
ACTA ARITHMETICA

155.4 (2012)

The Bounded Gap Conjecture and bounds between
consecutive Goldbach numbers

by

János Pintz (Budapest)

Dedicated to Professor Andrzej Schinzel on his 75th birthday

1. Introduction. It is no surprise that there are connections between
the distribution of primes and the Goldbach conjecture. In most cases ap-
proximations to the Goldbach conjecture are shown by the circle method
using properties of the distribution of primes proved by analytic methods,
in many cases in combination with sieve methods (cf. [Pan], [Pin1], [PR]).
This is the case, for example, if we look for intervals of type

(1.1) [x, x+ f(x)], x > x0,

where one can show that almost all even numbers are Goldbach numbers,
that is, sums of two primes (cf. [BHP1], [Jia1], [KPP], [Mik], [PP]). We
will denote their sequence by G = {gi}∞i=1 = {4, 6, 8, . . . }. The Goldbach
conjecture can also be formulated as a result about consecutive Goldbach
numbers, namely, gn+1 − gn = 2 for all n ≥ 1.

It is interesting to note that it is exactly the problem of estimating the
bounds between consecutive Goldbach numbers, that is, estimates of type

(1.2) gn+1 − gn < h(gn),

where the best (actually almost all) results follow in a simple way directly
from (usually deep) results about the distribution of primes. As was ob-
served first by Montgomery–Vaughan [MV] and Ramachandra [Ram], the
two results

π(x+ xϑ1)− π(x) ≥ cxϑ1

log x
,(1.3)

π(n+ nϑ2)− π(n) > 0 for almost all n ∈ [x, 2x) for x→∞,(1.4)
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together imply

(1.5) gn+1 − gn � h(gn) = gϑ3n = gϑ1ϑ2n .

Accordingly the best exponent ϑ3 = 21/800 is a consequence of the results
ϑ2 = 1/20 of Jia [Jia2] and ϑ1 = 21/40 of R. C. Baker, G. Harman and the
author [BHP2].

As a trivial special case of (1.3)–(1.5), we can see that Conjecture 1.1
follows from Conjecture 1.2, where

Conjecture 1.1. gn+1 − gn � gεn for any ε > 0.

Conjecture 1.2. (1.4) is true for any exponent ε > 0.

Thus, some expected regular distribution of primes, the rare occurrence
of large gaps between consecutive primes (Conjecture 1.2) implies Conjec-
ture 1.1. We will show in this note that also some unexpected distribution of
primes, namely, the non-existence of infinitely many bounded gaps between
primes,

(1.6) lim inf
n→∞

(pn+1 − pn) =∞,

implies Conjecture 1.1, where P = {pi}∞i=1, pi < pi+1, denotes the set of all
primes; p, pi will always denote primes.

To reformulate our result we introduce

Conjecture 1.3 (Bounded Gap Conjecture). We have

(1.7) lim inf
n→∞

(pn+1 − pn) <∞.

Our main result can be formulated as

Theorem 1.4. At least one of Conjectures 1.1 and 1.3 is true.

Remark. Naturally, probably both are true.

We will prove the result in a stronger form, which needs the notion of
admissible k-tuples

(1.8) H = {hi}ki=1, h1 < · · · < hk, H ⊂ Z,

which are defined by the property that the number νp = νp(H) of residue
classes occupied by Hmod p satisfies νp < p for all p ∈ P. This is equivalent
to the fact that the associated singular series satisfies

(1.9) S(H) :=
∏
p

(
1− νp(H)

p

)(
1− 1

p

)−k
6= 0.

We can also introduce one more conjecture, which trivially implies the
Bounded Gap Conjecture.
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Conjecture 1.5. If k is sufficiently large (k > k0, an absolute con-
stant) then for an arbitrary admissible k-tuple H, the set n+H := {n+hi}ki=1

contains at least two primes for infinitely many values of n.

We will actually prove the following

Theorem 1.6. At least one of Conjectures 1.1 and 1.5 is true.

Remark. Theorem 1.4 trivially follows from this.

2. The basic idea of the proof. The idea of the (non-trivial) proof
of Theorem 1.6 slightly resembles the completely trivial implication Conjec-
ture 1.2⇒ Conjecture 1.1. Namely, if we want to write an even integer near
M as the sum of two primes then setting bM/3c = N we can consider for
an ε = 1/r, r ∈ Z+ (suppose for simplicity N ε ∈ Z)

(2.1) N = {Ni = [N + (i− 1)N ε, N + iN ε]}Ti=1, T = (N ε)r−1 = N1−ε.

If at least half of the intervals in N contain at least one prime (we do not
even need almost all in the case of ϑ2 = ε being arbitrarily small!), then we
have clearly an integer i ∈ [1, T ] such that the intervals Ni and NT−i each
contain at least one prime, whose sum satisfies

(2.2) p+ p′ ∈ [3N − 2N ε, 3N ] ⊆ [M − 2N ε − 3,M ].

In the case of Theorem 1.6, we will suppose that Conjecture 1.5 is false
for a single H = Hk, where k > k0 (k0 will be determined later during the
proof). Afterwards we will use a somewhat similar (but fairly non-trivial)
argument, where numbers will be weighted by Selberg type weights, used in
the proof of

(2.3) lim inf
n→∞

(pn+1 − pn)/log pn = 0,

given recently by D. Goldston, C. Yıldırım and the author [GPY]. The
weights depend on the given k-tuple H = Hk in the following way:

an := ΛR(n;H, l)2 :=

(
1

(k + l)!

∑
d|PH(n)
d≤R

µ(d)

(
log

R

d

)k+l)2

,(2.4)

PH(n) =
k∏
i=1

(n+ hi),

and n will run in [N, 2N), to be abbreviated by n ∼ N , with N = bM/3c,
N > N0(k,Hk).

It is crucial for our proof that in [GPY] we almost proved Conjecture 1.5
(and consequently the Bounded Gap Conjecture) in the sense that we showed
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that denoting the characteristic function of the primes by χP we have

(2.5) S :=
∑
n∼N

an

k∑
i=1

χP(n+ hi) ≥
(

1− c√
k

) ∑
n∼N

an =:

(
1− c√

k

)
A.

This means that if {n+ hi}ki=1 contains at most one prime for each n ∼ N ,
then

(2.6) A0 =
∑
n∼N

n+hi /∈P, i=1,...,k

an ≤
c√
k

∑
n∼N

an =
c√
k
A,

which means that we must have in the weighted sense for most n at least
one (by our assumption exactly one) prime among n+hi, and consequently
a bounded distance from n. Therefore (in the weighted sense) for most n we
can have no primes at a distance at most N ε from M − n. This means that
all primes in [N, 2N) have to be accumulated near the numbers M − n in
(2.6), having relative measure

(2.7) A0/A ≤ c/
√
k.

On the other hand, sieve estimates (see Theorem 4.4 of [Mon]) tell us
that for y ∈ [xε, x] primes might have just the density at most 2/ε of the
expected size:

(2.8) π(x+ y)− π(x) ≤ 2y

log y
≤ 2y

ε log x
.

The choice k > k0 = Cε−2 will lead to a contradiction.

3. The proof of Theorem 1.6. In order to make the sketch of the ar-
gument of the previous section precise we will quote special cases of Propo-
sitions (2.14)–(2.15) of [GPY] as Lemmas 3.1 and 3.2 using notation (2.4)–
(2.5) and

(3.1) B := BR(N, k, l) :=

(
2l

l

)
N logk+2`R

(k + 2l)!
(0 ≤ l ≤ k).

Lemma 3.1. If R� N1/2(logN)−2(k+l) as R,N →∞ then

(3.2) A =
∑
n∼N

an = (S(H) + o(1))B.

Lemma 3.2. If R � N1/4(logN)−C(k) as R,N → ∞ then for hi ∈ H
we have

(3.3) Si :=
∑
n∼N

anχP(n+ hi) =
2(2l + 1)

l + 1

(S(H) + o(1))B

k + 2l + 1

logR

logN
.
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Observing that for any admissible H with |H| = k we have

(3.4) S(H) ≥
∏
p≤2k

1

p

∏
p>2k

(
1− k

p

)(
1− 1

p

)−k
= C0(k),

we obtain with the optimal choice

(3.5) R = N1/4(logN)−C(k), l = b
√
k/2c,

from (3.1)–(3.5), by summing over i = 1, . . . , k, the crucial relation (2.5),
and consequently (2.6).

In order to make the second part (2.7)–(2.8) of our heuristic argument
precise we have to calculate the weighted sum of primes of the form M+h−n
for h ≤ H � xε (at least on average over h ∈ [0, H]); in order to do this we
need first a variant of Proposition 2 of [GPY], which we state as

Lemma 3.3. If H is admissible, R � N1/4(logN)−C(k) as R,N → ∞,
2N < m� N , m ≡ h1 (mod 2) then

(3.6) S∗m :=
∑
n∼N

anχP(m− n) =
(S(H ∪ {−m}) + o(1))B

logN
.

The proof is nearly the same as that of the first case (h0 /∈ H) of Propo-
sition 2 of [GPY] or that of Lemma 2 in [GMPY]; the only change being
that the role of

(3.7) ∆ :=
∏

1≤i<j≤k
(hj − hi)

is now played by

(3.8) ∆∗m := ∆
∏

1≤i≤k
(m+ hi).

Accordingly the estimate ∆� (logN)k
2

of [GPY] has to be replaced by the
weaker

(3.9) ∆∗m �k N
k∆� N2k.

Consequently, the parameter U := Ck2(log 2h) in (6.14) of [GPY] has to
be replaced by

(3.10) log∆∗m ≤ U∗ := 2k logN.

Hence the estimate (7.12) of [GPY] takes now for Re si = σi the form

(3.11) |GH(s1, s2)|
� exp

(
Ck(logN)δ1+δ2 log log logN

)
, where δi = max(−σi, 0).

This estimate is exactly the same as in (1.6) of [GMPY], which uses the
above weaker but still sufficient upper bound of GH(s1, s2). The rest of the
proof is the same as in [GPY] or [GMPY]. �
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However, in this case we cannot use the argument of [GPY] or [GMPY]
which makes use of Gallagher’s theorem [Gal] about the mean value of S(H)
for H ⊂ [1, H], the relation (k fixed)

(3.12)
∑

H⊂[1,H], |H|=k

S(H) ∼ Hk as H →∞.

The argument that we now use instead is contained in [Pin2], which also
gives a very quick alternative proof of Gallagher’s theorem.

The lemma below is a small variation of Theorem 2 of [Pin2].

Lemma 3.4. Let Hk ⊂ [0, H] be a fixed k-element admissible set, C a
sufficiently large constant, k > k0, M ∈ Z, and δ > 0. Then for H >
exp
(

Ck
δ log k

)
we have

(3.13) SH(M,H) =
1

H

∑
m∈[M,M+H)

S(H ∪ {m})
S(H)

≥ 1− δ.

Remark. As we see we allow here M and thereby m to be negative as
well.

Remark. A slightly more elaborate proof (see Theorem 1 of [Pin2])
would give SH(M,H) ∼ 1 if H > exp(kC/ε), but the above weaker estimate
(3.13) is sufficient for our purposes too.

Proof of Lemma 3.4. Let us study S(H′)/S(H) with H′ = H ∪ {m}
with a fixed m ∈ [M,M +H], m /∈ H for k > k0 with the notation

(3.14) ν ′p = νp(H′), y :=
5

6
logH, P :=

∏
p≤y

p.

Then

(3.15)
S(H′)
S(H)

=
∏
p

1− ν′p
p(

1− νp
p

)(
1− 1

p

) =
∏

1
p≤y

·
∏

2
p>y

,

where

(3.16)
∏

2
≥
∏
p>y

1− νp+1
p

1− νp+1
p + k

p2

=
∏(

1−O
(
k

p2

))
= 1 +O

(
k

y log y

)
.

Since
∏

1(m) is periodic with period P , it is sufficient to study it for m ∈
[1, P ]. Since for any prime p we have exactly νp possibilities for m mod p
with ν ′p = νp and p− νp possibilities with ν ′p = νp + 1, we obtain

(3.17)
1

P

P∑
m=1

∏
1
(m) =

∏
p|P

{νp
p

(
1− νp

p

)
+
(
1− νp

p

)(
1− νp+1

p

)}(
1− νp

p

)(
1− 1

p

) = 1.
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Since the possible non-complete period from M+rP to M+H (if bH/P c=r)
adds to SH(M,H) just O(P/H) = o(1) (as H →∞), (3.16)–(3.17) together
prove Lemma 3.4.

Lemmas 3.3 and 3.4 together imply for H > H0(ε, k) a lower bound for
the weighted sum below. Namely, interchanging the order of summations we
obtain ∑

m∈(M,M+H]

S∗m =
∑
n∼N

an

H∑
h=1

χP(M + h− n)(3.18)

≥ (1− ε)BS(H)

logN

−M−1∑
m=−M−H

S(H ∪ {m})
S(H)

≥ (1− 2ε)
BS(H)

logN
H.

Hence there exist m ∈ (M,M + H] and n ∈ [N, 2N) such that m − n
is prime. If for the n found here there exists an i, 1 ≤ i ≤ k, such that
n + hi ∈ P then m + hi = (m − n) + (n + hi) is a sum of two primes and
M < m + hi ≤ M + 2H, which on taking H = N ε/2 proves the theorem.
This leaves for consideration only n in the set

(3.19) N0 :=
{
n : n ∼ N, n+ hi /∈ P (1 ≤ i ≤ k)

}
whose “measure” satisfies (2.6). Since (2.8) gives an upper estimate, for each
individual n, for the number of primes between M + 1− n and M +H − n,
we deduce from (2.6)–(2.8) and (3.18)–(3.19) that

(1− 2ε)BHS(H)

logN
≤
∑
n∈N0

an
(
π(M +H − n)− π(M − n)

)
(3.20)

≤ cBS(H)√
k

· 2H

logH
,

which is a contradiction if k ≥ c′/ε2.

Remark. It is easy to see from (3.3) that one can take for c any number
exceeding 2, which means that one can choose any c′ > 4 in the above lower
bound if ε is sufficiently small. This means that a more quantitative form
of Theorem 1.6 is also true.

Theorem 1.6′. Let c′ > 4 be a fixed constant, and ε < ε0 sufficiently
small. Then one of the following assertions is true:

(i) gn+1 − gn � gεn.
(ii) Let H = {hi}ki=1 be an admissible k-tuple with k > c′ε−2. Then for

infinitely many values of n the set n+H contains at least two primes.
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4. Concluding remarks. After the proof of (2.3) in [GPY], the ques-
tion arose whether the method was able to show

(4.1) ∆ν = lim inf
n→∞

(pn+ν − pn)/log pn = 0

for some ν ≥ 2. The problem remained entirely open for all ν ≥ 3, while
(4.1) was shown to be true for ν = 2 under the assumption of the very
deep Elliott–Halberstam conjecture [EH], asserting that primes have level
of distribution ϑ = 1. We may remark that, on the other hand, the seem-
ingly deeper Bounded Gap Conjecture could be shown under the weaker
assumption that the primes have some distribution level exceeding 1/2. It
may be interesting to remark that if besides the falsity of the Bounded
Gap Conjecture we also assume the falsity of (4.1) for an arbitrarily chosen
fixed ν, then we obtain a much smaller upper bound for the gaps between
consecutive Goldbach numbers. The result is as follows.

Theorem 4.1. Suppose ε > 0, ∆ν > 0 for some ν ≥ 2 and there exists
an admissible k-element set H such that for each sufficiently large n the set
n+H contains at most one prime. Then

(4.2) gn+1 − gn ≤ ε log gn for n > n1(k, ν, ε) and k > k0(ν, ε).

The proof is very similar to the proof of Theorem 1.6. However, choosing
a fixed ε < ∆ν and

(4.3) H = ε logN, N > N0(k,∆ν , ε)

we can clearly replace (2.8) by

(4.4) π(M +H − n)− π(M +H) ≤ ν + 1.

Hence we obtain, in place of (3.20),

(4.5)
(1− 2ε)BHS(H)

logN
≤ cBS(H)√

k
· (ν + 1),

which is a contradiction if k is large enough (k > (2cν/ε)2).
Finally we remark that without any further assumption a refinement

of the present method in combination with some deeper results about the
distribution of primes can yield a stronger form of Theorem 1.6 (thereby of
Theorem 1.4) where the estimate gn+1−gn � gεn is replaced by gn+1−gn �
(log gn)C with some explicitly given value of C.
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