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1. Introduction. We prove that if the Generalized Riemann Hypothesis
is true, then there exist many Dirichlet L-functions that have a pair of
consecutive zeros closer together than 0.37 times their average spacing. More
generally, we investigate zero spacings within the family of twists by Dirichlet
characters of a fixed L-function.

Questions about the vertical spacings between consecutive zeros of L-
functions first came into prominence in conjunction with Gauss’ class num-
ber problem. In the initial efforts to show that the class number h(−d) of
the imaginary quadratic field Q(

√
−d) goes to infinity with d it became clear

that there was an interesting connection between this very arithmetic ques-
tion and the seemingly unrelated problem of zero spacings. In subsequent
efforts to give effective lower bounds for this class number, the question of
zero spacings plays an ever important role. Loosely speaking, if one could
prove that any L-function has a sufficient number of consecutive zeros whose
spacing is smaller than 1/2 of what is expected, then one coul d disprove
the existence of the Landau–Siegel zero. For a precise statement of this
phenomenon, see the paper [CI] of Conrey and Iwaniec.

Montgomery’s efforts in this direction led to the discovery [Mo] that the
zeros of the Riemann zeta-function are likely to have a vertical distribution
that in the scaled limit is identical to that of the angle spacings of eigen-
values of unitary matrices. This is known to number theorists as the GUE
conjecture (for Gaussian Unitary Ensemble). It is currently intractable, so
any new information about the distribution of zeros is noteworthy. Rudnick
and Sarnak [RS] extended this conjecture to any fixed L-function.
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Our results give new bounds on small gaps between zeros of families of L-
functions. We use the asymptotic large sieve, developed by us, to prove more
accurate results than was previously possible. An interesting new qualitative
result is that we can prove the existence of Dirichlet L-functions which have
gaps smaller than 1/2 of their average spacing! However, we assume GRH
in order to do this; in particular, this assumption already rules out the
existence of Landau–Siegel zeros.

The reader may argue that an unusually small class number implies, in
certain regions, that the Generalized Riemann Hypothesis (GRH) holds and
that the spacing between zeros is at least as large as 0.5 times the average
spacing. So, why does this current paper not contradict the existence of such
small class numbers? The answer is that we use GRH in two ways. One is to
ensure that

∑
ρ |A(ρ)|2 is the same as

∑
ρA(ρ)A(1−ρ). For this use we just

need to know that the zeros in our range of summation are on the critical
line. The other way we use GRH is to bound sums like

∑
n≤x µ(n)χ(n) and

to get square root cancellation here. For this purpose we need GRH to hold
for |t| � x, in particular, GRH holds on the real axis, too. In the above ques-
tion the range in which GRH holds typically does not include the real axis
(see for example [St] where it is shown that the Epstein zeta-function for a
large value of the parameter k =

√
|d|/(2a) has zeros on the critical line and

well-spaced for |t| ≤ 2k apart from two real zeros near 0 and 1). The upshot
is that we cannot conclude anything about class numbers from our theorem.

2. Statement of results. Let Lf (s) be a primitive automorphic L-
function of degree d and level N , and let Lf (s, χ) be its twist by a primitive
Dirichlet character χ. In the next section we state the specific assumptions
we make for Lf (s) and Lf (s, χ).

Theorem 2.1. Assume the Riemann Hypothesis for Lf (s, χ) for all
primitive χ of modulus coprime to N . Define µd with 0 < µd < 1 to be
the unique positive real solution µ of

µ+ 2

µ/d�

0

(
sinπv

πv

)2

dv = 1.

Then, for any ε > 0 and for all sufficiently large Q, there is a q with
(q,N) = 1 and Q ≤ q ≤ 2Q and a primitive χ modulo q and a pair of
zeros 1/2 + iγ and 1/2 + iγ′ of Lf (s, χ) such that |γ|, |γ′| ≤ 1 and

|γ − γ′| < (µd + ε)
2π

d logQ
.

The first few values for µd are approximately µ1 = 0.366, µ2 = 0.519,
µ3 = 0.611, µ4 = 0.674, and µ5 = 0.719. As d → ∞ we have µd ∼ 1 −
2/d+ 4/d2 +O(d−3).
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Since 2π/(d logQ) is the average spacing between consecutive zeros at
low heights, our theorem may be rephrased to say that there are a pair of
zeros that are closer together than µd times the average spacing.

By a similar method we could show that there are gaps as large as λd− ε
times the average, where λd is the solution of

λ− 2

λ/d�

0

(
sinπv

πv

)2

dv = 1.

We find that λd = 1 + 2/d+ 4/d2 +O(1/d3).

We have not attempted to get the best possible results. In particular, it is
known that there are slightly better choices of the coefficients of the function
HX ; see [CGG, MoOd, FW]. Also, for large gaps, Hall has invented a method
that gives unconditional results. [Bre1] and [Bre2] have recently used Hall’s
method to show that the Riemann zeta-function has gaps between consecu-
tive zeros as large as 2.766 times the average, and in conjunction with [?] to
prove the existence of Dirichlet L-functions with gaps as large as 3.54 times
the average.

3. Basic assumptions. Let

Lf (s) =
∞∑
n=1

λf (n)

ns

be a primitive, automorphic L-function of degree d and level N . By this
we mean that either Lf (s) = ζ(s), the Riemann zeta-function, or else all
of the following assumptions are satisfied: the series for Lf (s) is absolutely
convergent for <s > 1 and Lf (s) continues to an entire function of order 1;
there are numbers ε ∈ C, Q > 0, and µj ∈ C with <µj ≥ 0 such that

Φf (s) := (
√
N)s

d∏
j=1

ΓR(s+ µj)Lf (s),

with ΓR(s) = π−s/2Γ (s/2), satisfies

Φf (1− s) = εΦf (1− s).

We can also write the functional equation in its asymmetric form:

Lf (s) = εfXf (s)Lf (1− s)

where

Xf (s) =
(
√
N)1−s

∏d
j=1 ΓR(1− s+ µj)

(
√
N)s

∏d
j=1 ΓR(s+ µj)

.
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Also, Lf (s) has an Euler product, i.e.

Lf (s) =
∏
p

∞∑
j=0

λf (pj)p−js,

absolutely convergent for <s > 1.

We assume, for any primitive character χ modulo q, where (q,N) = 1,
that

Lf (s, χ) :=

∞∑
n=1

λf (n)χ(n)

ns

is entire and has a functional equation, i.e.

Φ(s, χ) := (qd/2
√
N)s

d∏
j=1

ΓR(s+ µ′j)Lf (s, χ)

for some µ′j satisfies

Φ(s, χ) = εf,χΦ(1− s, χ)

for some εf,χ. In asymmetric form this is

Lf (s, χ) = εf,χXf (s, χ)Lf (1− s, χ)

where

Xf (s, χ) =
(qd/2

√
N)1−s

∏d
j=1 ΓR(1− s+ µ′j)

(qd/2
√
N)s

∏d
j=1 ΓR(s+ µ′j)

.

Note that
X ′f (s, χ)

Xf (s, χ)
= −d log q +O(1)

uniformly for s� 1. Put

1

Lf (s, χ)
=
∑
m

µf (m)χ(m)m−s, −
L′f (s, χ)

Lf (s, χ)
=
∑
l

Λf (l)χ(l)l−s.

Thus µf (pα) = 0 if α > d and Λf = µf ∗ log is supported on prime powers.
Moreover,

µf (p) = −λf (p), Λf (p) = λf (p) log p.

We make the following additional basic

Assumption R. The Rankin–Selberg series

R(s) =
∑
n

|λf (n)|2n−s

converges absolutely in <s > 1; it has analytic continuation to <s > 1/2
where it has a pole at s = 1 of order 1. Moreover, R(s) has a standard
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zero-free region so that∑
p≤x
|λf (p)|2 log p

p
= log x+O(1).

This completes our description of primitive automorphic L-functions of
degree d and level N .

Throughout this paper we will also assume the Riemann Hypothesis for
Lf (s, χ) that any ρχ = βχ + iγχ with Lf (ρχ) = 0 and 0 < βχ < 1 satisfies
βχ = 1/2.

It follows from standard methods that the number of zeros of Lf (s, χ) is

Nf (T, χ) := #{ρχ = βχ + iγχ : 0 < γχ ≤ T and Lf (ρ, χ) = 0}

∼ T log(NqdT d)

2π

as T → ∞. Hence the average spacing between consecutive zeros at a
height T is

2π

log(NqdT d)
.

For T = 1 and Q < q ≤ 2Q with Q large, this is

∼ 2π

d logQ
.

4. The method. The method is based on an idea that first appeared
in a paper of Julia Mueller [M] and involves the comparison of two averages.
See also [MoOd]. Let

H(s, χ) = HX(s, χ) =
∑
n≤X

µf (n)χ(n)

ns

be a partial sum of Lf (s, χ)−1. Consider

(4.1) M =
∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

1�

0

|HX(1/2 + it, χ)|2 dt

and

(4.2)

M(α) =
∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

∑
0≤γχ<1

min{1,γχ+α}�

max{0,γχ−α}

|HX(1/2 + it, χ)|2 dt

If all pairs of zeros of the same L-function are further apart than 2α then
necessarily M(α) < M since the integration in the M(α) will be over a
proper subset of the interval [0, 1]. Therefore, if α is chosen so large that
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M(α) >M then it must be the case that at least one pair of zeros are closer
together than 2α. We will show that for every ε > 0,

(4.3) M
(
µd + ε

2

2π

d logQ

)
>M

for sufficiently large Q, from which it follows that there must be an L-
function with modulus q between Q and 2Q that has a pair of zeros, of
height less than 1, which are closer together than (µd + ε)2π/(d logQ).

5. Asymptotic large sieve. The asymptotic large sieve allows us to
evaluate, in certain circumstances, the sum

S =
∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

∑
m,n≤X

ambnχ(m)χ(n)

where X = Q2−η for arbitrarily small η > 0. For example, suppose that an
is a sequence of numbers for which

(5.1)
∑
n≤X

anχ(n)� Xεqε

for any ε > 0 and any primitive Dirichlet character χ modulo q, and that∑
n≤X |an|2 � Xε; assume that similar bounds hold for bn. Under the as-

sumption of GRH, the sequence an = µf (n)/
√
n is such an example. For

such a sequence the asymptotic large sieve asserts (see [?]) that only the
diagonal terms make a significant contribution:

Theorem 5.1. Suppose that X = Q2−η for some η > 0 and that (5.1)
holds for the sequences an and bn. Then, for any ε > 0,

S =
∑
q

W (q/Q)φ∗(q)

φ(q)

∑
n≤X

(n,q)=1

anbn +Oε(Q
1−ε)

If we execute the sum over q, the above may be rewritten as

S = Ŵ (1)
∏
p

(
1− 1

p2
− 1

p3

)

×Q
∑
n≤X

anbn
φ(n)

n

∏
p|n

(
1− 1

p2
− 1

p3

)−1
+Oε(Q

1−ε)

In the last section we sketch a proof of this result.
A slight generalization allows us to restrict the sum over q to a set

coprime with a fixed modulus N . Let

SN =
∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

∑
m,n≤X

ambnχ(m)χ(n).
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Then

SN =
∑

(q,N)=1

W (q/Q)φ∗(q)

φ(q)

∑
n≤X

(n,q)=1

anbn +Oε(Q
1−ε)

or

SN = Ŵ (1)
∏
p

(
1− 1

p2
− 1

p3

)
(5.2)

×Q
∑
n≤X

anbn
φ(nN)

nN

∏
p|nN

(
1− 1

p2
− 1

p3

)−1
+Oε(Q

1−ε).

6. Two propositions. Let g(n) be a multiplicative function such that

g(n) =
∏
p|n

g(p) with g(p) = 1 +O(1/
√
p).

Note that g(p) can take negative values at some small primes.

Problem A. Evaluate the sum

A(X) =
∑
n≤X
|µf (n)|2g(n)n−1.

Problem B. Evaluate the double sum

B(X) =
∑
mn≤X

µf (mn)µf (n)Λf (m)g(mn)m−1−αn−1−β

where α, β are small complex numbers; |α|, |β| � (logX)−1.

6.1. Evaluation of A(X). It follows from Assumption R that the mod-
ified series

M(s) =
∑
n

|µf (n)|2n−s

has analytic continuation to <s > 1/2 and it has only a pole at s = 1 of
order exactly 1. Indeed both series have Euler products

R(s) =
∏
p

Rp(s), M(s) =
∏
p

Mp(s)

with Rp(s) = 1 + |λf (p)|2p−s + · · · , Mp(s) = 1 + |µf (p)|2p−s + · · · , so

Mp(s) = Rp(s) +O(p−2σ).

Twisting M(s) by the multiplicative function g(m) does not change much;
precisely

K(s) =
∑
n

|µf (n)|2g(n)n−s =
∏
p

(1 + g(p)(Mp(s)− 1)) = M(s)G(s),
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say, where

G(s) =
∏
p

(1 + (g(p)− 1)(Mp(s)− 1)/Mp(s))

converges absolutely in <s > 1/2.
If

M(s) ∼ cf (s− 1)−1 (cf > 0)

then
K(s) ∼ cfcfg(s− 1)−1

with
cfg = G(1) =

∏
p

(1 + (g(p)− 1)(Mp(1)− 1)/Mp(1)).

Hence we derive by contour integration

Proposition 6.1. For X ≥ 2 we have

A(X) = cfcfg logX +O(1).

From this, by partial summation we deduce

Corollary 6.2. For X ≥ 2 we have∑
n≤X
|µf (n)|2g(n)n−1−β = cfcfg

X�

1

x−β d(log x) +O(1).

6.2. Evaluation of B(X). Since Λf (m) is supported on prime powers
we can write

B(X) =
∑
n≤X
|µf (n)|2g(n)n−1−β

∑
m≤X/n

µf (m)Λf (m)g(m)m−1−α+O(logX)

where the error term comes from a trivial estimation of the terms with
(m,n) 6= 1. The inner sum over m ≤ Y = X/n can be replaced by the sum
over primes and g(p) can be replaced by 1 up to the existing error term. We
get

−
∑
p≤Y
|λf (p)|2(log p)p−1−α = −

Y�

1

y−α d(log y) +O(1).

Inserting this into B(X) above, by Corollary 6.2 we get

B(X) = −
X�

1

( ∑
n≤X/y

|µf (n)|2g(n)n−1−β
)
y−α d(log y) +O(logX)

= −cfcfg
� �

xy<X
x,y≥1

x−βy−α d(log x) d(log y) +O(logX).

Changing the variables of integration we conclude
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Proposition 6.3. For X ≥ 2 we have

B(X) = −cfcfgF (α logX,β logX)(logX)2 +O(logX)

where
F (a, b) =

� �

u+v≤1
u,v≥0

e−au−bv du dv.

Remark 6.4. The arithmetic factors cf and cfg in the asymptotic for-
mulas for A(X) and B(X) agree, of course!

We further have

F (a, b) =
a(1− e−b)− b(1− e−a)

ab(a− b)
=

∞∑
m=1

(−1)m

m!

am−1 − bm−1

a− b
.

Note that

F (−iα logX, 0) =
Xiα − 1− iα logX

−α2 log2X
.

7. Proof of Theorem 2.1. We evaluate M using Theorem 5.1 and
find that with X = Q2−η for some small positive η the main term arises
only from the diagonal. It follows from (5.2) that∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

|H(1/2 + it, χ)|2

∼ Ŵ (1)Q
∑
n≤X

|µf (n)|2

n

φ(nN)

nN

∏
p-nN

(
1− 1

p2
− 1

p3

)

= cŴ (1)r(N)Q
∑
n≤X

|µf (n)|2

n
gN (n),

say, where

c =
∏
p

(
1− 1

p2
− 1

p3

)
, r(n) =

φ(n)

n

∏
p|n

(
1− 1

p2
− 1

p3

)−1
and

gN (n) = r(nN)/r(N)

is multiplicative. Then, by Proposition 6.1, this is

∼ ccfcfgN r(N)Ŵ (1)Q logX

uniformly for |t| ≤ 1. Hence, the integration over t is trivial and M is
asymptotic to this same quantity.

To evaluate M(α) we first remark that if α� (logQ)−1, then

M(α) =M1(α) +O(Q logQ)
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where

M1(α) =
∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

∑
0≤γχ<1

γχ+α�

γχ−α
|HX(1/2 + it, χ)|2 dt.

This is because the difference between the two quantities is

�
∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

(α�
0

+

1�

1−α

)
|HX(1/2 + it, χ)|2 dt,

which, by our estimation for M above, is � αQ log2Q� Q logQ. To eval-
uate M1(α), we express the sum over γχ as a contour integral

∑
0≤γχ<1

γχ+α�

γχ−α
|H(1/2 + it, χ)|2 dt =

+α�

−α

∑
0≤γχ<1

|H(1/2 + iγ + iu, χ)|2 du

=

α�

−α

1

2πi

�

C

L′

L
(s, χ)H(s+ iu, χ)H(1− s− iu, χ) ds du

where H(s) = H(s) and where C is the contour which consists of the rec-
tangle with vertical sides 1/2 ± δ + it with 0 ≤ t ≤ 1, where δ is a small
positive constant. If Lf (s, χ) has a zero on a horizontal edge (either at
s = 1/2 or s = 1/2 + i) for some χ, it causes no problem to slightly adjust
the contour to include these zeros in the interior.

Let us write

Cu(s, χ) :=
L′

L
(s, χ)H(s+ iu, χ) =

∞∑
n=1

bu(n)χ(n)

ns

and consider

MR(u, s) :=
∑

(q,N)=1

W (q/Q)

φ(q)

∑∗

χ mod q

H(1− s− iu, χ)Cu(s, χ)

for s on the right vertical side of the contour C. As in the evaluation of M,
the main terms arise only from the diagonal. Thus,

MR(u, s) ∼ Ŵ (1)Q
∑
n≤X

µf (n)

n1−s−iu
bu(n)

ns
φ(nN)

nN

∏
p-nN

(
1− 1

p2
− 1

p3

)

= Ŵ (1)Q
∑
n≤X

µf (n)bu(n)

n1−iu
φ(nN)

nN

∏
p-nN

(
1− 1

p2
− 1

p3

)

= −cŴ (1)r(N)Q
∑
mn≤X

µf (mn)Λf (m)µf (n)

(mn)1−iuniu
gN (mn)
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where c, r(N), and gN are as above. The sum over m and n is just B(X)
from Proposition 6.3 with α = −iu and β = 0. Thus, for u� (logQ)−1 we
have

MR(u, s) = cŴ (1)r(N)QcfcfgNF (−iu logX, 0)(logX)2 +O(logX).

Now we consider what happens for the integral over the left side of the
rectangle. Here we let s 7→ 1− s and use the functional equation

L′f
Lf

(1− s, χ) =
X ′f
Xf

(s, χ)−
L′f
Lf

(s, χ)

where Xf (s, χ) is the factor from the functional equation

Lf (s, χ) = Xf (s, χ)Lf (1− s, χ).

Thus, we consider

−
∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

(
X ′f
Xf

(s, χ)−
L′f
Lf

(s, χ)

)
H(1− s+ iu, χ)H(s− iu, χ)

for s = 1/2 + δ − it with 0 ≤ t ≤ 1; the minus sign enters because of the
change of variable s 7→ 1− s. Now,

X ′f
Xf

(s, χ) = −d logQ+O(1)

uniformly for |t| � 1 and Q ≤ q ≤ 2Q. Consequently, the contribution from
the X ′f/Xf term is asymptotically dM logQ/(2π) whereM is the mean we
evaluated before. Then we find that

ML(u, s) :=
∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

H(1− s+ iu, χ)
L′f
Lf

(s, χ)H(s− iu, χ)

=MR(u, s).

Summarizing, we have

M(α) ∼
cŴ (1)r(N)QcfcfgN

2π

α�

−α
(d logQ logX+2<F (iu logX, 0) log2X) du

compared with

M∼ cŴ (1)r(N)QcfcfgN logX.

Thus, M(α) >M when α is chosen so large that h(α) > 1 where

h(α) :=
1

2π

α�

−α
(d logQ+ 2<F (iu logX, 0) logX) du.
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We see that

h(α) =

α�

−α

1

2π

(
d logQ+ 2<1 + iu logX −Xiu

u2
logX

)
du

=
dα logQ

π
+

4 logX

π

α�

0

sin2

(
u

2
logX

)
du

u2

Recalling X = Q2−η, we find that

h

(
πµ

d logQ

)
= µ+

4 logX

π

πµ/(d logQ)�

0

sin2

(
u

2
logX

)
du

u2

= µ+
2

1− η/2

µ/d�

0

(
sinπv(1− η/2)

πv

)2

dv.

We let

jd(µ) = µ+ 2

µ/d�

0

(
sinπv

πv

)2

dv.

Then µd is defined implicitly by jd(µd) = 1. Given an ε > 0 we can choose
η > 0 sufficiently small so that

h

(
π(µd + ε)

d logQ

)
> 1.

This proves the theorem.

Remark. We could similarly determine large gaps between consecutive
zeros of Lf (s, χ). Using an = 1/

√
n, an argument similar to the one above

leads to

j+d (µ) = µ− 2

µ/d�

0

(
sinπv

πv

)2

dv

and we see, for example, that j+1 (1.94) < 1 so that there must be gaps as
large as 1.94 times the average spacing.

8. The asymptotic large sieve revisited. Here we include a sketch
of the asymptotic large sieve (ALS) results we need. We do this because
we regard this current situation as the simplest application of the asymp-
totic large sieve: since our sequences are related to the Möbius function and
since we are freely assuming GRH, there are no secondary main terms that
arise and this makes the treatment simpler. So, perhaps this treatment will
be an instructive first look at the asymptotic large sieve for some readers.
Historically, it is the first example the authors considered.
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Consider

S =
∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

A(χ)B(χ)

where

(8.1) A(χ) =
∑
m≤X

anχ(n) and B(χ) =
∑
n≤X

bnχ(n)

and X � Q2−ε. We assume that the bounds∑
m≤u

(m,c)=1

amlψ(m)� l−1/2Qε and
∑
n≤v

(n,c)=1

bnlψ(b)� l−1/2Qε(8.2)

hold uniformly for any c, l, u, v � X and any character ψ with conductor
� Q.

We write

S =
∑
m,n

ambn∆(m,n)

where

∆(m,n) :=
∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

χ(m)χ(n).

Lemma 8.1. If (mn, q) = 1, then∑∗

χ mod q

χ(m)χ(n) =
∑
d|q

d|(m−n)

φ(d)µ(q/d).

Applying Lemma 8.1 we find that

∆(m,n) =
∑

(cd,mn)=1
d|m−n

W (cd/Q)µ(c)φ(d)

φ(cd)
.

Lemma 8.2. We have

φ(d)

φ(cd)
=

1

φ(c)

∑
a|c
a|d

µ(a)

a
.

Thus,

∆(m,n) =
∑

(acd,mn)=1
ad|(m−n)

W (a2cd/Q)µ(a)µ(ac)

aφ(ac)
.

Now we separate the diagonal terms from the non-diagonal ones.
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Proposition 8.3. We have

∆(m,m) = Ŵ (1)Q
φ(m)

m

∏
p

(
1− 1

p2
− 1

p3

)∏
p|m

(
1− 1

p2
− 1

p3

)−1
+Oε((Qm)ε).

Proof. We compute

∆(m,m) =
∑

(acd,m)=1

µ(a)µ(ac)

aφ(ac)
W

(
a2cd

Q

)

=
1

2πi

�

(2)

QsŴ (s)ζ(s)
∏
p|m

(
1− 1

ps

) ∑
(ac,m)=1

µ(a)µ(ac)

a1+2scsφ(ac)
ds.

The sums over a and c are absolutely convergent for σ > 0 and Ŵ (s) is
of rapid decay in the vertical direction. Let ε > 0. We shift the path of
integration to the ε-line and pick up the residue from the pole of ζ(s) at
s = 1. Thus

∆(m,m) = Ŵ (1)Q
φ(m)

m

∑
(ac,m)=1

µ(a)µ(ac)

a3cφ(ac)
+O((Qm)ε).

The sum over a and c in the main term is

=
∏
p-m

(
1 +

1

p3(p− 1)
− 1

p(p− 1)

)
=
∏
p-m

(
1− 1

p2
− 1

p3

)
.

Now we shall assume that m 6= n. We introduce a parameter C and split
the sum over c in ∆ so that we have ∆(m,n) = L(m,n) + U(m,n) where

L(m,n) =
∑

(acd,mn)=1
ad|m−n, c≤C

W (a2cd/Q)µ(a)µ(ac)

aφ(ac)
,

U(m,n) =
∑

(acd,mn)=1
ad|m−n, c>C

W (a2cd/Q)µ(a)µ(ac)

aφ(ac)
.

Let us consider U first. We replace the condition ad |m − n by a sum
over all characters modulo ad. Thus,

U(m,n) =
∑

(acd,mn)=1
c>C

W (a2cd/Q)µ(a)µ(ac)

aφ(ac)φ(ad)

∑
ψ mod ad

ψ(m)ψ(n).

Lemma 8.4. We have

UE : =
∑
m,n
m6=n

ambnU(m,n)� Q

C
Qε.
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Proof. We observe that

UE =
∑
a,c,d
c>C

µ(a)µ(ac)W (a2cd/Q)

aφ(ac)φ(ad)

∑
ψ mod ad

∑
m,n≤X

m6=n, (mn,c)=1

amψ(m)bnψ(n).

We include the terms with m = n; this introduces an error term of size

≤
∑
a,c,d
c>C

W (a2cd/Q)

aφ(ac)

∑
m≤X

|am| |bm| �
Q

C
Qε,

which is acceptable.

Now, the sum on the right of UE but with the diagonal terms m = n
included is

�
∑

a≤
√

2Q/C

1

aφ(a)

∑
c>C

1

φ(c)

∑
b≤2Q/(ac)

1

φ(b)

∑
ψ mod b

∣∣∣ ∑
m≤X

(m,c)=1

amψ(m)
∣∣∣∣∣∣ ∑
n≤X

(n,c)=1

bnψ(n)
∣∣∣.

By (8.2) this is � (Q/C)(QX)ε.

Now we turn to L(m,n). Let g = (m,n) and m = Mg, n = Ng so that
(M,N) = 1. We introduce the complementary variable e1 to complete the
product |M − N |g = |m − n| = ade1. Recall that m 6= n so that e1 > 0.
The goal is to free the variable d from the rest of the variables and then
eliminate it from the summation. Thus,

L(m,n) =
∑

(acd,MNg)=1
ade1=|M−N |g, c≤C

W (a2cd/Q)µ(a)µ(ac)

aφ(ac)
.

Now (ad, g) = 1 implies that g | e1, so we replace e1 by ge. Note also that
(M,N) = 1 and M ≡ N mod ad together imply that (ad,MN) = 1, so we
remove that condition from the sum. Thus,

L(m,n) =
∑

(c,MNg)=1, c≤C
ade=|M−N |, (ad,g)=1

W (a2cd/Q)µ(a)µ(ac)

aφ(ac)
.

Now we express the condition (d, g) = 1 by the Möbius formula and obtain

L(m,n) =
∑
h|g

µ(h)
∑

(c,MNg)=1, c≤C
adeh=|M−N |, (a,g)=1

W (a2cdh/Q)µ(a)µ(ac)

aφ(ac)
.

At this point, d has been eliminated, since |M−N | = adeh may be expressed
as a congruence M ≡ N mod aeh. Note for future reference that a2 ≤ 2Q.
We introduce characters ψ modulo aeh to express the condition M ≡ N mod
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aeh; in this way we obtain

L(m,n) =
∑
h|g

µ(h)
∑
a,c,e

(c,MNg)=1
c≤C, (a,g)=1

W (ac|M −N |/eQ)µ(a)µ(ac)

aφ(ac)φ(aeh)

×
∑

ψ mod aeh

ψ(M)ψ(N).

Lemma 8.5. We have

LE :=

∞∑
m,n≤X
m 6=n

ambnL(m,n)� XC

Q
Qε.

Proof. We compute

LE =
∑
g≤X
h|g

µ(h)
∑

a,c,e,M,N
(M,N)=1,M 6=N,M,N≤X/g
(c,MNg)=1, c≤C, (a,g)=1

aMgbNg
W (ac|M −N |/eQ)µ(a)µ(ac)

aφ(ac)φ(aeh)

×
∑
ψ(aeh)

ψ(M)ψ(N).

We need the variables M and N to be free of each other. To this end we
replace g by gh, bring the sum over M and N to the inside and use the
Möbius formula to eliminate the condition (M,N) = 1. Note also that the
condition M 6= N is superfluous since W (0) = 0. Thus,

LE =
∑

a,c,d,e,h
c≤C, (c,gh)=1, (a,g)=1

µ(a)µ(ac)µ(d)µ(h)

aφ(ac)φ(aeh)

∑
ψ(aeh)

|ψ(d)|2Z
(
X

l
, ψ, c, l,

acd

eQ

)

where l = gdh and

Z(X,ψ, c, l, γ) :=

∞∑
M,N≤X
(MN,c)=1

aMlbNlψ(M)ψ(N)W (γ(M −N)).

Note that acl|M −N |/(eQ) ≥ 1 implies that e ≤ acl|M −N |/Q ≤ acX/Q.

Eliminating d from the sum, we have

LE�
∑
a

1

aφ(a)

∑
c≤C

1

φ(c)

∑
l≤X

∑
gh|l

∑
e

1

φ(aeh)

∑
ψmod aeh

∣∣∣∣Z(Xl , ψ, c, l, acl

gheQ

)∣∣∣∣.
Now we simplify things for clarity of exposition. We ignore the sums over

a, g, l and h (i.e. just take all of these variables equal to 1). We also ignore
the coprimality conditions and we treat φ(n) as n when that is simpler.
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Thus, we consider

LE :=
∑
c≤C

1

c

∑
e

1

φ(e)

∑
ψ mod e

∣∣∣∣Z(X, ceQ
)∣∣∣∣

where

Z(X, γ) :=
∑

m,n≤X
ambnψ(m)ψ(n)W (γ(m− n)).

We have suppressed the dependence on ψ since our treatment will be the
same for all ψ. Let

Σa(u) =
∑
m≤u

amψ(m) and Σb(v) =
∑
n≤u

bnψ(n).

As mentioned earlier, GRH implies that Σa(u) � Qε and Σb(v) � Qε

uniformly for u, v � X. We express the sums over m and n by Stieltjes
integrals and integrate by parts, getting

Z(X, γ) = γΣa(X)

X�

0

W ′(γ(X − v))Σb(v) dv

− γΣb(X)

X�

0

W ′(γ(u−X))Σa(u) du

− γ2
X�

0

X�

0

W ′′(γ(u− v))Σa(u)Σb(v) du dv

(recall that W is supported on [1, 2]). Thus,

LE � Qε
∑
c≤C

1

c

∑
e�Xc/Q

(X�

0

c

eQ

∣∣∣∣W ′(c(X − v)

eQ

)∣∣∣∣ dv
+

X�

0

X�

0

c2

e2Q2

∣∣∣∣W ′′(c(u− v)

eQ

)∣∣∣∣ du dv)
� XC

Q
Qε.

Summarizing, we have

S = Ŵ (1)
∏
p

(
1− 1

p2
− 1

p3

)
Q
∑
m≤X

ambm
φ(m)

m

∏
p|m

(
1− 1

p2
− 1

p3

)−1
+O

(
Qε
(
XC

Q
+
Q

C

))
.

If X = Q2−4ε and we choose C = Q2ε then the error term here is Q1−ε,
which is smaller than the main term.
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To give a completely explicit example, we have

Corollary 8.6. Assume the Generalized Riemann Hypothesis. Let W
be a C∞ function supported on [1, 2]. Then, for any Q,X ≥ 1 and any ε > 0,∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

∣∣∣ ∑
m≤X

µ(m)χ(m)√
m

∣∣∣2
= Ŵ (1)

∏
p

(
1− 1

p2
− 1

p3

)
Q
∑
m≤X

µ2(m)φ(m)

m2

∏
p|m

(
1− 1

p2
− 1

p3

)−1
+Oε(Q

ε
√
X).

In the application toM(α) our B(χ) term is an infinite series. We trun-
cate the series at X and deal with the small terms as above. For the larger
terms we have

S =
∑
q

W (q/Q)

φ(q)

∑∗

χ mod q

A(χ)B(χ)

but now

(8.3) A(χ) =
∑
m≤X

anχ(n) and B(χ) =
∑
n>X

bnχ(n)

with X � Q2−ε. Now the bounds we have are∑
m≤u

(m,c)=1

amlψ(m)� Qεu1/2 and
∑
n>v

(n,c)=1

bnlψ(b)� l−1Qεv−1/2(8.4)

uniformly for any c, l, u � X, any character ψ with conductor � Q, and
v � X.

Theorem 8.7. With the assumptions (8.3) and (8.4) above, we have

S �ε Q
1−ε.

The proof is similar.
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