a2

1
(2πi)2

�

(cu)

�

(cs)

Φ̃(1 + u)Xu

(
la2

π

)s/2−uG(s)
s

gα(s)

×
∑
ε=±1

Al,ε(s/2− u, 1/2 + α+ s/2 + u)Γ (s/2− u)

× (C + sgn(ε)S)
(

1
2π(s/2− u)

)
ds du.

Note

Al,ε(s/2− u, 1/2 + α+ s/2 + u) =
ζl(s− 2u)ζ2al(1 + 2α+ 2s)
ζ2al(2 + 2α+ s+ 2u)

×
( ∑∗

k1 even

1
|k1|s/2−u

+
∑∗

k1 odd

21−s+2u − 1
|k1|s/2−u

)
L2al(1 + α+ s/2 + u, χεk1)
L2al(1 + 3s/2 + α− u, χεk1)

×
∏
p|l

Jp(εk1; s− 2u, 1/2 + α+ s/2 + u).

Now we move cs to 1/2 + ε, and cu to −3/4. It is evident that we crossed
a pole at α + s/2 + u = 0 when k1 = 1, ε = 1 only. On the new line we
bound everything trivially and use the known estimate on the first moment
of quadratic Dirichlet L-functions to see that the sum over k1 converges
absolutely on these lines of integration.

Letting MN (k1 = 1) be the contribution from the residue which appears
with k1 = 1, ε = 1 only, we get

MN (k 6= 0) = MN (k1 = 1) +O(X1/4+εY l1/2+ε).

5.8. Computing MN (k1 = 1). Note that the residue of Al,1(s/2−u, 1/2+
α+ s/2 + u) at u = −α− s/2 is

φ(2al)
2al

ζl(2s+ 2α)
ζ2al(2)

(21−2s−2α − 1)
∏
p|l

Jp(1; 2s+ 2α, 1/2).

Also note

Jp(1; 2s+ 2α, 1/2) = p−1/2(1− p−2α−2s)−1.

Thus we find that the residue of Al,1 is

φ(a)φ(l)
2al

l−1/2 ζ(2s+ 2α)
ζ2al(2)

(21−2s−2α − 1).
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Inserting this into (5.8), we get

MN (k1 = 1) =
X

2

∑
(a,2l)=1
a≤Y

µ(a)
a2

1
2πi

�

(ε)

Φ̃(1− α− s/2)X−α−s/2
(
la2

π

)α+s

× G(s)
s

gα(s)
φ(a)φ(l)
2al3/2

ζ(2α+ 2s)
ζ2al(2)

× (21−2α−2s − 1)Γ (α+ s)(C + S)
(

1
2π(α+ s)

)
ds.

5.9. Simplifying MN (k1 = 1). In this section we show

Proposition 5.2. We have

MN (k1 = 1) = −X
1−αφ(l)/l
2l1/2

γα
∑

(a,2l)=1
a≤Y

µ(a)φ(a)/a
a2ζ2al(2)

× 1
2πi

�

(−ε)

Φ̃(1− α+ s/2)Xs/2(la2)α−s
G(s)
s

g−α(s)ζ2(1− 2α+ 2s) ds,

and

(5.9) M−N (k1 = 1)

= − X

2ζ2(2)l1/2
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a≤Y

µ(a)
a2

∏
p|a

(1 + p−1)−1

× 1
2πi

�

(−ε)

Φ̃(1 + s/2)Xs/2(la2)−α−s
G(s)
s

gα(s)ζ2(1 + 2α+ 2s) ds.

Proof. First use the functional equation for the Riemann zeta function
in the form

π−α−sΓ (α+ s)ζ(2α+ 2s) = π−1/2+α+sΓ (1/2− α− s)ζ(1− 2α− 2s),

giving

MN(k1 =1)=
Xφ(l)/l

2l1/2
1
2

∑
(a,2l)=1
a≤Y

µ(a)φ(a)/a
a2ζ2al(2)

× 1
2πi

�

(ε)

Φ̃(1−α−s/2)X−α−s/2(la2)α+s G(s)
s

gα(s)π−1/2+α+s

×Γ (1/2−α−s)ζ(1−2α−2s)(21−2α−2s−1)(C+S)
(

1
2π(α+s)

)
ds.

First, note that

(21−2α−2s − 1)ζ(1− 2α− 2s) = 21−2α−2sζ2(1− 2α− 2s).
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Next we manipulate the gamma functions and C + S term, namely
1
2gα(s)π−1/2+α+sΓ (1/2− α− s)21−2α−2s(C + S)

(
1
2π(α+ s)

)
=
Γ
(1/2+α+s

2

)
Γ
(1/2+α

2

) π−1/2+α+s/2Γ (1/2− α− s)2−2α−s/2(C + S)
(

1
2π(α+ s)

)
.

Now we use the trigonometric identity

cos(θ) + sin(θ) =
√

2 cos(π/4− θ)

to get
1
2gα(s)π−1/2+α+sΓ (1/2− α− s)21−2α−2s(C + S)

(
1
2π(α+ s)

)
=
Γ
(1/2+α+s

2

)
Γ
(1/2+α

2

) π−1/2+α+s/2Γ (1/2−α− s)21/2−2α−s/2 cos
(

1
2π(1/2−α− s)

)
.

Next we use the gamma function identity (see Chapter 10 of [Da])

π−1/221−u cos
(

1
2πu

)
Γ (u) =

Γ
(
u
2

)
Γ
(

1−u
2

)
for u = 1/2− α− s to get

Γ
(1/2+α+s

2

)
Γ
(1/2+α

2

) π−1/2+α+s/2Γ (1/2−α− s)21/2−2α−s/2 cos
(

1
2π(1/2−α− s)

)
=
Γ
(1/2−α−s

2

)
Γ
(1/2+α

2

) ( 8
π

)−α−s/2
.

Thus we get

MN (k1 = 1) =
X1−αφ(l)/l

2l1/2
∑

(a,2l)=1
a≤Y

µ(a)φ(a)/a
a2ζ2al(2)

I,

where

I =
1

2πi

�

(ε)

Φ̃(1− α− s/2)X−s/2(la2)α+s G(s)
s

× ζ2(1− 2α− 2s)
Γ
(1/2−α−s

2

)
Γ
(1/2+α

2

) ( 8
π

)−α−s/2
ds.

Next note (
8
π

)−α−s/2 Γ (1/2−α−s
2

)
Γ
(1/2+α

2

) = γαg−α(−s),
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so we get

I = γα
1

2πi

�

(ε)

Φ̃(1−α− s/2)X−s/2(la2)α+s G(s)
s

g−α(−s)ζ2(1− 2α− 2s) ds.

Applying the change of variables s 7→ −s gives

MN (k1 = 1) = −X
1−αφ(l)/l
2l1/2

γα
∑

(a,2l)=1
a≤Y

µ(a)φ(a)/a
a2ζ2al(2)

× 1
2πi

�

(−ε)

Φ̃(1− α+ s/2)Xs/2(la2)α−s
G(s)
s

g−α(s)ζ2(1− 2α+ 2s) ds,

as desired.
We get M−N (k1 = 1) from the previous expression using Remark 3.1.

Precisely,

M−N (k1 = 1) = −Xφ(l)/l
2l1/2

∑
(a,2l)=1
a≤Y

µ(a)φ(a)/a
a2ζ2al(2)

× 1
2πi

�

(−ε)

Φ̃(1 + s/2)Xs/2(la2)−α−s
G(s)
s

gα(s)ζ2(1 + 2α+ 2s) ds.

Next note
1

ζ2al(2)
φ(l)
l

φ(a)
a

=
1

ζ2(2)

∏
p|a

(1 + p−1)−1
∏
p|l

(1 + p−1)−1,

so we get

M−N (k1 = 1) = − X

2ζ2(2)l1/2
∏
p|l

(1 + p−1)−1
∑

(a,2l)=1
a≤Y

µ(a)
a2

∏
p|a

(1 + p−1)−1

× 1
2πi

�

(−ε)

Φ̃(1 + s/2)Xs/2(la2)−s−α
G(s)
s

gα(s)ζ2(1 + 2s+ 2α) ds,

which completes the proof.

6. Combining the main terms

6.1. Gathering the terms. Recall we have

M(α, l) = MN (k = 0) +M−N (k = 0) +MN (k1 = 1) +M−N (k1 = 1)

+MR1 +MR2 +M−R1 +M−R2 +O

(
Xf+ε

Y 2f−1
l1/2+ε +X1/4+εY l1/2+ε

)
.
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The rest of the paper is devoted to proving

Theorem 6.1. We have

(6.1) MN (k = 0) +M−N (k1 = 1) +MR1 +M−R2

=
XΦ̃(1)

2ζ2(2)l1/2+α
ζ2(1 + 2α)Bα(l),

(6.2) M−N (k = 0) +MN (k1 = 1) +M−R1 +MR2

=
X1−αΦ̃(1− α)
2ζ2(2)l1/2−α

ζ2(1− 2α)B−α(l)γα.

It suffices to show (6.1) holds since (6.2) follows by Remark 3.1.
Before proving Theorem 6.1, we show how it yields Theorem 3.4, and

hence Conjecture 3.3. By taking Y = X1/4, we find that if M(α, l) = M.T.+
O(Xf+εl1/2+ε) then

M(α, l) = M.T.+O(X
f+1/2

2
+εl1/2+ε),

where M.T. is the main term from Conjecture 3.3.

6.2. Proving Theorem 6.1. We first note that MN (k = 0) given by (5.1)
and MR1 given by (4.3) combine naturally to give

MN (k = 0) +MR1 =
Xφ(l)/l
2l1/2+α

∑
(a,2l)=1

µ(a)
a2

× 1
2πi

�

(ε)

Φ̃(1 + s/2)
G(s)
s

gα(s)Xs/2l−s
ζ2a(1 + 2α+ 2s)
ζ2al(2 + 2α+ 2s)

ds.

We now compute the required Dirichlet series, namely

∑
(a,2l)=1

µ(a)
a2

ζ2a(1 + 2α+ 2s)
ζ2al(2 + 2α+ 2s)

= ζ2(1 + 2α+ 2s)
∏
p-2l

(1− p−2−2α−2s − p−2 + p−3−2α−2s).

Then we use (3.3) to get

φ(l)
l

∏
p-2l

(1− p−2−2α−2s − p−2 + p−3−2α−2s) =
1

ζ2(2)
Bα+s(l).
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That is, we have

(6.3) MN (k = 0) +MR1 =
X

2ζ2(2)l1/2+α

× 1
2πi

�

(ε)

Φ̃(1 + s/2)
G(s)
s

gα(s)Xs/2l−sζ2(1 + 2α+ 2s)Bα+s(l) ds.

Now we work with M−N (k1 = 1) and M−R2 given by (5.9) and (4.5),
respectively. Clearly

M−N (k1 = 1)+M−R2 = − X

2ζ2(2)l1/2
∏
p|l

(1+p−1)−1
∑

(a,2l)=1

µ(a)
a2

∏
p|a

(1+p−1)−1

× 1
2πi

�

(−ε)

Φ̃(1 + s/2)
G(s)
s

gα(s)Xs/2(la2)−α−sζ2(1 + 2α+ 2s) ds.

Then we calculate the sum over a as follows:∑
(a,2l)=1

µ(a)
a2+2s+2α

∏
p|a

(1 + p−1)−1 =
∏
p-2l

(1− p−2−2α−2s(1 + p−1)−1),

which equals
Bα+s(l)

∏
p|l

(1 + p−1),

in view of (3.2). That is,

(6.4) M−N (k1 = 1) +M−R2 = − X

2ζ2(2)l1/2+α

× 1
2πi

�

(−ε)

Φ̃(1 + s/2)
G(s)
s

gα(s)Xs/2l−sζ2(1 + 2α+ 2s)Bα+s(l) ds.

Noting that the integrands in (6.3) and (6.4) are identical, we see that
the sum of these two expressions is the sum of residues inside the strip
−ε ≤ Re(s) ≤ ε. The only residue is at s = 0, by Remark 2.2. It is obvious
that the residue at s = 0 is the main term of (6.1), which completes the
proof.
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point, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 365–376.

[IK] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Col-
loq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004.

[J] M. Jutila, On the mean value of L( 1
2
, χ) for real characters, Analysis 1 (1981),

149–161.
[S] K. Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at s = 1

2
,

Ann. of Math. (2) 152 (2000), 447–488.
[VT] A. I. Vinogradov and L. A. Takhtadzhyan, Analogues of the Vinogradov–Gauss

formula on the critical line, in: Differential Geometry, Lie Groups and Mechan-
ics, IV, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 109
(1981), 41–82, 180–181, 182–183 (in Russian).

Department of Mathematics
Texas A&M University
College Station, TX 77843-3368, U.S.A.
E-mail: myoung@math.tamu.edu

Received on 20.6.2008
and in revised form on 9.10.2008 (5745)


