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1. Introduction. For a class of Lucas sequences {x, }, we show that if n
is a positive integer then x, has a primitive prime factor which divides x,, to
an odd power, except perhaps when n = 1,2 or 6. This has several desirable
consequences.

la. Repunits and primitive prime factors. The numbers 11, 111
and 1111111111 are known as repunits, that is, all of their digits are 1 (in
base 10). Repunits cannot be squares (since they are = 3 (mod 4)), so one
might ask whether a product of distinct repunits can ever be a square. We
will prove that this cannot happen. A more interesting example is the set
of repunits in base 2, the integers of the form 2" — 1. In this case there
is one easily found product of distinct repunits that is a square, namely
(23 —1)(25 — 1) = 212 (which is 111-111111 = 10101 - 10101 in base 2); this
turns out to be the only example.

For a given sequence {x, },>0 of integers, we define a characteristic prime
factor of x, to be a prime p which divides z,, but ptzy, for 1 <m <n —1.
The Bang—Zsigmondy theorem (1892) states that if r > s > 1 and (r,s) =1
then the numbers

P g

Tp = ———
r—s

have a characteristic prime factor for each m > 1 except for the case

(26 —1)/(2 — 1). A primitive prime factor of x, is a characteristic prime

factor of x,, that does not divide r — s.
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For various Diophantine applications it would be of interest to determine
whether there is a characteristic prime factor p of z,, for which p? does not
divide x,. As an example of such an application, note that if x,,, ...z, is
a square where 1 < n; < --- < ng and k > 1 then a characteristic prime
factor p of x,,, divides only x,, in this product and hence must divide z,,, to
an even power. Thus if p divides x,, to only the first power then z,, ...xn,
cannot be a square. Unfortunately we are unable to prove anything about
characteristic prime factors dividing x,, only to the first power, but we are
able to show that there is a characteristic prime factor that divides z,, to
an odd power, which is just as good for this particular application.

THEOREM 1. Ifr and s are pairwise coprime integers for which 2 divides
rs but not 4, then (r™ — s™)/(r — s) has a characteristic prime factor which
divides it to an odd power, for each n > 1 except perhaps for n = 2 and
n = 6. The case n = 2 is exceptional if and only if r + s is a square. The
case n = 6 is exceptional if and only if r> — rs + s% is 3 times a square.

In particular 2" —1 has a characteristic prime factor which divides it to an
odd power, for all n > 1 except n = 6. Also (10" —1)/9 has a characteristic
prime factor which divides it to an odd power for all n > 1. One can take
these all to be primitive prime factors.

COROLLARY 1. Let x, = (r" — s™)/(r — s) where r and s are pairwise
coprime integers for which 2 divides rs but not 4. If xy, ... 2y, is a square
where 1 < np < --- < ng and k > 1, then either xo = r + s is a square, or

z3w6 = 23(1r3 + 8) is a square.

The infinitely many examples of this last case include 23+1 = 32, leading

to the solution (23 — 1)(2°6 — 1) = 212, and 743 — 473 = 5492, leading to
3 3 6 6

T CANT AT — 93096432, Since 28 + 1 = 32 is the only non-trivial

solution in integers to r3 + 1 = t2, we have proved that the only example

of a product of repunits which equals a square, in any base b with b = 2

(mod 4), is the one base 2 example (23 — 1)(2% — 1) = 212 given already.

1b. Certain Lucas sequences. The numbers x,, = (" — s")/(r — s)
satisfy x9p = 0, 1 = 1 and the second order linear recurrence x,ys =
(r + 8)xpy1 — rsx, for each n > 0. These are examples of a Lucas sequence,
where {zy,}n>0 is a Lucas sequence if xo =0, 1 = 1 and

(1) Tp+o = bxpy1 +cx, forall n >0,

for given non-zero, coprime integers b,c. The discriminant of the Lucas
sequence is
A =0 + 4e.

Carmichael showed in 1913 that if A > 0 then x,, has a characteristic prime
factor for each n # 1,2 or 6 except for Fjo = 144 where F,, is the Fibonacci
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sequence (b = ¢ = 1), and for F|, where F! = (-1)""1F, (b= —1, c=1).
Schinzel [7] defined a primitive prime factor of x, to be a characteristic
prime factor of x,, that does not divide the discriminant A.

We have been able to show the analogy to Theorem [I|for a class of Lucas
sequences:

THEOREM 2. Let b and ¢ be pairwise coprime integers with ¢ = 2 (mod 4)
and A = b? + 4c > 0. Let {z,}n>0 be the Lucas sequence satisfying . If
n # 1,2 or 6 then x, has a characteristic prime factor which (exactly)
divides x, to an odd power.

In fact o does not have such a prime factor if and only if zo = b is a
square; and z¢ does not have such a prime factor if and only if z¢/(z3x2) =
b2 + 3¢ equals 3 times a square.

Theorem []is a special case of Theorem 2]since there we have ¢ = —rs = 2
(mod 4), (b,c) = (r+s,7s) =1 and A = (r — 5)? > 0.

COROLLARY 2. Let the Lucas sequence {xy}n>0 be as in Theorem . If
Tpy .- Ty, 15 a square where 1 < mny < --- < ny and k > 1 then the product
1s either o = b or x3x¢.

In fact x3xg is a square if and only if b and b + 3¢ are both 3 times
a square; that is, there exist odd integers B and C with (C,3B) = 1 and
4C? > 3B* for which b = 3B? and ¢ = C? — 3B%.

With a little more work we can improve Theorem 2] to account for the
notion of primitive prime factors:

THEOREM 3. Let b and ¢ be pairwise coprime integers with ¢ = 2 (mod 4)
and A = b? + 4c > 0. Let {z,}n>0 be the Lucas sequence satisfying . If
n#1,2,3 or 6 then x,, has a primitive prime factor which (exactly) divides
T, to an odd power.

The exceptions for n = 1,2 and 6 are as above in Theorem 2. In fact z3
does not have such a prime factor if and only if 23 = b 4 ¢ equals 3 times
a square.

1lc. Fermat’s last theorem and Catalan’s conjecture; and a new
observation. Before Wiles’ work, one studied Fermat’s last theorem by
considering the equation P +yP = 2P for prime exponent p where (z,y, z) =1,
and split into two cases depending on whether p divides zyz. In the “first
case”, in which p{xyz, one can factor zP — y? into two coprime factors z —y
and (zP — yP)/(z — y) which must both equal the pth power of an integer.
Thus if the pth term of the Lucas sequence z, = (2 — yP)/(z — y) is never
a pth power for odd primes p then the first case of Fermat’s last theorem
follows, an approach that has not yet succeeded. However Terjanian [9] did
develop these ideas to prove that the first case of Fermat’s last theorem is
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true for even exponents, showing that if 22”4 3?? = 2P in coprime integers
x,1y, z where p is an odd prime then 2p divides either x or y:

In any solution, x or y is even, else 2 divides (zP)%+(yP)? = 2% but not 4,
which is impossible. So we may assume that x is even, but not divisible by p,
and y and z are odd so that we have a solution r = 22, s = y%, t = 2P to
rP—sP = 2 withr = s = 1 (mod 4) and (¢,2p) = 2. Let z,, = (r"—s")/(r—s)
for all n > 1, so that z,(r — s) = t? and (xp,r — s) = (p,r — s) | (p,t) = 1,
which implies that z;, is a square. Terjanian’s key observation is that the
Jacobi symbols satisfy

(2) (a:m) = (m> for all odd, positive integers m and n.
Tn n

Thus by selecting m to be an odd quadratic non-residue mod p, we have
(xm/xp) = —1 and therefore x, cannot be a square. This contradiction
implies that p must divide ¢, and hence Terjanian’s result.

A similar method was used earlier by Chao Ko [2] in his proof that
22> — 1 = yP with p > 3 prime has no non-trivial solutions (a first step
on the route to proving Catalan’s conjecture). Rotkiewicz [4] showed, by
these means, that if 2P + y? = 22 with (x,y) = 1 then either 2p divides
z or (2p,z) = 1, which implies both Terjanian’s and Chao Ko’s results.
Rotkiewicz’s key lemma in [4], and then his Theorem [2] in [5], extend (2):
Assume that A and b are positive with (b,c) = 1. If b is even and ¢ = —1
(mod 4) then (2)) holds. If 4 divides ¢, or if b is even and ¢ = 1 (mod 4) then
(Xm/zn) = 1 for all odd, positive integers m,n. In the most interesting case,
when 2, but not 4, divides ¢, we have

(3)

<?> = (—1)A(m/”) for all odd, coprime, positive integers m and n > 1,
n

where A(m/n) is the length of the continued fraction for m/n; more precisely,
we have a unique representation m/n = [ao, a1, . . ., @ A(m/n)—1] Where each a;
is an integer, with ag > 0, a; > 1 for each 7 > 1, and a @y /n)—1 > 2.

Note that we have not given an explicit evaluation of (z,,/x,) when b
and c are both odd, the most interesting case being b = ¢ = 1, which yields
the Fibonacci numbers. Rotkiewicz [6] does give a complicated formula for
determining (F,/F,,) in terms of a special continued fraction type expansion
for m/n; it remains to find a simple way to evaluate this formula.

To apply (3]) we show that one can replace A(m/n) (mod 2) by the much
simpler [2u/n] (mod 2), where u is any integer = 1/m (mod n) (and that
this formula holds for all coprime positive integers m,n). Our proof of this,
and the more general , is direct (see Theorem || and Corollary |§| below),
though Vardi explained, in email correspondence, how to use the theory of
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continued fractions to show that A(m/n) = [2u/n] (mod 2) (see the end of
Section 5).

It is much more difficult to prove that Lucas sequences with negative
discriminant have primitive prime factors. Nonetheless, in 1974 Schinzel [§]
succeeded in showing that xz,, has a primitive prime factor once n > ng, for
some sufficiently large ng, if A # 0, other than in the periodic case b = +1,
¢ = —1. Determining the smallest possible value of ng has required great
efforts culminating in the beautiful work of Bilu, Hanrot and Voutier [I] who
proved that ng = 30 is best possible. One can easily deduce from Siegel’s
theorem that if ¢(n) > 2 then there are only finitely many Lucas sequences
for which z,, does not have a primitive prime factor, and these exceptional
cases are all explicitly given in [I]. They show that such examples occur only
forn =5,7,8,10,12,13,18,30: if b = 1, ¢ = —2 then x5, xs, T12, T13, T18,
T30 have no primitive prime factors; if b =1, ¢ = —5 then x7 = 1; if b = 2,
¢ = —3 then x1¢ has no primitive prime factors; there are a handful of other
examples besides, all with n < 12.

1d. Sketches of some proofs. In this subsection we sketch the proof
of a special case of Theorem [2| (the details will be proved in the next four
sections). The reason we focus now on a special case is that this is already
sufficiently complicated, and extending the proof to all cases involves some
additional (and not particularly interesting) technicalities, which will be
given in Section 6.

THEOREM 2'. Let b and ¢ be integers for which b = 3 (mod 4), ¢ = 2
(mod 4), the Jacobi symbol (c/b) equals 1 and A = b*+4c > 0. If {zy}n>0 is
the Lucas sequence satisfying then x, has a characteristic prime factor
which (ezxactly) divides x,, to an odd power for alln > 1 except perhaps when
n = 6. This last case occurs if and only if x¢/(3x223) is a square.

Sketch of the proof of Theorem 2'. Let x, = y,z, where y, is divisible
only by characteristic prime factors of x,,, and z, is divisible only by non-
characteristic prime factors of x,,. If every characteristic prime factor divides
T, to an even power then vy, is a square; it is our goal to show that this is
impossible.

A complex number £ is a primitive nth root of unity if &* = 1 but £™ # 1
for all 1 < m < n. Let ¢,(t) € Z[t] be the nth cyclotomic polynomial, that
is, the monic polynomial whose roots are the primitive nth roots of unity.
Evidently z" — 1 =] din ¢4(z) so, by Mébius inversion, we have

nla) = [T~ 11/
din

Homogenizing, we have xn, = (r" — s")/(r — s) = [1g, 41 @a(r, s) where
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On(r,s) = 5™, (r/s) € Z[r, s]. Indeed for any Lucas sequence {x,} the
numbers ¢,,, defined by
b = T[ a0

dn

are integers. Most importantly, this definition implies that p is a charac-
teristic prime factor of ¢, if and only if p is a characteristic prime factor
of x,; moreover p divides both ¢, and z, to the same power. Therefore y,
divides ¢,,, which divides z,,. In fact ¥, and ¢,, are very close to each other
multiplicatively (as we show in Corollaries [3| and [4] below): either ¢,, = yp,
or ¢, = py, where p is some prime dividing n; in the latter case, n = p®m
where p is a characteristic prime factor of ¢,,. So if we can show that

(i) ¢y is not a square, and
(ii) p¢y, is not a square when n is of the form n = p®m where p is an
odd prime, e > 0, m > 1 and m divides p— 1, p or p + 1,

then we can deduce that v, is not a square. To prove this we modify the
approach of Terjanian described above: We will show that there exist integers

k and ¢ for which
(5) - (s
_ = _ = —17
®n POn

where (*) is the Jacobi symbol.

Our first step then is to evaluate the Jacobi symbol (xj/z,,) for all
positive integers m and k. In fact this equals 0 if and only if (k,m) > 1.
Otherwise, we will show that for any coprime positive integers k and m > 2
we have

(@) (25) = e

ITm
for any integer w which is = 1/k (mod m), as discussed above. (Lenstra’s
observation that holds when z,, = 2™ — 1, which he shared with me in
an email, is really the starting point for the proofs of our main results).

From this we deduce that
) (55) = (-ayeemo
m

for all m > 1, where, for r(m) =[], p and the Mdbius function p(m), we
have

N(m,u) := p?(m) + #{i: 1 <i<2ur(m)/m and (i,m) = 1}.

Now if ¢,, is a square then by , we see that N(m,u) is even whenever
(u,m) = 1. In Proposition we show that this is false unless m = 1,2
or 6; our proof of this elementary fact is more complicated than one might
wish.
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In Lemmawe show, using , that if p¢,, is a square where m = p°n,
n > 1 and n divides p—1, p or p+1 then N (m, u')—N(m,u) is even whenever
u = (mod n) with (uu/,m) = 1. In Propositions |5.3| and [5.5| we show that
this is false unless m = 6; again our proof of this elementary fact is more
complicated than one might wish.

Since 4 = 3 (mod 4) for all d > 2 (as may be proved by induction),
and since any squarefree integer m has exactly 2¢ — 1 divisors d > 1, where
¢ is the number of prime factors of m, therefore ¢, = [] dim Td = 213 =3
(mod 4), and so cannot be a square. Hence neither ¢9 nor ¢g is a square
(despite the fact that (zy/¢e) = 1 for all k coprime to 6, since N(6,u) is
even whenever (u,6) = 1). Therefore the only possibility left is that 3¢g is
a square, as claimed.

Proof of Corollary @ If p is a characteristic prime factor of x,, which
divides z, to an odd power then p does not divide x,, for any ¢ < k and
so divides [[;«;<; n, to an odd power, contradicting the fact that this is a
square. Therefore n, = 2 or 6 by Theorem [2| Since a similar argument may
be made for any x,, where n; does not divide n;, with j > 4, we deduce,
from Theorem [T that every n; must divide 6.

Therefore either ¥ = 1 and z9 = b is a square, or we can rewrite
[li<i<k @n, as a product of [[;.;<, ém, times a square, where 1 < m; <
<o <my=6and {my,...,my_1} C {2,3}. However, ¢3 is divisible by some

characteristic odd prime factor p to an odd power, which does not divide ¢g
(as all z,, n > 1, are odd), and so ¢3 cannot be in our product. Now ¢g is
not a square since ¢g = b?> + 3¢ = 3 (mod 4). Therefore both ¢2 and ¢g are
3 times a square, which is equivalent to x3x¢ being a square.

Theorem [I] follows from Theorem [2] and Corollary [I] follows from Corol-
lary

2. Elementary properties of Lucas sequences

2a. Lucas sequences in general. If y,42 = —byp1+cy, foralln >0
with yo = 0, y1 = 1 then y,, = (—1)" ', for all n > 0. Therefore the prime
factors, and characteristic prime factors, of x, and ¥, are the same and
divide each to the same power, and so we may assume, without loss of
generality, that b > 0.

Let o and 8 be the roots of T? — bT — ¢. Then

. a — Bn
(as may be proved by induction). We note that o + 8 = b and a8 = —c, so
that (a, 8)| (b,¢) = 1 and thus (a, 8) = 1. Moreover A = (a— )2 = b? +4e.

forallm >0
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In this subsection we prove some standard facts about Lucas sequences
that can be found in many places (see, e.g., [3]).

LEMMA 1.

(i) We have (xyn,c) =1 for allm > 1.
(ii) We have (xpn,Tp+1) =1 for all n > 0.
(i) We have xq1j = w4412 (mod z4) for alld > 1 and j > 0. Therefore
if k — € = jd then xp = xgle_H (mod z4).
(iv) Suppose d is the minimum integer > 1 for which x4 is divisible by
a given integer r. Then r |z if and only if d| k.
(v) For any two positive integers k and m we have (T, Tm) = T m)-

Proof. (i) If not, select n minimal so that there exists a prime p with
p|(zp,c). Then bx,—1 = x, — cxp—2 = 0 (mod p) and so p|x,—1 since
(p,b) | (¢,b) = 1, contradicting minimality.

(ii) We proceed by induction using that (z,41,Znt2) divides x40 —
brni1 = cxp, and thus divides z,, since (xn41,¢) = 1 by (i). Therefore
($n+1> :L'n+2) | (xna anrl) = 1.

(iii) We proceed by induction on j: it is trivially true for j = 0 and j = 1;
for larger j we have x4y; = bxgyj_1 + cTarj_2 = xay1(brj—1 + cxj_2) =
Tgp12; (mod zq).

(iv) Since (2441, xq) = 1 we see that (x4, x44;) = (x4, ;) by (iii). So if j
is the least positive residue of k (mod d) we find that (r,z;) = (r,z;). Now
0<j<d-1and (r,z;) = rif and only if j = 0, and hence d |k, so the
result follows by the definition of d.

(v) Let g = (k,m) so (iv) implies that x| (zk,m) = 7, say. Let d be
the minimum integer > 1 for which x4 is divisible by r. Then d | (k,m) =g
by (iv), and thus r |z, by (iv), and the result is proved.

PROPOSITION 1. There exists an integer n > 1 for which a prime p
divides x,, if and only if p does not divide c. In this case let ¢ = p if p is
odd, and g = 4 if p = 2. Select r, to be the minimal integer > 1 for which
q|zr,. Define e, > 1 so that p* divides x,, but p»*t does not. Then q |z,
if and only if rp | n, in which case, writing n = rppkm where ptm for some
integer k, we find that p®»* divides x,, but p®»T**1 does not. Finally, if p
is an odd prime for which p| A, then p|xp, and p*tx, if p > 3.

Proof. Since p |z, for some n > 1 we have (p, af) | (zn,c) = 1 by Lemma
i) so that p is coprime to both a and . On the other hand if (p,af) =1
then «, 8 are in the group of units modulo p, and therefore there exists an
integer n for which o™ =1 = ™ (mod p) so that p|a™ — ™. Hence p |z,
if (p,a —B) = 1. Now (p,a — ) > 1 if and only if p| A. In this case one
easily shows, by induction, that z,, = n(b/2)" ! (mod p) if p > 2, and hence
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p|zp. Finally 2| A if and only if 2|b, whence ¢ is odd (as (b,c) = 1) and so
zn =n (mod 2); in particular 2| zs.
Let us write 8¢ = a? + (8¢ — a?), so that

6kd — (ad + (le . ad))k

_ akd + ka(k_l)d<,3d - ad) + <k> Oé(k_Q)d(Bd o ad)2 e

2

and therefore, since x4 divides x4,
k
Tpa/xq = kaFDd 4 (2> a*=24(3 — )y (mod z2).

We see that if p| x4, then p|zrqe/xq if and only if p |k, as (p,a) = 1 (since
a|cand (p,c) =1 by Lemma (1)) We also deduce that x,q/xq = paP~Dd
(mod p?), and so p?{xpq/xq, unless p = 2 and x4 = 2 (mod 4). The result
then follows from Lemma [Ifiv).

Finally, if an odd prime p divides A = (o — 3)? then

=paPl 4 (];)apz(,é’ —a)+---=0 (mod p).

Therefore n, |p by Lemma [Ifiv) and n, # 1 (as #; = 1), and so n, = p.
Adding the two such identities with the roles of « and 5 exchanged yields

2 1 , . . 1 ,
2rp _ Z - <p> AGD/2(qp=] 4 gP=i) — Z (p) AJ/prij.
PGPV 15<p PN
jodd jeven
This is = a?~! + P~ (mod p) plus %A if p = 3. Now if p > 3 the first term
equals xop_2/xp—1 and so is not divisible by p. One can verify that 9| x3 if
and only if 9|b% + c.

COROLLARY 3. Fach ¢y, is an integer. When p is a characteristic prime
factor of ¢, define n, = n. Then p divides both x,, and ¢, to the same
power. Otherwise if a prime p divides ¢, where n # ny, then n/n, is a power
of p, and p*{ ¢, with one possible exception: if p = 2 with b odd and c = 1
(mod 4) then ny = 3 and 2% | ¢g. If p is an odd prime for which p?| A then

p|op but P2)f¢p-
Proof. Note first that n, = r, when p # 2. We use the formula ¢,, =

II din l'g(n/ D 15 ny, = n then x,, is the only term on the right that is divisible
by p, and so p divides both x,, and ¢, to the same power. To determine the
power of p dividing ¢,, we will determine the power of p dividing each x4. To
do this we begin by studying those d for which ¢ divides z4 (in the notation
of Proposition , and then we return, at the end, to those x4 divisible by 2
but not 4.
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By Proposition |1} ¢ divides x4 if and only if d = rppeq with 0 < ¢ < k
and ¢ |m, and so the power of p dividing these terms in our product is
1 ifm=1and k>1,

> u@" e+ 0> um/g) =40 ifm>2,

0<t<k qlm ep ifm=1and k=0 (i.e. n=ry).

Hence if p is odd, or p = 2 with ny = ry, then p| ¢,, with n > n,, if and only
if n/n, is a power of p, and then P? 1 .

Other x4 divisible by p occur only in the case that p = 2 and ro = 2ns,
and these are the terms x4 in the product for which no divides d but ro
does not. Such x4 are divisible by 2 but not 4. Hence the total power of 2
dividing the product of these terms is

1 if n = no,
Z p(n/d) = ¢ =1 if n = 2no,

dln ;
otherwise.
nal|d, 2natd 0

We deduce that 2|¢, with n > ng if and only if n/ng is a power of 2.
Moreover 41 ¢, except in the special case that n = ry = 2ny and ey > 3.
We now study this special case: We must have ¢ odd, else c is even, so that
b is odd, and z,, is odd for all n > 1. We must also have b odd, else x,, =n
(mod 2), so ng = 2, that is, 9 = b is divisible by 2 but not 4. But then
79 = 4 and 50 ¢4 = b%>+2¢ = 2 (mod 4), a contradiction. In this case ny = 3
and we want 73 = 6. But then ¢3 = b*+c = 2 (mod 4), so that c = 2—b? = 1
(mod 4), and ¢g = b*> +3c=1+3 =0 (mod 4).

The last statement follows from the last part of Proposition [I| since
¢p = xp (and working through the possibilities when p = 3).

Since ¢, is usually significantly smaller than z,, and since we have a very
precise description of the non-characteristic prime factors of ¢,,, it is easier
to study characteristic prime factors of x,, by studying the factors of ¢,,.

LEMMA 3. Suppose that p is a prime that does not divide ¢ (so that n,
exists). Then n, < p+ 1. Moreover if p > 2 then n, divides p — (A/p).

Proof. Proposition 1| implies this when p|A. We have a = (b + vA)/2
and 8 = (b — v/A)/2, which implies that
W+ VA" b+ APVRVA b+ (A/p)VA
2p o 2 o 2
and analogously 7 = (b — (A/p)v/A)/2. Hence if (A/p) = —1 then o? = 3
(mod p) and AP = a (mod p), so that a?™! = aa? = a8 = —c (mod p)
and similarly 877! = —¢ (mod p). Now (o — 3,p) | (4,p) = 1 and therefore
plzpi1. If (A/p) = 1then o’1 = a7la? = o la =1 (mod p) and similarly
BP~1 =1 (mod p), so that p|z,_1.

o (mod p),
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In the special case that p = 2 we have c odd. We see easily that if b is even
(and so 2| A) then ny = 2. If b is odd then ny =3 and b +4c=1+4=75
(mod 8). Therefore ny divides 2—(A/2), with the latter properly interpreted.

COROLLARY 4. Fach ¢, has at most one non-characteristic prime fac-
tor, except ¢g is divisible by 6 if b =3 (mod 6) and ¢ =1 (mod 2), and ¢12
is diwvisible by 6 if b = +1 (mod 6) and ¢ =1 (mod 6).

Proof. Suppose ¢, has two non-characteristic prime factors p < ¢. By
Corollary [3| we have ¢ |n, and so ¢ < n, < p+ 1 by Lemma (3| Therefore
p =2 and ¢ = 3, in which case ny = 3, so that n = 23 for some e¢ > 1, and
this equals 37 n3 for some f > 1 by Corollary Thus f =1 and ng = 2 or 4.
The result follows by working through the possibilities mod 2 and mod 3.

COROLLARY 5. Suppose that x,, does not contain a characteristic prime
factor to an odd power and n # 6 or 12. Then either ¢, = O (where O
represents the square of an integer), or ¢, = pO where p is a prime for
which p®|n with e > 1 and n/p® < p+ 1.

Proof. Follows from Corollaries [3] and [4 and Lemma

LEMMA 4. Suppose that the odd prime p divides A. Then x, = n(b/2)" 1
(mod p) for all n > 0.

Proof. This follows by induction on n: it is trivially true for n = 0,1,
and then
Ty = by 1+ cTno = b(n —1)(0/2)" % 4 ¢(n — 2)(b/2)" 3
=2(n—1)(b/2)"" = (n = 2)(b/2)""" = n(b/2)""" (mod p),
since A = b? + 4¢ =0 (mod p), so that ¢ = —(b/2)? (mod p).
2b. Lucas sequences with b, A > 0, (¢/b) =1 and b = 3 (mod 4),
¢ =2 (mod 4). As b, A > 0 this implies that z, > 0 for all n > 1 since
a>|p.
We also have z,, = 3 (mod 4) for all n > 2, by induction. In fact x, o =
xn, (mod 8) for all n > 3, which we can prove by induction: We have
25 =b14+3c’ +*=1+3c+4=1+c=b*+c =13 (mod 8),
and
x6 = b(b* +4cb? +3¢%) = b(1 +0+4) = b(1 +4) = b(b*> +2¢) = 24 (mod 8).
For larger n, we then have x,i19 = brpi1 + cxp = brp_1 + cxp_o = T
(mod 8) by the induction hypothesis.
We also note that z,, 12 = bz, 1 (mod ¢) for all n > 0, and so z,, = b" !

(mod c¢) for all n > 1. We deduce from this and the previous paragraph that
T2 = b?z, (mod 4c) for all n > 3.

PROPOSITION 2. We have (xg441/xq) =1 for all d > 1.
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Proof. For d = 1 this follows as 1 = 1; for d = 2 we have (z3/x2) =
((b*> + ¢)/b) = (¢/b) = 1. The result then follows from proving that ; :=
(g+1/2q)(xq/xq-1) = 1 for all d > 3. Since z441 = cxrg—1 (mod z4) and
as g = xq—1 = 3 (mod 4) for d > 3, we have 0; = (cxg_1/xq)(xq/T9-1) =
—(¢/zq) = (—c¢/z4). We will prove that this equals 1 by induction on d > 3.
So write —c = 6C where C' = |¢/2|. Then note that

N CONESIOIES
%) (2)

which is shown to be 1, by running through the possibilities 6 = £2 and
C = £1 (mod 4). Also, as (—c¢/b) = —1,

(i) 55) () 1 (52) -

since § = £2 and b?+2¢ = 5 (mod 8). Now for the induction step, for d > 5:
The value of 8; = (—c/x4) depends only on the square class of x4 (mod 4c¢),
and we saw in the paragraph above that this is the same square class as
zq—2 (mod 4c) for d > 5. Hence 63 = 1 for all d > 3, and the result follows.

3. Evaluation of Jacobi symbols when b, A > 0, b = 3 (mod 4),
¢=2 (mod 4) and (¢/b) =1

3a. The reciprocity law. Suppose that £ and m > 1 are coprime
positive integers. Let uy,, be the least residue, in absolute value, of 1/k
(mod m) (that is, u = k (mod m) with —m /2 < u < m/2).

LEMMA 5. If m,k > 2 with (m,k) =1 then kug m + muy, = 1.

Proof. Now v := (1 — kug,,)/m is an integer = 1/m (mod k) with
—k/24+1/m <wv < k/2+ 1/m. This implies that —k/2 < v < k/2, and so
U = Um,k-

THEOREM 4. If k> 1 and m > 1 are coprime positive integers then the
value of the Jacobi symbol (xy/xym) equals the sign of g .

Proof. By induction on k+42m > 5. Note that when k£ = 1 we have u = 1
and the result follows as (z1/xy,) = (1/x,,) = 1. For larger k, we have two
cases. If & > m then let ¢ be the least positive residue of k£ (mod m), say
k — ¢ = jm. By Lemma (iii) we have (zx/2m) = (o/Tm)(Tma1/Tm)! =
(x¢/xm) by Proposition [2| Moreover u;,, = uk,m, by definition so that the
result follows from the induction hypothesis. If 2 < k < m then (zy/z,,) =
—(xm/xy) since p, = 2 = 3 (mod 4). Moreover uy, ,, and u, , must have
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opposite signs, else 1 = klug | + m|up, k| > 14+ 1 by Lemma [5, which is
impossible. The result follows from the induction hypothesis.

Define (t),, to be the least (positive) residue of ¢t (mod m), so that
(t)m = t—m]t/m]. Note that 0 < (t),,, < m/2if and only if [(¢),,/(m/2)] = 0.
Also [(t)m/(m/2)] = [2t/m] — 2[t/m] = [2t/m] (mod 2). Now, if m > 3 and
(t,m) = 1 then (t),, is not equal to 0 or m/2; therefore if u is any integer
= 1/k (mod m) then the sign of uy,, is given by (—1)2%/™. We deduce the
following from this and Theorem [4}

COROLLARY 6. Suppose that k and m # 2 are coprime positive integers.
If u is any integer = 1/k (mod m) then

1) <x’“) = (—1)i2u/m],

Tm
Note that if k is odd then (zy/z2) = 1, whereas (4]) would always give —1.

REMARK. In email correspondence with Ilan Vardi we understood how
can be deduced directly from and known facts about continued frac-
tions. Write p,,/qn = [ao, a1, ..., ay] for each n, and recall that

S R G O R

O Qo1 1 o/\1 0/ \1 0/

as may easily be established by induction on n > 1. By taking determinants
we see that pugn_1 = pn_1¢a+(—1)""1 = (=1)"*! (mod ¢,). Taking p,, /¢, =
k/m with n = A(k/m) — 1 and u to be the least positive residue of 1/k
(mod m) we see that ¢,_1 = (—1)""'u (mod m) and ¢,_1 < g, = m, so
gn—1 = uw if n is odd, while ¢,—1 = m —u if n is even. Now m = ¢, =
nGn—1+ qn-2 > 2qn—1 + 1, and so ¢,—1 < m/2. Therefore if u < m/2 then
Gn—1 = U, so n is odd and the values given in and are equal. A similar
argument works if u > m/2. Hence

(6) A(k/m) = [2u/m] (mod 2) where wuk =1 (mod m)

for all coprime positive integers k and m.

3b. The characteristic part. If (m,k) = 1 and v = 1/k (mod m)
then

o)

dm
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by since (xg/xq) =1if d =1 or 2, where

m 2u m
E = =)= = = 1
(m, ) ;u(d)[d] Z|:u<d>z
d>3 d>3 |y

= > > <> p(m)(2u — 1) + Ey (mod 2);

1<j<2u~1d|(m,j)

here E5, the contribution when d = 2, occurs only when m is even, and is
then equal to p(m/2)(u—1), and we can miss the j = 2u term since if d | 2u
then d| (2u, m) = (2,m) | 2. However, u is then odd since (u,m) =1 and so
E; = pu(m/2)(u —1) =0 (mod 2).

Now let r(n) = lenp for any integer n. We see that p(m/d) = 0 unless
m/d divides r(m), that is, d is divisible by m/r(m), in which case j must
be also. Write j = i(m/r(m)), and each d as D(m/r(m)), so that

E(m,u) = p(m) + Z Z

1<i<2ur(m)/m D|(r(m),i)

=pm)+ Y 1(mod?2),
1<i<2ur(m)/m
(¢,m)=1

which is N(m,u), and so we obtain (f]).

4. The tools needed to show that ¢,, # [

PrROPOSITION 4.1. If m # 1,2,6 then N(m,u') — N(m,u) is odd for
some u,u’ with (uu’,m) = 1.

Proof. If m is squarefree then N(m,u') — N(m,u) = #{i : 2u < i <
2u' and (i,m) = 1}. So, if m is odd and > 1 let u = (m — 1)/2 and
uw' = u+ 1. If m is even then there exists a prime ¢ | m with ¢ > 5 (as m # 2
or 6), so we can write m = ¢s where g{s > 1. Then select u = —1 (mod s)
and u = —3/2 (mod ¢) with v/ = u + 2.

For m not squarefree let mgy be the largest powerful number dividing m
and m = myms so that my is squarefree, (m1,mz) = 1, and r(m2)? | ma.
Note that m/r(m) = ma/r(ms).

If mg = 4 then N(m,u) = #{i : 1 < i < u, (i,m) = 1}, so if u is the
smallest integer > 1 that is coprime with m then N(m,u) — N(m,1) = 1.

So we may assume that ms > 4, in particular that 2r(m)/m < 2/3.
Consider

N(m,r(mm)(ﬁ—i- 1)+1> —N(m,%ul)
= #{i2U+1<i<2+2: (i,m) =1},
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Select £ = —1 (mod ms) so that (2 + 2, m) > my. Then we need to select ¢
(mod p) for each prime p dividing m; so that all of %(54— 1)+1, %E—i— 1
and 2¢ 4+ 1 are coprime to p. Since there are just three linear forms, such
congruence classes exist modulo primes p > 3 by the pigeonhole principle;
and also for p = 3 as may be verified by a case-by-case analysis. Thus the
result follows when m;y is odd.

So we may assume that m; is even and now consider

N(m,2m(€+1%%0——N(m,mn€+l>

r(m) r(m)
=#{i: U+1<i<U+4:(i,m)=1}.

Select ¢ = —3/4 (mod mz) so that (4¢ 4+ 3, m) > my. We can again select
¢ (mod p) for each prime p > 3 dividing m; so that all of 272 (¢ + 1) + 1,

r(m)
%E + 1, 4+ 1 are coprime to p by the pigeonhole principle, and therefore
the result follows if 3 does not divide m;.
So we may assume that 6 | m;. Select an integer ¢ so that £ = 1 (mod ma),
¢ = —m/r(m) (mod 4) and, for each prime p dividing m; /2, p does not divide
0, <0 —1 or -°~{ + 3. Therefore, since 3r(m)/m < 3/5, we have

» r(m) r(m)

w2 +9) ¥l ))

—#{i:0<i<l41:(i,m)=1}=1.

5. The tools needed to show that ¢,, # pl]

LEMMA 5.1. Suppose that ¢, = pl, where p is an odd prime, m = pn,
l<n<p+1andpl|lo, If k =k (mod 2n) with (kk',m) = 1 then
(k) Pm) = (x| dm). Moreover if ¢ =2 (mod 4) then (¢, /xk) = (dm/xkr).

Proof. Writing k' = k+2nj we have zj = kaiﬂrl (mod x,), by Lemma
[1{iii); and so (zx/p) = (wx/p) since p| z,,. Therefore since ¢y, = plJ we have
(@r/dm) = (x1/p) = (2 /P) = (Tar [ Pm)-

If ¢ =2 (mod 4) and k£ = k' (mod 2) then xp = zp (mod 4), which
implies that (p/zx)(p/xr) = (vx/p)(xk /p), and the result follows from the
first part.

LEMMA 5.2. Assume that byA > 0, b =3 (mod 4), ¢ = 2 (mod 4) and
(¢/b) = 1. Suppose that ¢,, = pO, where p is an odd prime, m = p°n,
l<n<p+1andp|d, If u =1 (mod n) with (uu',m) = 1 then
N(m,u') — N(m,u) is even. If e = 1 and n # p then this implies that
N(n,u'/p) — N(n,u/p) is even.

Proof. Let k, k* be integers for which £ = 1/u (mod m) and k* = 1/’
(mod m). Evidently k = 1/u = 1/u' = k* (mod n). If k = k* (mod 2n) then
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let k' = k*, otherwise take k' = k* +m, so k' = k (mod 2n) (since m/n = p°
is odd). Applying the first part of Lemma we see that the first result
follows from .

If e = 1 then m = pn so that r(m)/m = r(n)/n. Therefore N(m,u') —
N(m,u) equals, for U = 2ur(n)/n and U" = 2u'r(n)/n,

oo1= > 1= Y 1= ) 1(mod2).
U<i<U’ U<i<U’ U<i<U’ U/p<j<U’'/p
(i,r(n)p)=1 (i,r(n))=1 (i,r(n))=1, pli (Gr(n))=1
since U' = U (mod 2r(n)) (as u = ¢ (mod n)), so that the first term
counts each residue class coprime with r(n) an even number of times, and
by writing ¢ = jp in the second sum. The result follows.

PROPOSITION 5.3. Suppose n > 2 and n divides p—1 or p+ 1 for some
odd prime p. Let m = p°n for some e > 1. There exists an integer u such
that (u(u 4+ n),m) =1 for which N(m,u+n) — N(m,u) =1 if e > 2, and
N(n,(u+mn)/p) — N(n,u/p) =1 if e =1, except when p =3, n = 2. In that
case we have N(2-3% (371 +4 4 3(-1)¢)/2) — N(2-3°,1) =1 fore > 2.

LEMMA 5.4. Ifn >3 and p is an odd prime withp=n—1orp>n+1
(except for the cases n =3 or 6 with p =5; and n = 4, p = 3) then in any
non-closed interval of length n containing exactly n integers, there exists an
integer u for which u and u+ n are both prime to np.

Proof. Since p > n — 1 there are no more than three integers, in our two
consecutive intervals of length n, that are divisible by p so the result follows
when ¢(n) > 4. Otherwise n = 3,4 or 6, and if the reduced residues are
1 < a<b<mnthen pdividesb—a, (n+b) —a, (n+a)—bor (2n+a)—b.
Therefore p|4,10,2 or 8 for n = 6; p|2 or 6 for n = 4; p|1,4,2 or 5 for
n = 3. The result follows.

Proof of Proposition Let f := max{1l,e — 1}. The result holds for
(m,u) equal to

5/ -3 5/ -3 pl—j
3.5, 6-55. ") (4-32.3—2) (2.p°
< 9 2 )7( ) 2 )7( ) )7( p7 2 )

for each e > 1 and, in the last case, any prime p > 3, where j is either 1
or 3, chosen so that u is odd.
Otherwise we can assume the hypotheses of Lemma Now suppose
m

that e > 2. Given an integer ¢ we can select v in the range EW —n<u<

f% (which is an interval of length n) such that v and v’ := u+n are both
prime to np, by Lemma Therefore N (m,u')—N(m,u) counts the number
of integers, coprime with m, in an interval of length A := 2nr(m)/m =
2r(n)/p®~!. Note that A < 2n/p < 2(p+1)/p < 3 so our interval contains
no more than [A] +1 < 3 integers, one of which is £. If A < 2 we select £ = 1
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(mod p) and £ = —1 (mod n) so that N(m,u') — N(m,u) = 1. Otherwise
A>2sothat n >r(n) >p* ! >p and thusn =p+1,e=2and r(n) = n,
that is, n is squarefree, and 2| (p + 1) | n. So select ¢ to be an odd integer
for which ¢ =2 (mod p) and ¢ = —2 (mod n/2) so that £+ 2,¢+ 1 all have
common factors with m, and therefore N(m,u) — N(m,u) = 1.

For e = 1 and given integer ¢ we now select v in the range ¢ % —n<u

< E;&), and N (n,u'/p)— N(n,u/p) counts the number of integers, coprime
with n, in an interval of length A := 2r(n)/p. If A < 1 we select £ so that it
is coprime with n; then we find that N(n,u'/p) — N(n,u/p) = 1 is odd. If
A > 1 we have r(n) > p/2, and we know that r(n)|n|p £ 1, so that r(n)
and n equal (p+1)/2, p—1orp+1.If n = r(n) = p—1 then n is squarefree
and divisible by 2, and [A] = 1; so we select £ = 1 (mod 2) and ¢ = —1
(mod n/2) so that N(n,u' /p) — N(n,u/p) = 1. In all the remaining cases,
one may check that N(n,(n+1)/p) — N(n,1/p) = 1.

PROPOSITION 5.5. If m = p°tt where p is an odd prime then
N(m,(p*+1)/2) — N(m,1) =1.

6. Other Lucas sequences

PROPOSITION 6.1. Assume that A and b are positive with (b,c) = 1. For
n > 1 odd with (m,n) = 1 we have the following:

( ¢ (m—1)(n—1)/2

O
<n>(c 1)/2 <i>(m

Proof. For m odd this is the result of Rotkiewicz [5], discussed in Sec-
tion 1lc. Note that if ¢ is even then b is odd and z,, is odd for all n > 1; and
if b is even then c¢ is odd and z,, = n (mod 2) is odd for all n > 1. Thus =,
is odd if and only if n is odd.

For m even and n odd the sum m + n is odd and so

Tm \ _ [ Tmin Tn+1
T, ) \ Tn,
by Lemma [If(iii), and therefore
Tn+1 _ ﬁ Tn+2 \ .
T T Ty )

note that n,n+ 2 are both odd, so we have yet to determine only (z2/x,) =

(b/n).

if ¢=2 (mod 4),

=1) N\ (m=D)n=1)/2
() i 20,

C

) m—1)(n—1)/2

+®'\®
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Suppose that ¢ is even so that b is odd. If 4| ¢ then z, =1 (mod 4) if n
is odd so that (b/z,) = (z,/b). If ¢ =2 (mod 4) and b = 1 (mod 4) then
(b/xy) = (2,/b). Now 2, = cxy_o (mod b) and so z,, = ¢®1/2 (mod b) for
every odd n. Therefore

Lm Lm+n Ln+2 c (n=1)/2
(2)=Com) )6
The results follow in these cases since A((m + n)/n) = A(m/n) as
(m+n)/n=1+m/n,and A((n+2)/n) =3 as (n+2)/n=[1,(n—1)/2,2].
If c=2 (mod 4) and b = 3 (mod 4) then z, = 3 (mod 4) for all n > 2.
Therefore (b/x,) = —(x,/b) for all odd n > 1, and the result follows.

Now assume that b is even so that ¢ is odd. As x,, = ¢»~1/2 (mod [b, 4])
for each odd n we have, writing b = 2°B with B odd,

b 2 €[ ppcn—1)/2 2 ¢
() = o) (") = ()

Now if 4| b then z,, = ¢(®1)/2 (mod 8). Finally, if e = 1 then z,c™1)/2 =1
(mod 8) if n = £1 (mod 8), and = 5 (mod 8) if n = £3 (mod 8). Therefore
(W) = (%) The result follows.

COROLLARY 6.2. Suppose that A and b are positive, with (b,c) =1 and
c¢=2 (mod 4). Forn > 1 odd, m >1 and (m,n) = 1. Suppose that mu =1
(mod n). If n is a power of a prime p then

m—1)(p—1)/2
Tm\ _ (qyN )t 1) e
On b

If n has at least two distinct prime factors then

<fﬂm> _ (<) Nt () m-1)|
Pn
If m is even and > 2 then, for nv =1 (mod m),
Om ) (_q)Nma)tucm/2),
Tn
Proof. Throughout we assume that n > 1 is odd. Proposition yields
(%:) = (=1)4(c/b)? where B equals (m —1)/2 times

S wln/d)d=1) =3 p(n/d)d —1) = 3 uln/d)d = o(n)

dn dln din
d>1
= H(p — 1) (mod 4).
pln

The last product is divisible by 4 except if n is a power of an odd prime p,
so we confirm the claimed powers of (¢/b). If d|n then A(m/d) = [2u/d]
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(mod 2) where um =1 (mod n), by (6), and so

A= S utofa) () + (25 m - )

dln
d>1

= S (/) f2u/d] - p() (5 ) (m = 1) (mod 2
-

= N(n,u) + u(n) <l”2‘1) (m—1) (mod 2)

since, in Section 3b, we showed 3, ;>3 u(n/d)[2u/d] = N(n,u) (mod 2),
and here n is odd (so there is no d = 2 term).

In the third case we use the fact that if d < n then the continued fraction
for d/n is that of n/d with a 0 on the front, and vice versa. Hence A(n/d) +
A(d/n) =1 (mod 2). Hence

Zu(m/d) (d/n) = Zu m/d)(A(n/d) + 1)

dlm dlm
= N(m,v) + p(m/2) (mod 2).
The other terms disappear since ¢(m) is even.

Proof of Theorem 2. Our goal is to show that y, is not a square, just as
we did in the proof of Theorem 2’. We begin by showing that ¢,, is not a
square, for n £ 1,2, 3,6 by using Corollary

Suppose that ¢,, is a square so that (x,,/¢,) = 1. For n > 1 odd,
we compare, in the first two identities of Corollary the results for m
and m + n. The value of u does not change and we therefore deduce that
(—1)“(")(1)#) (%)(p*l)/2 =1 and (—1)“(”)(11%1) = 1, respectively. Hence those
identities both become N (n,u) = 0 (mod 2) whenever (u,n) = 1. Similarly if
n > 2 is even then the third identity of Corollary|[6.2]yields N (n, u) = p(n/2)
(mod 2) whenever (u,n) = 1. These are all impossible, by Proposition
unless n = 1,2 or 6.

Next we suppose that p¢, is a square where n = p®m and p is an odd
characteristic prime factor of ¢,,, with e > 0, m > 1 and m divides p—1, p
or p+ 1. Lemma [5.1] tells us that if k = &’ (mod 2m) with (kk’,n) = 1 then
(xx/Pn) = (1 /Pn) and (¢p/x) = (P /xpr). Corollary thence implies
that if n > 2 then N(n,u) = N(n,u’) (mod 2) where uk = v'k’ = 1 (mod n).
We now proceed as in Lemma to deduce that if u = v’ (mod m) with
(uu/;n) = 1 then N(n,u) — N(n,u’) is even, deduce the final part of that
lemma, and then use Proposition to obtain the desired contradiction
except when n = 1,2 or 6.
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We can now deduce that y,, is not a square for n # 1,2,6 from the last
two paragraphs, and the result follows.

Proof of Theorem 3. We deduce Theorem [3| from Theorem [2] by ruling
out the possibility that there exists an n for which none of the characteristic
prime factors p of z,, which divide z,, to an odd power are primitive prime
factors of x,. If this were the case then each such p would be a divisor of A,
which is odd, so that p is odd, and therefore n = n, = p by Lemma Hence
there is a unique such p, and so z, = ¢, is p times a square. But then

(5)-(5)- (%)

by Lemma 4] whenever p{fm. Comparing this to the first part of Corollary
[6.2] we find that

m— m—1)(p—1)/2

<m(b/2)1> — (— 1)V ) <C>( o
P b

where mu = 1 (mod p). Replacing m by m + p does not change u, so

comparing the two estimates yields ((b/2)/p) = (—1)+D/2(¢/b)P=1)/2 and

thus the last equation becomes

(Z) _ (2’;) (<)M = (_q)2u/sl

for u # 1, since N(p,u) = [2u/p] (mod 2) if pfu. Now, selecting u = 2 we
deduce that (2/p) =1 if p > 3. Taking u = % we obtain (%/p) =1, and
taking u = p — 1 we obtain ((p — 1)/p) = —1. These three estimates imply
1 x 1= —1, a contradiction, for all p > 3.

We note that in the other cases with bc even, our argument will not yield
such a general result about characteristic prime factors:

COROLLARY 6.3. Suppose that 4|c and b =1 (mod 2), with (m,n) = 1.
Suppose that n is odd. If n is a power of a prime p then

tn () DD
&)-G)

Otherwise (X /¢n) = 1 if n has at least two distinct prime factors. On the
other hand if n is even and > 2 then (¢n/Tm) = 1.

One can deduce that ¢, is not a square if 4| c and (c¢/b) = —1 and p =3
(mod 4).

COROLLARY 6.4. Suppose that b is even and c is odd, with (m,n) = 1.
Suppose that n is odd. If n is a power of a prime p then

. o\ (=172 o (m=1)(EEE=L) | (m=1)(p-1)/2
G)-G) 6 @
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Otherwise (xm/¢dn) = 1 if n has at least two distinct prime factors. On the
other hand if n is even and > 2 then (¢pn/xm) = 1, except when ¢ = —1
(mod 4), n is a power of 2, and m = £3 (mod 8), whence (¢n/xm) = —1.

Hence we can prove that ¢, is not a square if b is even and

¢ =3 (mod 4), or

4]b with (b/c) = —1 and p = 3 (mod 4), or

b =2 (mod 4) with (b/c) = —1 and p = 7 (mod 8), or
b=2 (mod 4) and p =5 (mod 8), or

b=2 (mod 4) with (b/c) =1 and p = 3 (mod 8).

7. Open problems. We conjecture that for every non-periodic Lucas
sequence {z, }n>0 there exists an integer n, such that if n > n, then x,, has
a primitive prime factor that divides it to an odd power. In Theorem [3| we
proved this in the special case that A > 0 and ¢ = 2 (mod 4), with n, = 7.
Proposition [6.1| suggests that our approach is unlikely to yield the analogous
result in all other cases where 2 | bc. We were unable to give a formula for the
Jacobi symbol (x,,/x,) in general when b and ¢ are odd (which includes the
interesting case of the Fibonacci numbers) which can be used in this context
(though see [6]), and we hope that others will embrace this challenge.
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