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1. Introduction. For a class of Lucas sequences {xn}, we show that if n
is a positive integer then xn has a primitive prime factor which divides xn to
an odd power, except perhaps when n = 1, 2 or 6. This has several desirable
consequences.

1a. Repunits and primitive prime factors. The numbers 11, 111
and 1111111111 are known as repunits, that is, all of their digits are 1 (in
base 10). Repunits cannot be squares (since they are ≡ 3 (mod 4)), so one
might ask whether a product of distinct repunits can ever be a square. We
will prove that this cannot happen. A more interesting example is the set
of repunits in base 2, the integers of the form 2n − 1. In this case there
is one easily found product of distinct repunits that is a square, namely
(23− 1)(26− 1) = 212 (which is 111 · 111111 = 10101 · 10101 in base 2); this
turns out to be the only example.

For a given sequence {xn}n≥0 of integers, we define a characteristic prime
factor of xn to be a prime p which divides xn but p -xm for 1 ≤ m ≤ n− 1.
The Bang–Zsigmondy theorem (1892) states that if r > s ≥ 1 and (r, s) = 1
then the numbers

xn =
rn − sn

r − s
have a characteristic prime factor for each n > 1 except for the case
(26 − 1)/(2− 1). A primitive prime factor of xn is a characteristic prime
factor of xn that does not divide r − s.
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For various Diophantine applications it would be of interest to determine
whether there is a characteristic prime factor p of xn for which p2 does not
divide xn. As an example of such an application, note that if xn1 . . . xnk

is
a square where 1 < n1 < · · · < nk and k ≥ 1 then a characteristic prime
factor p of xnk

divides only xnk
in this product and hence must divide xnk

to
an even power. Thus if p divides xnk

to only the first power then xn1 . . . xnk

cannot be a square. Unfortunately we are unable to prove anything about
characteristic prime factors dividing xn only to the first power, but we are
able to show that there is a characteristic prime factor that divides xn to
an odd power, which is just as good for this particular application.

Theorem 1. If r and s are pairwise coprime integers for which 2 divides
rs but not 4, then (rn − sn)/(r− s) has a characteristic prime factor which
divides it to an odd power, for each n > 1 except perhaps for n = 2 and
n = 6. The case n = 2 is exceptional if and only if r + s is a square. The
case n = 6 is exceptional if and only if r2 − rs+ s2 is 3 times a square.

In particular 2n−1 has a characteristic prime factor which divides it to an
odd power, for all n > 1 except n = 6. Also (10n − 1)/9 has a characteristic
prime factor which divides it to an odd power for all n > 1. One can take
these all to be primitive prime factors.

Corollary 1. Let xn = (rn − sn)/(r − s) where r and s are pairwise
coprime integers for which 2 divides rs but not 4. If xn1 . . . xnk

is a square
where 1 < n1 < · · · < nk and k ≥ 1, then either x2 = r + s is a square, or
x3x6 = x23(r

3 + s3) is a square.

The infinitely many examples of this last case include 23+1 = 32, leading
to the solution (23 − 1)(26 − 1) = 212, and 743 − 473 = 5492, leading to
743−(−47)3

121 · 74
6−(−47)6
121 = 23096432. Since 23 + 1 = 32 is the only non-trivial

solution in integers to r3 + 1 = t2, we have proved that the only example
of a product of repunits which equals a square, in any base b with b ≡ 2
(mod 4), is the one base 2 example (23 − 1)(26 − 1) = 212 given already.

1b. Certain Lucas sequences. The numbers xn = (rn − sn)/(r − s)
satisfy x0 = 0, x1 = 1 and the second order linear recurrence xn+2 =
(r+ s)xn+1− rsxn for each n ≥ 0. These are examples of a Lucas sequence,
where {xn}n≥0 is a Lucas sequence if x0 = 0, x1 = 1 and

(1) xn+2 = bxn+1 + cxn for all n ≥ 0,

for given non-zero, coprime integers b, c. The discriminant of the Lucas
sequence is

∆ := b2 + 4c.

Carmichael showed in 1913 that if ∆ > 0 then xn has a characteristic prime
factor for each n 6= 1, 2 or 6 except for F12 = 144 where Fn is the Fibonacci
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sequence (b = c = 1), and for F ′12 where F ′n = (−1)n−1Fn (b = −1, c = 1).
Schinzel [7] defined a primitive prime factor of xn to be a characteristic
prime factor of xn that does not divide the discriminant ∆.

We have been able to show the analogy to Theorem 1 for a class of Lucas
sequences:

Theorem 2. Let b and c be pairwise coprime integers with c ≡ 2 (mod 4)
and ∆ = b2 + 4c > 0. Let {xn}n≥0 be the Lucas sequence satisfying (1). If
n 6= 1, 2 or 6 then xn has a characteristic prime factor which (exactly)
divides xn to an odd power.

In fact x2 does not have such a prime factor if and only if x2 = b is a
square; and x6 does not have such a prime factor if and only if x6/(x3x2) =
b2 + 3c equals 3 times a square.

Theorem 1 is a special case of Theorem 2 since there we have c = −rs ≡ 2
(mod 4), (b, c) = (r + s, rs) = 1 and ∆ = (r − s)2 > 0.

Corollary 2. Let the Lucas sequence {xn}n≥0 be as in Theorem 2. If
xn1 . . . xnk

is a square where 1 < n1 < · · · < nk and k ≥ 1 then the product
is either x2 = b or x3x6.

In fact x3x6 is a square if and only if b and b2 + 3c are both 3 times
a square; that is, there exist odd integers B and C with (C, 3B) = 1 and
4C2 > 3B4 for which b = 3B2 and c = C2 − 3B4.

With a little more work we can improve Theorem 2 to account for the
notion of primitive prime factors:

Theorem 3. Let b and c be pairwise coprime integers with c ≡ 2 (mod 4)
and ∆ = b2 + 4c > 0. Let {xn}n≥0 be the Lucas sequence satisfying (1). If
n 6= 1, 2, 3 or 6 then xn has a primitive prime factor which (exactly) divides
xn to an odd power.

The exceptions for n = 1, 2 and 6 are as above in Theorem 2. In fact x3
does not have such a prime factor if and only if x3 = b2 + c equals 3 times
a square.

1c. Fermat’s last theorem and Catalan’s conjecture; and a new
observation. Before Wiles’ work, one studied Fermat’s last theorem by
considering the equation xp+yp=zp for prime exponent p where (x, y, z)=1,
and split into two cases depending on whether p divides xyz. In the “first
case”, in which p -xyz, one can factor zp− yp into two coprime factors z− y
and (zp − yp)/(z − y) which must both equal the pth power of an integer.
Thus if the pth term of the Lucas sequence xp = (zp − yp)/(z − y) is never
a pth power for odd primes p then the first case of Fermat’s last theorem
follows, an approach that has not yet succeeded. However Terjanian [9] did
develop these ideas to prove that the first case of Fermat’s last theorem is
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true for even exponents, showing that if x2p + y2p = z2p in coprime integers
x, y, z where p is an odd prime then 2p divides either x or y:

In any solution, x or y is even, else 2 divides (xp)2+(yp)2 = z2p but not 4,
which is impossible. So we may assume that x is even, but not divisible by p,
and y and z are odd so that we have a solution r = z2, s = y2, t = xp to
rp−sp = t2 with r ≡ s ≡ 1 (mod 4) and (t, 2p) = 2. Let xn = (rn−sn)/(r−s)
for all n ≥ 1, so that xp(r − s) = t2 and (xp, r − s) = (p, r − s) | (p, t) = 1,
which implies that xp is a square. Terjanian’s key observation is that the
Jacobi symbols satisfy

(2)

(
xm
xn

)
=

(
m

n

)
for all odd, positive integers m and n.

Thus by selecting m to be an odd quadratic non-residue mod p, we have
(xm/xp) = −1 and therefore xp cannot be a square. This contradiction
implies that p must divide t, and hence Terjanian’s result.

A similar method was used earlier by Chao Ko [2] in his proof that
x2 − 1 = yp with p > 3 prime has no non-trivial solutions (a first step
on the route to proving Catalan’s conjecture). Rotkiewicz [4] showed, by
these means, that if xp + yp = z2 with (x, y) = 1 then either 2p divides
z or (2p, z) = 1, which implies both Terjanian’s and Chao Ko’s results.
Rotkiewicz’s key lemma in [4], and then his Theorem 2 in [5], extend (2):
Assume that ∆ and b are positive with (b, c) = 1. If b is even and c ≡ −1
(mod 4) then (2) holds. If 4 divides c, or if b is even and c ≡ 1 (mod 4) then
(xm/xn) = 1 for all odd, positive integers m,n. In the most interesting case,
when 2, but not 4, divides c, we have

(3)(
xm
xn

)
= (−1)Λ(m/n) for all odd, coprime, positive integers m and n > 1,

where Λ(m/n) is the length of the continued fraction form/n; more precisely,
we have a unique representation m/n = [a0, a1, . . . , aΛ(m/n)−1] where each ai
is an integer, with a0 ≥ 0, ai ≥ 1 for each i ≥ 1, and aΛ(m/n)−1 ≥ 2.

Note that we have not given an explicit evaluation of (xm/xn) when b
and c are both odd, the most interesting case being b = c = 1, which yields
the Fibonacci numbers. Rotkiewicz [6] does give a complicated formula for
determining (Fm/Fn) in terms of a special continued fraction type expansion
for m/n; it remains to find a simple way to evaluate this formula.

To apply (3) we show that one can replace Λ(m/n) (mod 2) by the much
simpler [2u/n] (mod 2), where u is any integer ≡ 1/m (mod n) (and that
this formula holds for all coprime positive integers m,n). Our proof of this,
and the more general (4), is direct (see Theorem 4 and Corollary 6 below),
though Vardi explained, in email correspondence, how to use the theory of
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continued fractions to show that Λ(m/n) ≡ [2u/n] (mod 2) (see the end of
Section 5).

It is much more difficult to prove that Lucas sequences with negative
discriminant have primitive prime factors. Nonetheless, in 1974 Schinzel [8]
succeeded in showing that xn has a primitive prime factor once n > n0, for
some sufficiently large n0, if ∆ 6= 0, other than in the periodic case b = ±1,
c = −1. Determining the smallest possible value of n0 has required great
efforts culminating in the beautiful work of Bilu, Hanrot and Voutier [1] who
proved that n0 = 30 is best possible. One can easily deduce from Siegel’s
theorem that if φ(n) > 2 then there are only finitely many Lucas sequences
for which xn does not have a primitive prime factor, and these exceptional
cases are all explicitly given in [1]. They show that such examples occur only
for n = 5, 7, 8, 10, 12, 13, 18, 30: if b = 1, c = −2 then x5, x8, x12, x13, x18,
x30 have no primitive prime factors; if b = 1, c = −5 then x7 = 1; if b = 2,
c = −3 then x10 has no primitive prime factors; there are a handful of other
examples besides, all with n ≤ 12.

1d. Sketches of some proofs. In this subsection we sketch the proof
of a special case of Theorem 2 (the details will be proved in the next four
sections). The reason we focus now on a special case is that this is already
sufficiently complicated, and extending the proof to all cases involves some
additional (and not particularly interesting) technicalities, which will be
given in Section 6.

Theorem 2′. Let b and c be integers for which b ≡ 3 (mod 4), c ≡ 2
(mod 4), the Jacobi symbol (c/b) equals 1 and ∆ = b2+4c > 0. If {xn}n≥0 is
the Lucas sequence satisfying (1) then xn has a characteristic prime factor
which (exactly) divides xn to an odd power for all n > 1 except perhaps when
n = 6. This last case occurs if and only if x6/(3x2x3) is a square.

Sketch of the proof of Theorem 2′. Let xn = ynzn where yn is divisible
only by characteristic prime factors of xn, and zn is divisible only by non-
characteristic prime factors of xn. If every characteristic prime factor divides
xn to an even power then yn is a square; it is our goal to show that this is
impossible.

A complex number ξ is a primitive nth root of unity if ξn = 1 but ξm 6= 1
for all 1 ≤ m < n. Let φn(t) ∈ Z[t] be the nth cyclotomic polynomial, that
is, the monic polynomial whose roots are the primitive nth roots of unity.
Evidently xn − 1 =

∏
d|n φd(x) so, by Möbius inversion, we have

φn(x) =
∏
d|n

(xd − 1)µ(n/d).

Homogenizing, we have xn = (rn − sn)/(r − s) =
∏
d|n, d>1 φd(r, s) where
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φn(r, s) := sφ(n)φn(r/s) ∈ Z[r, s]. Indeed for any Lucas sequence {xn} the
numbers φn, defined by

φn :=
∏
d|n

x
µ(n/d)
d ,

are integers. Most importantly, this definition implies that p is a charac-
teristic prime factor of φn if and only if p is a characteristic prime factor
of xn; moreover p divides both φn and xn to the same power. Therefore yn
divides φn, which divides xn. In fact yn and φn are very close to each other
multiplicatively (as we show in Corollaries 3 and 4 below): either φn = yn,
or φn = pyn where p is some prime dividing n; in the latter case, n = pem
where p is a characteristic prime factor of φm. So if we can show that

(i) φn is not a square, and
(ii) pφn is not a square when n is of the form n = pem where p is an

odd prime, e ≥ 0, m > 1 and m divides p− 1, p or p+ 1,

then we can deduce that yn is not a square. To prove this we modify the
approach of Terjanian described above: We will show that there exist integers
k and ` for which (

xk
φn

)
=

(
x`
pφn

)
= −1,

where ( ··) is the Jacobi symbol.
Our first step then is to evaluate the Jacobi symbol (xk/xm) for all

positive integers m and k. In fact this equals 0 if and only if (k,m) > 1.
Otherwise, we will show that for any coprime positive integers k and m > 2
we have

(4)

(
xk
xm

)
= (−1)[2u/m]

for any integer u which is ≡ 1/k (mod m), as discussed above. (Lenstra’s
observation that (4) holds when xm = 2m − 1, which he shared with me in
an email, is really the starting point for the proofs of our main results).

From this we deduce that

(5)

(
xk
φm

)
= (−1)N(m,u)

for all m ≥ 1, where, for r(m) =
∏
p|m p and the Möbius function µ(m), we

have

N(m,u) := µ2(m) + #{i : 1 ≤ i < 2ur(m)/m and (i,m) = 1}.
Now if φm is a square then by (5), we see that N(m,u) is even whenever
(u,m) = 1. In Proposition 4.1 we show that this is false unless m = 1, 2
or 6; our proof of this elementary fact is more complicated than one might
wish.
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In Lemma 5.2 we show, using (5), that if pφm is a square where m = pen,
n > 1 and n divides p−1, p or p+1 then N(m,u′)−N(m,u) is even whenever
u ≡ u′ (mod n) with (uu′,m) = 1. In Propositions 5.3 and 5.5 we show that
this is false unless m = 6; again our proof of this elementary fact is more
complicated than one might wish.

Since xd ≡ 3 (mod 4) for all d ≥ 2 (as may be proved by induction),
and since any squarefree integer m has exactly 2` − 1 divisors d > 1, where
` is the number of prime factors of m, therefore φm ≡

∏
d|m xd ≡ x13 ≡ 3

(mod 4), and so cannot be a square. Hence neither φ2 nor φ6 is a square
(despite the fact that (xk/φ6) = 1 for all k coprime to 6, since N(6, u) is
even whenever (u, 6) = 1). Therefore the only possibility left is that 3φ6 is
a square, as claimed.

Proof of Corollary 2. If p is a characteristic prime factor of xnk
which

divides xnk
to an odd power then p does not divide xni for any i < k and

so divides
∏

1≤i≤k xni to an odd power, contradicting the fact that this is a
square. Therefore nk = 2 or 6 by Theorem 2. Since a similar argument may
be made for any xni where ni does not divide nj , with j > i, we deduce,
from Theorem 1, that every ni must divide 6.

Therefore either k = 1 and x2 = b is a square, or we can rewrite∏
1≤i≤k xni as a product of

∏
1≤j≤` φmj times a square, where 1 < m1 <

· · · < m` = 6 and {m1, . . . ,m`−1} ⊂ {2, 3}. However, φ3 is divisible by some
characteristic odd prime factor p to an odd power, which does not divide φ6
(as all xn, n ≥ 1, are odd), and so φ3 cannot be in our product. Now φ6 is
not a square since φ6 = b2 + 3c ≡ 3 (mod 4). Therefore both φ2 and φ6 are
3 times a square, which is equivalent to x3x6 being a square.

Theorem 1 follows from Theorem 2, and Corollary 1 follows from Corol-
lary 2.

2. Elementary properties of Lucas sequences

2a. Lucas sequences in general. If yn+2 = −byn+1+cyn for all n ≥ 0
with y0 = 0, y1 = 1 then yn = (−1)n−1xn for all n ≥ 0. Therefore the prime
factors, and characteristic prime factors, of xn and yn are the same and
divide each to the same power, and so we may assume, without loss of
generality, that b > 0.

Let α and β be the roots of T 2 − bT − c. Then

xn =
αn − βn

α− β
for all n ≥ 0

(as may be proved by induction). We note that α+ β = b and αβ = −c, so
that (α, β) | (b, c) = 1 and thus (α, β) = 1. Moreover ∆ = (α−β)2 = b2 +4c.
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In this subsection we prove some standard facts about Lucas sequences
that can be found in many places (see, e.g., [3]).

Lemma 1.

(i) We have (xn, c) = 1 for all n ≥ 1.
(ii) We have (xn, xn+1) = 1 for all n ≥ 0.

(iii) We have xd+j ≡ xd+1xj (mod xd) for all d ≥ 1 and j ≥ 0. Therefore

if k − ` = jd then xk ≡ x`xjd+1 (mod xd).
(iv) Suppose d is the minimum integer ≥ 1 for which xd is divisible by

a given integer r. Then r |xk if and only if d | k.
(v) For any two positive integers k and m we have (xk, xm) = x(k,m).

Proof. (i) If not, select n minimal so that there exists a prime p with
p | (xn, c). Then bxn−1 = xn − cxn−2 ≡ 0 (mod p) and so p |xn−1 since
(p, b) | (c, b) = 1, contradicting minimality.

(ii) We proceed by induction using that (xn+1, xn+2) divides xn+2 −
bxn+1 = cxn, and thus divides xn, since (xn+1, c) = 1 by (i). Therefore
(xn+1, xn+2) | (xn, xn+1) = 1.

(iii) We proceed by induction on j: it is trivially true for j = 0 and j = 1;
for larger j we have xd+j = bxd+j−1 + cxd+j−2 ≡ xd+1(bxj−1 + cxj−2) =
xd+1xj (mod xd).

(iv) Since (xd+1, xd) = 1 we see that (xd, xd+j) = (xd, xj) by (iii). So if j
is the least positive residue of k (mod d) we find that (r, xk) = (r, xj). Now
0 ≤ j ≤ d − 1 and (r, xj) = r if and only if j = 0, and hence d | k, so the
result follows by the definition of d.

(v) Let g = (k,m) so (iv) implies that xg | (xk, xm) = r, say. Let d be
the minimum integer ≥ 1 for which xd is divisible by r. Then d | (k,m) = g
by (iv), and thus r |xg by (iv), and the result is proved.

Proposition 1. There exists an integer n ≥ 1 for which a prime p
divides xn if and only if p does not divide c. In this case let q = p if p is
odd, and q = 4 if p = 2. Select rp to be the minimal integer ≥ 1 for which
q |xrp. Define ep ≥ 1 so that pep divides xrp but pep+1 does not. Then q |xn
if and only if rp |n, in which case, writing n = rpp

km where p -m for some
integer k, we find that pep+k divides xn but pep+k+1 does not. Finally, if p
is an odd prime for which p |∆, then p |xp, and p2 -xp if p > 3.

Proof. Since p |xn for some n ≥ 1 we have (p, αβ) | (xn, c) = 1 by Lemma
1(i) so that p is coprime to both α and β. On the other hand if (p, αβ) = 1
then α, β are in the group of units modulo p, and therefore there exists an
integer n for which αn ≡ 1 ≡ βn (mod p) so that p |αn − βn. Hence p |xn
if (p, α − β) = 1. Now (p, α − β) > 1 if and only if p |∆. In this case one
easily shows, by induction, that xn ≡ n(b/2)n−1 (mod p) if p > 2, and hence



Primitive prime factors 439

p |xp. Finally 2 |∆ if and only if 2 | b, whence c is odd (as (b, c) = 1) and so
xn ≡ n (mod 2); in particular 2 |x2.

Let us write βd = αd + (βd − αd), so that

βkd = (αd + (βd − αd))k

= αkd + kα(k−1)d(βd − αd) +

(
k

2

)
α(k−2)d(βd − αd)2 + · · · ,

and therefore, since xd divides xkd,

xkd/xd ≡ kα(k−1)d +

(
k

2

)
α(k−2)d(β − α)xd (mod x2d).

We see that if p |xd, then p |xkd/xd if and only if p | k, as (p, α) = 1 (since
α | c and (p, c) = 1 by Lemma 1(i)). We also deduce that xpd/xd ≡ pα(p−1)d

(mod p2), and so p2 -xpd/xd, unless p = 2 and xd ≡ 2 (mod 4). The result
then follows from Lemma 1(iv).

Finally, if an odd prime p divides ∆ = (α− β)2 then

xp =
βp − αp

β − α
= pαp−1 +

(
p

2

)
αp−2(β − α) + · · · ≡ 0 (mod p).

Therefore np | p by Lemma 1(iv) and np 6= 1 (as x1 = 1), and so np = p.
Adding the two such identities with the roles of α and β exchanged yields

2xp
p

=
∑

1≤j≤p
j odd

1

p

(
p

j

)
∆(j−1)/2(αp−j + βp−j)−

∑
1≤j≤p
j even

1

p

(
p

j

)
∆j/2xp−j .

This is ≡ αp−1 +βp−1 (mod p) plus 2
3∆ if p = 3. Now if p > 3 the first term

equals x2p−2/xp−1 and so is not divisible by p. One can verify that 9 |x3 if
and only if 9 | b2 + c.

Corollary 3. Each φn is an integer. When p is a characteristic prime
factor of φn define np = n. Then p divides both xnp and φnp to the same
power. Otherwise if a prime p divides φn where n 6= np then n/np is a power
of p, and p2 -φn with one possible exception: if p = 2 with b odd and c ≡ 1
(mod 4) then n2 = 3 and 22 |φ6. If p is an odd prime for which p2 |∆ then
p |φp but p2 -φp.

Proof. Note first that np = rp when p 6= 2. We use the formula φn =∏
d|n x

µ(n/d)
d . If np = n then xn is the only term on the right that is divisible

by p, and so p divides both xnp and φnp to the same power. To determine the
power of p dividing φn we will determine the power of p dividing each xd. To
do this we begin by studying those d for which q divides xd (in the notation
of Proposition 1), and then we return, at the end, to those xd divisible by 2
but not 4.
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By Proposition 1, q divides xd if and only if d = rpp
`q with 0 ≤ ` ≤ k

and q |m, and so the power of p dividing these terms in our product is

∑
0≤`≤k

µ(pk−`)(ep + `)
∑
q|m

µ(m/q) =


1 if m = 1 and k ≥ 1,

0 if m ≥ 2,

ep if m = 1 and k = 0 (i.e. n = rp).

Hence if p is odd, or p = 2 with n2 = r2, then p |φn with n > np if and only
if n/np is a power of p, and then p2 -φn.

Other xd divisible by p occur only in the case that p = 2 and r2 = 2n2,
and these are the terms xd in the product for which n2 divides d but r2
does not. Such xd are divisible by 2 but not 4. Hence the total power of 2
dividing the product of these terms is∑

d|n
n2|d, 2n2-d

µ(n/d) =


1 if n = n2,

−1 if n = 2n2,

0 otherwise.

We deduce that 2 |φn with n > n2 if and only if n/n2 is a power of 2.
Moreover 4 -φn, except in the special case that n = r2 = 2n2 and e2 ≥ 3.
We now study this special case: We must have c odd, else c is even, so that
b is odd, and xn is odd for all n ≥ 1. We must also have b odd, else xn ≡ n
(mod 2), so n2 = 2, that is, x2 = b is divisible by 2 but not 4. But then
r2 = 4 and so φ4 = b2 + 2c ≡ 2 (mod 4), a contradiction. In this case n2 = 3
and we want r2 = 6. But then φ3 = b2+c ≡ 2 (mod 4), so that c ≡ 2−b2 ≡ 1
(mod 4), and φ6 = b2 + 3c ≡ 1 + 3 ≡ 0 (mod 4).

The last statement follows from the last part of Proposition 1 since
φp = xp (and working through the possibilities when p = 3).

Since φn is usually significantly smaller than xn and since we have a very
precise description of the non-characteristic prime factors of φn, it is easier
to study characteristic prime factors of xn by studying the factors of φn.

Lemma 3. Suppose that p is a prime that does not divide c (so that np
exists). Then np ≤ p+ 1. Moreover if p > 2 then np divides p− (∆/p).

Proof. Proposition 1 implies this when p |∆. We have α = (b +
√
∆)/2

and β = (b−
√
∆)/2, which implies that

αp ≡ bp +
√
∆
p

2p
≡ b+∆(p−1)/2√∆

2
≡ b+ (∆/p)

√
∆

2
(mod p),

and analogously βp ≡ (b− (∆/p)
√
∆)/2. Hence if (∆/p) = −1 then αp ≡ β

(mod p) and βp ≡ α (mod p), so that αp+1 = ααp ≡ αβ = −c (mod p)
and similarly βp+1 ≡ −c (mod p). Now (α− β, p) | (∆, p) = 1 and therefore
p |xp+1. If (∆/p) = 1 then αp−1 = α−1αp ≡ α−1α = 1 (mod p) and similarly
βp−1 ≡ 1 (mod p), so that p |xp−1.
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In the special case that p = 2 we have c odd. We see easily that if b is even
(and so 2 |∆) then n2 = 2. If b is odd then n2 = 3 and b2 + 4c ≡ 1 + 4 = 5
(mod 8). Therefore n2 divides 2−(∆/2), with the latter properly interpreted.

Corollary 4. Each φn has at most one non-characteristic prime fac-
tor, except φ6 is divisible by 6 if b ≡ 3 (mod 6) and c ≡ 1 (mod 2), and φ12
is divisible by 6 if b ≡ ±1 (mod 6) and c ≡ 1 (mod 6).

Proof. Suppose φn has two non-characteristic prime factors p < q. By
Corollary 3 we have q |np and so q ≤ np ≤ p + 1 by Lemma 3. Therefore
p = 2 and q = 3, in which case n2 = 3, so that n = 2e3 for some e ≥ 1, and
this equals 3fn3 for some f ≥ 1 by Corollary 3. Thus f = 1 and n3 = 2 or 4.
The result follows by working through the possibilities mod 2 and mod 3.

Corollary 5. Suppose that xn does not contain a characteristic prime
factor to an odd power and n 6= 6 or 12. Then either φn = � (where �
represents the square of an integer), or φn = p� where p is a prime for
which pe |n with e ≥ 1 and n/pe ≤ p+ 1.

Proof. Follows from Corollaries 3 and 4 and Lemma 3.

Lemma 4. Suppose that the odd prime p divides ∆. Then xn ≡ n(b/2)n−1

(mod p) for all n ≥ 0.

Proof. This follows by induction on n: it is trivially true for n = 0, 1,
and then

xn = bxn−1 + cxn−2 ≡ b(n− 1)(b/2)n−2 + c(n− 2)(b/2)n−3

≡ 2(n− 1)(b/2)n−1 − (n− 2)(b/2)n−1 = n(b/2)n−1 (mod p),

since ∆ = b2 + 4c ≡ 0 (mod p), so that c ≡ −(b/2)2 (mod p).

2b. Lucas sequences with b, ∆ > 0, (c/b) = 1 and b ≡ 3 (mod 4),
c ≡ 2 (mod 4). As b,∆ > 0 this implies that xn > 0 for all n ≥ 1 since
α > |β|.

We also have xn ≡ 3 (mod 4) for all n ≥ 2, by induction. In fact xn+2 ≡
xn (mod 8) for all n ≥ 3, which we can prove by induction: We have

x5 = b4 + 3cb2 + c2 ≡ 1 + 3c+ 4 ≡ 1 + c ≡ b2 + c = x3 (mod 8),

and

x6 = b(b4 + 4cb2 + 3c2) ≡ b(1 + 0 + 4) = b(1 + 4) ≡ b(b2 + 2c) = x4 (mod 8).

For larger n, we then have xn+2 = bxn+1 + cxn ≡ bxn−1 + cxn−2 = xn
(mod 8) by the induction hypothesis.

We also note that xn+2 ≡ bxn+1 (mod c) for all n ≥ 0, and so xn ≡ bn−1
(mod c) for all n ≥ 1. We deduce from this and the previous paragraph that
xn+2 ≡ b2xn (mod 4c) for all n ≥ 3.

Proposition 2. We have (xd+1/xd) = 1 for all d ≥ 1.
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Proof. For d = 1 this follows as x1 = 1; for d = 2 we have (x3/x2) =
((b2 + c)/b) = (c/b) = 1. The result then follows from proving that θd :=
(xd+1/xd)(xd/xd−1) = 1 for all d ≥ 3. Since xd+1 ≡ cxd−1 (mod xd) and
as xd ≡ xd−1 ≡ 3 (mod 4) for d ≥ 3, we have θd = (cxd−1/xd)(xd/xd−1) =
−(c/xd) = (−c/xd). We will prove that this equals 1 by induction on d ≥ 3.
So write −c = δC where C = |c/2|. Then note that

θ3 =

(
−c

b2 + c

)
=

(
δ

b2 + c

)(
C

b2 + c

)
=

(
δ

b2 + c

)(
−1

C

)(
b2 + c

C

)
=

(
δ

b2 − δC

)(
−1

C

)
,

which is shown to be 1, by running through the possibilities δ = ±2 and
C ≡ ±1 (mod 4). Also, as (−c/b) = −1,

θ4 =

(
−c

b(b2 + 2c)

)
= −

(
δ

b2 + 2c

)(
C

b2 + 2c

)
= −(−1)

(
b2 + 2c

C

)
= 1

since δ = ±2 and b2 +2c ≡ 5 (mod 8). Now for the induction step, for d ≥ 5:
The value of θd = (−c/xd) depends only on the square class of xd (mod 4c),
and we saw in the paragraph above that this is the same square class as
xd−2 (mod 4c) for d ≥ 5. Hence θd = 1 for all d ≥ 3, and the result follows.

3. Evaluation of Jacobi symbols when b, ∆ > 0, b ≡ 3 (mod 4),
c ≡ 2 (mod 4) and (c/b) = 1

3a. The reciprocity law. Suppose that k and m > 1 are coprime
positive integers. Let uk,m be the least residue, in absolute value, of 1/k
(mod m) (that is, u ≡ k (mod m) with −m/2 < u ≤ m/2).

Lemma 5. If m, k ≥ 2 with (m, k) = 1 then kuk,m +mum,k = 1.

Proof. Now v := (1 − kuk,m)/m is an integer ≡ 1/m (mod k) with
−k/2 + 1/m ≤ v < k/2 + 1/m. This implies that −k/2 < v ≤ k/2, and so
v = um,k.

Theorem 4. If k ≥ 1 and m > 1 are coprime positive integers then the
value of the Jacobi symbol (xk/xm) equals the sign of uk,m.

Proof. By induction on k+2m ≥ 5. Note that when k = 1 we have u = 1
and the result follows as (x1/xm) = (1/xm) = 1. For larger k, we have two
cases. If k > m then let ` be the least positive residue of k (mod m), say
k − ` = jm. By Lemma 1(iii) we have (xk/xm) = (x`/xm)(xm+1/xm)j =
(x`/xm) by Proposition 2. Moreover ul,m = uk,m by definition so that the
result follows from the induction hypothesis. If 2 ≤ k < m then (xk/xm) =
−(xm/xk) since xm ≡ xk ≡ 3 (mod 4). Moreover uk,m and um,k must have



Primitive prime factors 443

opposite signs, else 1 = k|uk,m| + m|um,k| ≥ 1 + 1 by Lemma 5, which is
impossible. The result follows from the induction hypothesis.

Define (t)m to be the least (positive) residue of t (mod m), so that
(t)m = t−m[t/m]. Note that 0 ≤ (t)m < m/2 if and only if [(t)m/(m/2)] = 0.
Also [(t)m/(m/2)] = [2t/m]− 2[t/m] ≡ [2t/m] (mod 2). Now, if m ≥ 3 and
(t,m) = 1 then (t)m is not equal to 0 or m/2; therefore if u is any integer
≡ 1/k (mod m) then the sign of uk,m is given by (−1)[2u/m]. We deduce the
following from this and Theorem 4:

Corollary 6. Suppose that k and m 6= 2 are coprime positive integers.
If u is any integer ≡ 1/k (mod m) then

(4)

(
xk
xm

)
= (−1)[2u/m].

Note that if k is odd then (xk/x2) = 1, whereas (4) would always give −1.

Remark. In email correspondence with Ilan Vardi we understood how
(4) can be deduced directly from (3) and known facts about continued frac-
tions. Write pn/qn = [a0, a1, . . . , an] for each n, and recall that(

pn pn−1

qn qn−1

)
=

(
a0 1

1 0

)(
a1 1

1 0

)
. . .

(
an 1

1 0

)
,

as may easily be established by induction on n ≥ 1. By taking determinants
we see that pnqn−1 = pn−1qn+(−1)n+1 ≡ (−1)n+1 (mod qn). Taking pn/qn =
k/m with n = Λ(k/m) − 1 and u to be the least positive residue of 1/k
(mod m) we see that qn−1 ≡ (−1)n+1u (mod m) and qn−1 < qn = m, so
qn−1 = u if n is odd, while qn−1 = m − u if n is even. Now m = qn =
anqn−1 + qn−2 ≥ 2qn−1 + 1, and so qn−1 < m/2. Therefore if u < m/2 then
qn−1 = u, so n is odd and the values given in (4) and (3) are equal. A similar
argument works if u > m/2. Hence

(6) Λ(k/m) ≡ [2u/m] (mod 2) where uk ≡ 1 (mod m)

for all coprime positive integers k and m.

3b. The characteristic part. If (m, k) = 1 and u ≡ 1/k (mod m)
then

(7)

(
xk
φm

)
=
∏
d|m

(
xk
xd

)µ(m/d)
= (−1)E(m,u)
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by (4) since (xk/xd) = 1 if d = 1 or 2, where

E(m,u) ≡
∑
d|m
d≥3

µ

(
m

d

)[
2u

d

]
=
∑
d|m
d≥3

µ

(
m

d

) ∑
1≤j≤2u−1

d|j

1

≡
∑

1≤j≤2u−1

∑
d|(m,j)

µ

(
m

d

)
+ µ(m)(2u− 1) + E2 (mod 2);

here E2, the contribution when d = 2, occurs only when m is even, and is
then equal to µ(m/2)(u−1), and we can miss the j = 2u term since if d | 2u
then d | (2u,m) = (2,m) | 2. However, u is then odd since (u,m) = 1 and so
E2 ≡ µ(m/2)(u− 1) ≡ 0 (mod 2).

Now let r(n) =
∏
p|n p for any integer n. We see that µ(m/d) = 0 unless

m/d divides r(m), that is, d is divisible by m/r(m), in which case j must
be also. Write j = i(m/r(m)), and each d as D(m/r(m)), so that

E(m,u) ≡ µ(m) +
∑

1≤i<2ur(m)/m

∑
D|(r(m),i)

µ(r(m)/D)

≡ µ(m) +
∑

1≤i<2ur(m)/m
(i,m)=1

1 (mod 2),

which is N(m,u), and so we obtain (5).

4. The tools needed to show that φm 6= �

Proposition 4.1. If m 6= 1, 2, 6 then N(m,u′) − N(m,u) is odd for
some u, u′ with (uu′,m) = 1.

Proof. If m is squarefree then N(m,u′) − N(m,u) = #{i : 2u ≤ i <
2u′ and (i,m) = 1}. So, if m is odd and > 1 let u = (m − 1)/2 and
u′ = u+ 1. If m is even then there exists a prime q |m with q ≥ 5 (as m 6= 2
or 6), so we can write m = qs where q - s > 1. Then select u ≡ −1 (mod s)
and u ≡ −3/2 (mod q) with u′ = u+ 2.

For m not squarefree let m2 be the largest powerful number dividing m
and m = m1m2 so that m1 is squarefree, (m1,m2) = 1, and r(m2)

2 |m2.
Note that m/r(m) = m2/r(m2).

If m2 = 4 then N(m,u) = #{i : 1 ≤ i < u, (i,m) = 1}, so if u is the
smallest integer > 1 that is coprime with m then N(m,u)−N(m, 1) = 1.

So we may assume that m2 > 4, in particular that 2r(m)/m ≤ 2/3.
Consider

N

(
m,

m

r(m)
(`+ 1) + 1

)
−N

(
m,

m

r(m)
`+ 1

)
= #{i : 2`+ 1 ≤ i ≤ 2`+ 2 : (i,m) = 1}.
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Select ` ≡ −1 (mod m2) so that (2`+ 2,m) ≥ m2. Then we need to select `
(mod p) for each prime p dividing m1 so that all of m

r(m)(`+1)+1, m
r(m)`+1

and 2` + 1 are coprime to p. Since there are just three linear forms, such
congruence classes exist modulo primes p > 3 by the pigeonhole principle;
and also for p = 3 as may be verified by a case-by-case analysis. Thus the
result follows when m1 is odd.

So we may assume that m1 is even and now consider

N

(
m,

2m

r(m)
(`+ 1) + 1

)
−N

(
m,

2m

r(m)
`+ 1

)
= #{i : 4`+ 1 ≤ i ≤ 4`+ 4 : (i,m) = 1}.

Select ` ≡ −3/4 (mod m2) so that (4` + 3,m) ≥ m2. We can again select
` (mod p) for each prime p > 3 dividing m1 so that all of 2m

r(m)(` + 1) + 1,
2m
r(m)`+ 1, 4`+ 1 are coprime to p by the pigeonhole principle, and therefore

the result follows if 3 does not divide m1.
So we may assume that 6 |m1. Select an integer ` so that ` ≡ 1 (mod m2),

` ≡ −m/r(m) (mod 4) and, for each prime p dividingm1/2, p does not divide
`, m

r(m)`− 1 or m
r(m)`+ 3. Therefore, since 3r(m)/m ≤ 3/5, we have

N

(
m,

1

2

(
m

r(m)
`+ 3

))
−N

(
m,

1

2

(
m

r(m)
`− 1

))
= #{i : ` ≤ i < `+ 1 : (i,m) = 1} = 1.

5. The tools needed to show that φm 6= p�

Lemma 5.1. Suppose that φm = p�, where p is an odd prime, m = pen,
1 < n ≤ p + 1 and p |φn. If k ≡ k′ (mod 2n) with (kk′,m) = 1 then
(xk/φm) = (xk′/φm). Moreover if c ≡ 2 (mod 4) then (φm/xk) = (φm/xk′).

Proof. Writing k′ = k+2nj we have xk′ ≡ xkx2jn+1 (mod xn), by Lemma
1(iii); and so (xk/p) = (xk′/p) since p |xn. Therefore since φm = p� we have
(xk/φm) = (xk/p) = (xk′/p) = (xk′/φm).

If c ≡ 2 (mod 4) and k ≡ k′ (mod 2) then xk ≡ xk′ (mod 4), which
implies that (p/xk)(p/xk′) = (xk/p)(xk′/p), and the result follows from the
first part.

Lemma 5.2. Assume that b,∆ > 0, b ≡ 3 (mod 4), c ≡ 2 (mod 4) and
(c/b) = 1. Suppose that φm = p�, where p is an odd prime, m = pen,
1 < n ≤ p + 1 and p |φn. If u ≡ u′ (mod n) with (uu′,m) = 1 then
N(m,u′) − N(m,u) is even. If e = 1 and n 6= p then this implies that
N(n, u′/p)−N(n, u/p) is even.

Proof. Let k, k∗ be integers for which k ≡ 1/u (mod m) and k∗ ≡ 1/u′

(mod m). Evidently k ≡ 1/u ≡ 1/u′ ≡ k∗ (mod n). If k ≡ k∗ (mod 2n) then
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let k′ = k∗, otherwise take k′ = k∗+m, so k′ ≡ k (mod 2n) (since m/n = pe

is odd). Applying the first part of Lemma 5.1, we see that the first result
follows from (5).

If e = 1 then m = pn so that r(m)/m = r(n)/n. Therefore N(m,u′) −
N(m,u) equals, for U = 2ur(n)/n and U ′ = 2u′r(n)/n,∑

U≤i<U ′
(i,r(n)p)=1

1 =
∑

U≤i<U ′
(i,r(n))=1

1−
∑

U≤i<U ′
(i,r(n))=1, p|i

1 ≡
∑

U/p≤j<U ′/p
(j,r(n))=1

1 (mod 2).

since U ′ ≡ U (mod 2r(n)) (as u ≡ u′ (mod n)), so that the first term
counts each residue class coprime with r(n) an even number of times, and
by writing i = jp in the second sum. The result follows.

Proposition 5.3. Suppose n ≥ 2 and n divides p− 1 or p+ 1 for some
odd prime p. Let m = pen for some e ≥ 1. There exists an integer u such
that (u(u + n),m) = 1 for which N(m,u + n) −N(m,u) = 1 if e ≥ 2, and
N(n, (u+n)/p)−N(n, u/p) = 1 if e = 1, except when p = 3, n = 2. In that
case we have N(2 · 3e, (3e−1 + 4 + 3(−1)e)/2)−N(2 · 3e, 1) = 1 for e ≥ 2.

Lemma 5.4. If n ≥ 3 and p is an odd prime with p = n− 1 or p ≥ n+ 1
(except for the cases n = 3 or 6 with p = 5; and n = 4, p = 3) then in any
non-closed interval of length n containing exactly n integers, there exists an
integer u for which u and u+ n are both prime to np.

Proof. Since p ≥ n− 1 there are no more than three integers, in our two
consecutive intervals of length n, that are divisible by p so the result follows
when φ(n) ≥ 4. Otherwise n = 3, 4 or 6, and if the reduced residues are
1 < a < b < n then p divides b− a, (n+ b)− a, (n+ a)− b or (2n+ a)− b.
Therefore p | 4, 10, 2 or 8 for n = 6; p | 2 or 6 for n = 4; p | 1, 4, 2 or 5 for
n = 3. The result follows.

Proof of Proposition 5.3. Let f := max{1, e − 1}. The result holds for
(m,u) equal to(

3 · 5e, 5f − 3

2

)
,

(
6 · 5e, 5f − 3

2

)
, (4 · 3e, 3f − 2),

(
2 · pe, p

f − j
2

)
for each e ≥ 1 and, in the last case, any prime p > 3, where j is either 1
or 3, chosen so that u is odd.

Otherwise we can assume the hypotheses of Lemma 5.4. Now suppose
that e ≥ 2. Given an integer ` we can select u in the range ` m

2r(m) −n < u ≤
` m
2r(m) (which is an interval of length n) such that u and u′ := u+n are both

prime to np, by Lemma 5.4. ThereforeN(m,u′)−N(m,u) counts the number
of integers, coprime with m, in an interval of length λ := 2nr(m)/m =
2r(n)/pe−1. Note that λ ≤ 2n/p ≤ 2(p + 1)/p < 3 so our interval contains
no more than [λ] + 1 ≤ 3 integers, one of which is `. If λ < 2 we select ` ≡ 1
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(mod p) and ` ≡ −1 (mod n) so that N(m,u′) − N(m,u) = 1. Otherwise
λ ≥ 2 so that n ≥ r(n) ≥ pe−1 ≥ p, and thus n = p+ 1, e = 2 and r(n) = n,
that is, n is squarefree, and 2 | (p + 1) |n. So select ` to be an odd integer
for which ` ≡ 2 (mod p) and ` ≡ −2 (mod n/2) so that `± 2, `± 1 all have
common factors with m, and therefore N(m,u′)−N(m,u) = 1.

For e = 1 and given integer ` we now select u in the range ` pn
2r(n) −n < u

≤ ` pn
2r(n) , and N(n, u′/p)−N(n, u/p) counts the number of integers, coprime

with n, in an interval of length λ := 2r(n)/p. If λ < 1 we select ` so that it
is coprime with n; then we find that N(n, u′/p) − N(n, u/p) = 1 is odd. If
λ ≥ 1 we have r(n) ≥ p/2, and we know that r(n) |n | p ± 1, so that r(n)
and n equal (p+ 1)/2, p−1 or p+1. If n = r(n) = p−1 then n is squarefree
and divisible by 2, and [λ] = 1; so we select ` ≡ 1 (mod 2) and ` ≡ −1
(mod n/2) so that N(n, u′/p) − N(n, u/p) = 1. In all the remaining cases,
one may check that N(n, (n+ 1)/p)−N(n, 1/p) = 1.

Proposition 5.5. If m = pe+1 where p is an odd prime then
N(m, (pe + 1)/2)−N(m, 1) = 1.

6. Other Lucas sequences

Proposition 6.1. Assume that ∆ and b are positive with (b, c) = 1. For
n > 1 odd with (m,n) = 1 we have the following:

(
xm
xn

)
=



(
c

b

)(m−1)(n−1)/2
if 4 | c,

(−1)Λ(m/n)+( b+1
2

)(m−1)
(
c

b

)(m−1)(n−1)/2
if c ≡ 2 (mod 4),(

m

n

)(c−1)/2( 2

n

)(m−1)( b+c−1
2

)(b
c

)(m−1)(n−1)/2
if 2 | b.

Proof. For m odd this is the result of Rotkiewicz [5], discussed in Sec-
tion 1c. Note that if c is even then b is odd and xn is odd for all n ≥ 1; and
if b is even then c is odd and xn ≡ n (mod 2) is odd for all n ≥ 1. Thus xn
is odd if and only if n is odd.

For m even and n odd the sum m+ n is odd and so(
xm
xn

)
=

(
xm+n

xn

)(
xn+1

xn

)
by Lemma 1(iii), and therefore(

xn+1

xn

)
=

(
x2
xn

)(
xn+2

xn

)
;

note that n, n+2 are both odd, so we have yet to determine only (x2/xn) =
(b/xn).



448 A. Granville

Suppose that c is even so that b is odd. If 4 | c then xn ≡ 1 (mod 4) if n
is odd so that (b/xn) = (xn/b). If c ≡ 2 (mod 4) and b ≡ 1 (mod 4) then
(b/xn) = (xn/b). Now xn ≡ cxn−2 (mod b) and so xn ≡ c(n−1)/2 (mod b) for
every odd n. Therefore(

xm
xn

)
=

(
xm+n

xn

)(
xn+2

xn

)(
c

b

)(n−1)/2
.

The results follow in these cases since Λ((m + n)/n) = Λ(m/n) as
(m+n)/n = 1 +m/n, and Λ((n+ 2)/n) = 3 as (n+ 2)/n = [1, (n− 1)/2, 2].

If c ≡ 2 (mod 4) and b ≡ 3 (mod 4) then xn ≡ 3 (mod 4) for all n ≥ 2.
Therefore (b/xn) = −(xn/b) for all odd n > 1, and the result follows.

Now assume that b is even so that c is odd. As xn ≡ c(n−1)/2 (mod [b, 4])
for each odd n we have, writing b = 2eB with B odd,(

b

xnc(n−1)/2

)
=

(
2

xnc(n−1)/2

)e(xnc(n−1)/2
B

)
=

(
2

xnc(n−1)/2

)e
.

Now if 4 | b then xn ≡ c(n−1)/2 (mod 8). Finally, if e = 1 then xnc
(n−1)/2 ≡ 1

(mod 8) if n ≡ ±1 (mod 8), and ≡ 5 (mod 8) if n ≡ ±3 (mod 8). Therefore(
2

xnc(n−1)/2

)
=
(
2
n

)
. The result follows.

Corollary 6.2. Suppose that ∆ and b are positive, with (b, c) = 1 and
c ≡ 2 (mod 4). For n > 1 odd, m > 1 and (m,n) = 1. Suppose that mu ≡ 1
(mod n). If n is a power of a prime p then(

xm
φn

)
= (−1)N(n,u)+µ(n)( b+1

2
)(m−1)

(
c

b

)(m−1)(p−1)/2
.

If n has at least two distinct prime factors then(
xm
φn

)
= (−1)N(n,u)+µ(n)( b+1

2
)(m−1).

If m is even and > 2 then, for nv ≡ 1 (mod m),(
φm
xn

)
= (−1)N(m,v)+µ(m/2).

Proof. Throughout we assume that n > 1 is odd. Proposition 6.1 yields(
xm
φn

)
= (−1)A(c/b)B where B equals (m− 1)/2 times∑
d|n
d>1

µ(n/d)(d− 1) =
∑
d|n

µ(n/d)(d− 1) =
∑
d|n

µ(n/d)d = φ(n)

≡
∏
p|n

(p− 1) (mod 4).

The last product is divisible by 4 except if n is a power of an odd prime p,
so we confirm the claimed powers of (c/b). If d |n then Λ(m/d) ≡ [2u/d]
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(mod 2) where um ≡ 1 (mod n), by (6), and so

A =
∑
d|n
d>1

µ(n/d)

(
Λ(m/d) +

(
b+ 1

2

)
(m− 1)

)

≡
∑
d|n
d>1

µ(n/d)[2u/d]− µ(n)

(
b+ 1

2

)
(m− 1) (mod 2)

≡ N(n, u) + µ(n)

(
b+ 1

2

)
(m− 1) (mod 2)

since, in Section 3b, we showed
∑

d|n, d≥3 µ(n/d)[2u/d] ≡ N(n, u) (mod 2),

and here n is odd (so there is no d = 2 term).

In the third case we use the fact that if d < n then the continued fraction
for d/n is that of n/d with a 0 on the front, and vice versa. Hence Λ(n/d) +
Λ(d/n) ≡ 1 (mod 2). Hence∑

d|m

µ(m/d)Λ(d/n) ≡
∑
d|m

µ(m/d)(Λ(n/d) + 1)

≡ N(m, v) + µ(m/2) (mod 2).

The other terms disappear since φ(m) is even.

Proof of Theorem 2. Our goal is to show that yn is not a square, just as
we did in the proof of Theorem 2′. We begin by showing that φn is not a
square, for n 6= 1, 2, 3, 6 by using Corollary 6.2.

Suppose that φn is a square so that (xm/φn) = 1. For n > 1 odd,
we compare, in the first two identities of Corollary 6.2, the results for m
and m + n. The value of u does not change and we therefore deduce that

(−1)µ(n)(
b+1
2

)
(
c
b

)(p−1)/2
= 1 and (−1)µ(n)(

b+1
2

) = 1, respectively. Hence those
identities both become N(n, u) ≡ 0 (mod 2) whenever (u, n) = 1. Similarly if
n > 2 is even then the third identity of Corollary 6.2 yields N(n, u) ≡ µ(n/2)
(mod 2) whenever (u, n) = 1. These are all impossible, by Proposition 4.1,
unless n = 1, 2 or 6.

Next we suppose that pφn is a square where n = pem and p is an odd
characteristic prime factor of φm, with e ≥ 0, m > 1 and m divides p− 1, p
or p+ 1. Lemma 5.1 tells us that if k ≡ k′ (mod 2m) with (kk′, n) = 1 then
(xk/φn) = (xk′/φn) and (φn/xk) = (φn/xk′). Corollary 6.2 thence implies
that if n > 2 then N(n, u) ≡ N(n, u′) (mod 2) where uk ≡ u′k′ ≡ 1 (mod n).
We now proceed as in Lemma 5.2 to deduce that if u ≡ u′ (mod m) with
(uu′, n) = 1 then N(n, u) − N(n, u′) is even, deduce the final part of that
lemma, and then use Proposition 5.3 to obtain the desired contradiction
except when n = 1, 2 or 6.
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We can now deduce that yn is not a square for n 6= 1, 2, 6 from the last
two paragraphs, and the result follows.

Proof of Theorem 3. We deduce Theorem 3 from Theorem 2 by ruling
out the possibility that there exists an n for which none of the characteristic
prime factors p of xn which divide xn to an odd power are primitive prime
factors of xn. If this were the case then each such p would be a divisor of ∆,
which is odd, so that p is odd, and therefore n = np = p by Lemma 3. Hence
there is a unique such p, and so xp = φp is p times a square. But then(

xm
φp

)
=

(
xm
p

)
=

(
m(b/2)m−1

p

)
by Lemma 4 whenever p -m. Comparing this to the first part of Corollary
6.2 we find that(

m(b/2)m−1

p

)
= (−1)N(p,u)+( b+1

2
)(m−1)

(
c

b

)(m−1)(p−1)/2
.

where mu ≡ 1 (mod p). Replacing m by m + p does not change u, so
comparing the two estimates yields ((b/2)/p) = (−1)(b+1)/2(c/b)(p−1)/2 and
thus the last equation becomes(

u

p

)
=

(
m

p

)
= (−1)N(p,u) = (−1)[2u/p]

for u 6= 1, since N(p, u) ≡ [2u/p] (mod 2) if p -u. Now, selecting u = 2 we
deduce that (2/p) = 1 if p > 3. Taking u = p−1

2 we obtain
(p−1

2 /p
)

= 1, and
taking u = p − 1 we obtain ((p − 1)/p) = −1. These three estimates imply
1× 1 = −1, a contradiction, for all p > 3.

We note that in the other cases with bc even, our argument will not yield
such a general result about characteristic prime factors:

Corollary 6.3. Suppose that 4|c and b ≡ 1 (mod 2), with (m,n) = 1.
Suppose that n is odd. If n is a power of a prime p then(

xm
φn

)
=

(
c

b

)(m−1)(p−1)/2
.

Otherwise (xm/φn) = 1 if n has at least two distinct prime factors. On the
other hand if n is even and > 2 then (φn/xm) = 1.

One can deduce that φpk is not a square if 4 | c and (c/b) = −1 and p ≡ 3
(mod 4).

Corollary 6.4. Suppose that b is even and c is odd, with (m,n) = 1.
Suppose that n is odd. If n is a power of a prime p then(

xm
φn

)
=

(
m

p

)(c−1)/2(2

p

)(m−1)( b+c−1
2

)(b
c

)(m−1)(p−1)/2
.
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Otherwise (xm/φn) = 1 if n has at least two distinct prime factors. On the
other hand if n is even and > 2 then (φn/xm) = 1, except when c ≡ −1
(mod 4), n is a power of 2, and m ≡ ±3 (mod 8), whence (φn/xm) = −1.

Hence we can prove that φpk is not a square if b is even and

• c ≡ 3 (mod 4), or
• 4 | b with (b/c) = −1 and p ≡ 3 (mod 4), or
• b ≡ 2 (mod 4) with (b/c) = −1 and p ≡ 7 (mod 8), or
• b ≡ 2 (mod 4) and p ≡ 5 (mod 8), or
• b ≡ 2 (mod 4) with (b/c) = 1 and p ≡ 3 (mod 8).

7. Open problems. We conjecture that for every non-periodic Lucas
sequence {xn}n≥0 there exists an integer nx such that if n ≥ nx then xn has
a primitive prime factor that divides it to an odd power. In Theorem 3 we
proved this in the special case that ∆ > 0 and c ≡ 2 (mod 4), with nx = 7.
Proposition 6.1 suggests that our approach is unlikely to yield the analogous
result in all other cases where 2 | bc. We were unable to give a formula for the
Jacobi symbol (xm/xn) in general when b and c are odd (which includes the
interesting case of the Fibonacci numbers) which can be used in this context
(though see [6]), and we hope that others will embrace this challenge.
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