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1. Introduction. Let p be a prime, and let Fq be a field with q = pe

elements. Fix an algebraic closure F̄q of Fq. For a global function field K
over Fq, we denote by JK the Jacobian of KF̄q over F̄q. For a prime l, it is
well-known that the l-primary subgroup JK(l) of JK satisfies

JK(l) '


2gK⊕
i=1

Ql/Zl if l 6= p,

λK⊕
i=1

Qp/Zp if l = p,

where gK is the genus of K, and λK is an integer where 0 ≤ λK ≤ gK . The
integer λK is called the Hasse–Witt invariant of K. For basic references
about the Jacobian, see [Ro2], [Mi].

In this paper, we will investigate the structure of the Jacobian for a
cyclotomic function field. For a monic polynomial m ∈ Fq[T ], we denote by
Km the mth cyclotomic function field (see Subsection 2.1). Let gm and λm
be the genus of Km and the Hasse–Witt invariant of Km, respectively. By
using the Riemann–Hurwitz formula, Kida–Murabayashi gave an explicit
formula for gm for all monic polynomials m (cf. [K-M]). Hence we know the
l-rank of the Jacobian JKm for all prime l ( 6= p).

On the other hand, it is more difficult to determine the p-rank of the
Jacobian JKm . In the previous paper, the author showed that λQn = 0 for
a monic polynomials Q of degree one, and n ≥ 0 (cf. [Sh]). The aim of this
paper is to determine all monic polynomials m such that λm = 0, which
means that the Jacobian JKm has no p-torsion points. We will see that the
Hasse–Witt invariant λm decomposes as λm = λ+

m + λ−m, where λ+
m is the

Hasse–Witt invariant of the maximal real subfield of Km (see Subsection
2.3). Our goal in this paper is the following result.
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Theorem 1.1. Assume that p 6= 2, 3. Then:

1. λ+
m = 0 if and only if m satisfies one of the following three conditions:

(a) m is a monic irreducible polynomial of degree two,
(b) m = Qn where Q is a monic polynomial of degree one, and n ≥ 0,
(c) m = RQn where R and Q are distinct polynomials of degree one

and n ≥ 1.

2. λ−m = 0 if and only if m = Qn where Q is a monic polynomial of
degree one, and n ≥ 0.

By combining both parts of the above theorem, we see that λm = 0 if
and only if m = Qn where Q is a monic polynomial of degree one and n ≥ 0.

As an application of Theorem 1.1, we have congruence relations for the
class number of Km. Let hm, h+

m be the class numbers of Km and of its max-
imal real subfield, respectively. It is well-known that hm is divisible by h+

m.
Put h−m = hm/h

+
m. By Theorem 1.1 and Proposition 2.1 (see Subsection 2.3),

we obtain the following result.

Corollary 1.1. In the notation of Theorem 1.1, we have the following
results.

• If m satisfies (a), (b) or (c) then h+
m ≡ 1 mod p.

• If m = Qn for a monic polynomial of degree one and n ≥ 0, then
h−m ≡ 1 mod p.

Remark 1.1. Corollary 1.1 was first showed by Guo and Shu in the case
m = Qn for a monic polynomial Q of degree one and n ≥ 0 (cf. [G-S]).

2. Preparations. In this section, we recall some basic facts for cyclo-
tomic function fields, zeta functions, and L-functions. For the details, see
[Ha], [G-R], [Ro2], and [Wa].

2.1. Cyclotomic function fields. Let k be the field of rational func-
tions over Fq. Fix a generator T of k, and let A = Fq[T ] be the polynomial
subring of k. Let k̄ be an algebraic closure of k. For x ∈ k̄ and m ∈ A, we
define the following action:

m ∗ x = m(ϕ+ µ)(x),

where ϕ, µ are the Fq-linear maps defined by

ϕ : k̄ → k̄ (x 7→ xq),
µ : k̄ → k̄ (x 7→ Tx).

With the above actions, k̄ becomes an A-module, called the Carlitz module.
Let Λm be the set of all x satisfying m∗x = 0, which is a cyclic A-submodule
of k̄. Fix a generator λm of Λm. Then we have the following isomorphism of
A-modules:
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A/mA→ Λm (a mod m 7→ a ∗ λm),

where mA is the principal ideal generated by m. Let (A/mA)× be the unit
group of A/mA, and denote its order by Φ(m). Let Km be the field obtained
by adding all elements of Λm to k. We shall call Km the mth cyclotomic
function field. We see that Km/k is a Galois extension, and we have the
following isomorphism:

(A/mA)× → Gal(Km/k) (a mod m 7→ σamodm),(2.1)

where Gal(Km/k) is the Galois group of Km/k, and σamodm is the isomor-
phism given by σamodm(λm) = a ∗ λm. From the above isomorphism, we
have [Km : k] = Φ(m).

We regard F×q ⊆ (A/mA)×. Let K+
m be the intermediate field of Km/k

corresponding to F×q . Again, by the isomorphism (2.1), we have [K+
m : k] =

Φ(m)/(q − 1). Let P∞ be the unique prime of k which corresponds to the
valuation ord∞ with ord∞(T ) < 0. The prime P∞ splits completely inK+

m/k,
and each prime of K+

m over P∞ is totally ramified in Km/K
+
m. Hence K+

m =
Km ∩ k∞, where k∞ is the completion of k by P∞. We shall call K+

m the
maximal real subfield of Km.

Next, we provide basic facts about Dirichlet characters. For a monic
polynomial m ∈ A, let Xm be the group of all primitive Dirichlet characters
modulo m. For a character χ ∈ Xm, we call χ real if χ(a) = 1 for all
a ∈ F×q . Otherwise, we call χ imaginary. Let X+

m be the subgroup of all
real characters of Xm. We denote by D the group of all primitive Dirichlet
characters. Put

K̃ =
⋃

mmonic

Km,

where m runs through all monic polynomials of A. Then, by the same ar-
gument as in the case of number fields (cf. [Wa, Chapter 3]), we have a
one-to-one correspondence between finite subgroups of D and finite subex-
tension fields of K̃/k. In particular, we see that Xm and X+

m correspond to
Km and K+

m, respectively.

2.2. Zeta functions. In this subsection, we will give definitions and
basic properties of zeta functions of global function fields. Let K be a global
function field over Fq. The zeta function of K is defined by

ζ(s,K) =
∏
P prime

(
1− 1
NPs

)−1

,

where P runs through all primes of K, and NP is the number of elements
of the residue class field of P. We see that ζ(s,K) converges absolutely for
Re(s) > 1.
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Theorem 2.1 (cf. [Ro2, Theorem 5.9]). Let gK be the genus of K, and
let hK be the order of the divisor class group of degree zero of K, which is
called the class number of K. Then there is a polynomial ZK(X) ∈ Z[X] of
degree 2gK such that

ζ(s,K) =
ZK(q−s)

(1− q−s)(1− q1−s)
,(2.2)

and ZK(0) = 1, ZK(1) = hK .

We see that the equation (2.2) provides the analytic continuation of
ζ(s,K) to the whole of C.

The next theorem is important to calculate the Hasse–Witt invariant.

Theorem 2.2 (cf. [Ro2, Proposition 11.20]). With the above notation,
we have

λK = deg Z̄K(X),(2.3)

where Z̄K(X) ∈ Fp[X] is the reduction of ZK(X) modulo p.

By the above formula, we see that Z̄K(X) = 1 if and only if λK = 0.

2.3. L-functions. In this subsection, we provide some basic facts about
L-functions. Let m ∈ A be a monic polynomial of degree d. For a character
χ ∈ Xm, define the L-function by

L(s, χ) =
∑

amonic

χ(a)
N(a)s

,

where a runs through all monic polynomials of A, and N(a) = qdeg a. We
denote by χ0 the trivial character. By a short calculation, we have

L(s, χ) =


1/(1− q1−s) if χ = χ0,
d−1∑
i=0

si(χ)q−si otherwise,

where si(χ) =
∑

amonic,deg(a)=i χ(a) for i = 0, 1, . . . , d− 1. Put

Φχ(X) =


(d−1∑
i=0

si(χ)Xi
)
/(1−X) if χ is non-trivial real,

d−1∑
i=0

si(χ)Xi if χ is imaginary.

Then

Φχ(q−s) =
{
L(s, χ)/(1− q−s) if χ is non-trivial real,
L(s, χ) if χ is imaginary.
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Let χ be a non-trivial real character. Noting that
∑d−1

i=0 si(χ) = 0, we can
easily check that

Φχ(X) =
d−2∑
i=0

( i∑
j=0

sj(χ)
)
Xi.

Hence Φχ(X) is a polynomial for all χ ∈ Xm\{χ0}.
Let L be an intermediate field in K̃/k of finite degree corresponding to

the character group XL. Let OL be the integral closure of A in the field L.
We define the zeta function ζ(s,OL) of the ring OL by

ζ(s,OL) =
∏
P

(
1− 1
NPs

)−1

,

where the product runs over all primes of OL. By the same argument as in
the case of number fields (cf. [Wa]), we have the following decomposition
into L-functions:

ζ(s,OL) =
∏
χ∈XL

L(s, χ).

Let f∞, g∞ be the relative degree of P∞ in L/k and the number of primes
of L over P∞, respectively. Then

ζ(s, L) = ζ(s,OL)(1− q−sf∞)−g∞ .

We put L+ = L∩ k∞. Notice that the prime P∞ splits completely in L+/k,
and each prime of L+ over P∞ is totally ramified in L/L+. Hence we have
the following lemma.

Lemma 2.1. Let L be an intermediate field in K̃/k of finite degree cor-
responding to the character group XL. Then

ζ(s, L) =
{ ∏
χ∈XL

L(s, χ)
}

(1− q−s)−[L+:k].

Put X+
L = XL+ and X−L = XL\XL+ , where XL+ is the character group

corresponding to L+. We also put Z
(+)
L (X) = ZL+(X) and Z

(−)
L (X) =

ZL(X)/ZL+(X). By the definition, Z(−)
L (X) is a rational function over Q.

However, by the next lemma, we see that Z(−)
L (X) is a polynomial with

integral coefficients.

Lemma 2.2. Let L be an intermediate field in K̃/k of finite degree. Then
Z

(+)
L (X) |ZL(X) in Z[X].

Proof. By Lemma 2.1, we have
ZL(q−s)

Z
(+)
L (q−s)

=
ζ(s, L)
ζ(s, L+)

=
∏
χ∈X−L

L(s, χ).
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Since L(s, χ) is a polynomial of q−s for χ ∈ X−L , we have Z(+)
L (X) |ZL(X)

in C[X]. Noting that Z
(+)
L (X) and ZL(X) are polynomials with integral

coefficients such that Z(+)
L (0) = ZL(0) = 1, we have Z

(+)
L (X) |ZL(X) in

Z[X].

Put g+
L = gL+ , g−L = gL−gL+ , λ+

L = λL+ , λ−L = λL−λL+ . By Lemma 2.2,
Z

(−)
L (X) is a polynomial with integral coefficients of degree 2g−L . By Theorem

2.2, we have λ−L = deg Z̄(−)
L (X). Let hL, h+

L be the class numbers of L and
L+, respectively. By Theorem 2.1, we have ZL(1) = hL and Z

(+)
L (1) = h+

L .
It follows that Z(−)

L (1) = h−L . Hence we have the following result.

Proposition 2.1. In the above notation, we have the following results.

• If λ+
L = 0, then h+

L ≡ 1 mod p.
• If λ−L = 0, then h−L ≡ 1 mod p.

From Theorem 2.1 and Lemma 2.1, we have the following result.

Proposition 2.2. Let L be an intermediate field in K̃/k of finite degree
corresponding to the character group XL. Then

Z
(+)
L (X) =

∏
χ∈X+,∗

L

Φχ(X), Z
(−)
L (X) =

∏
χ∈X−L

Φχ(X),

where X+,∗
L = X+

L \ {χ0}.

Proposition 2.3. Let L1, L2 be intermediate fields in K̃/k of finite
degree such that L1 ⊆ L2. Then Z

(+)
L1

(X) |Z(+)
L2

(X) and Z
(−)
L1

(X) |Z(−)
L2

(X)
in Z[X].

Proof. By Proposition 2.2, we have

Z
(+)
L2

(q−s)/Z(+)
L1

(q−s) =
∏

χ∈X+
L2
\ X+

L1

Φχ(q−s).

Hence Z
(+)
L1

(X) |Z(+)
L2

(X) in Z[X]. On the other hand, we notice that
X−L1

⊆ X−L2
. By Proposition 2.2,

Z
(−)
L2

(q−s)/Z(−)
L1

(q−s) =
∏

χ∈X−L2
\ X−L1

Φχ(q−s).

It follows that Z(−)
L1

(X) |Z(−)
L2

(X) in Z[X].

From Theorem 2.2 and Proposition 2.3, we have the following result.

Corollary 2.1. Let L1, L2 be intermediate fields in K̃/k of finite degree
such that L1 ⊆ L2. Then λ+

L2
≥ λ+

L1
and λ−L2

≥ λ−L1
.
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Letm1,m2∈A be monic polynomials such thatm1 |m2. ThenKm1⊆Km2 .
Put λ+

m2
= λ+

Km2
, λ−m2

= λ−Km2
, λ+

m1
= λ+

Km1
, λ−m1

= λ−Km1
. The next result

is important in the proof of Theorem 1.1.

Corollary 2.2. If λ+
m2

= 0 (resp. λ−m2
= 0), then λ+

m1
= 0 (resp.

λ−m1
= 0).

Proof. This follows from Corollary 2.1.

3. Proof of the main theorem. Our goal in this section is to prove
Theorem 1.1. We shall do this in three steps.

3.1. The irreducible case. The aim of this subsection is to determine
all monic irreducible polynomials m with λ+

m = 0 (resp. λ−m = 0). To do
this, we will use Goss’s idea on the Kummer and Herbrand theorem for
cyclotomic function fields (cf. [Go1]).

We assume that m ∈ A is a monic irreducible polynomial of degree d.
Put Zm(X) = ZKm(X), Z(+)

m (X) = Z
(+)
Km

(X), Z(−)
m (X) = Z

(−)
Km

(X). Then

Zm(X) = Z(+)
m (X)Z(−)

m (X).

By Proposition 2.2, we have

Z(+)
m (X) =

∏
χ∈X+,∗

m

Φχ(X), Z(−)
m (X) =

∏
χ∈X−m

Φχ(X),

where X+,∗
m = X+

m \ {χ0}.
We denote the p-adic field by Qp. Fix an algebraic closure Q̄ of Q, an

algebraic closure Q̄p of Qp, and an embedding σ : Q̄ → Q̄p. By this em-
bedding, we regard Q̄ ⊆ Q̄p. Let ordp be the p-adic valuation of Q̄p with
ordp(p) = 1. Let M be the field obtained by adding a primitive (pde − 1)th
root of unity to Qp (note that q = pe). Denote by OM the valuation ring
of M . Since M/Qp is unramified, the residue class field RM = OM/pOM
consists of pde elements. For χ ∈ Xm, we see that the image of χ is contained
in OM . Hence Φχ(X) ∈ OM [X] for all χ 6= χ0. By Theorem 2.2,

(3.1)

λ+
m = deg Z̄(+)

m (X) =
∑

χ∈X+,∗
m

deg Φ̄χ(X),

λ−m = deg Z̄(−)
m (X) =

∑
χ∈X−m

deg Φ̄χ(X),

where Φ̄χ(X) is the reduction of Φχ(X) modulo pOM .
Our next task is to investigate deg Φ̄χ(X). Notice that A/mA and RM

are finite fields with the same cardinality. Hence A/mA is isomorphic toRM .
Fix an isomorphism φ : A/mA → RM . This map induces a group isomor-
phism φ0 : (A/mA)× → R×M . Let W ⊆ OM be the group of (pde−1)th roots
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of unity. Then we have the isomorphism

ψ : W → R×M (ζ → ζ mod pOM ).

Put ω = ψ−1 ∗φ0. Then ω is a generator of Xm (recall that Xm is the group
of primitive Dirichlet characters modulo m). Hence we have

Xm = {ωt | t = 0, 1, . . . , qd − 2}.

Notice that ωt is real if t ≡ 0 mod q−1, and ωt is imaginary if t 6≡ 0 mod q−1.
We recall that

si(ωt) =
∑

amonic
deg(a)=i

ωt(a)

for i = 0, 1, . . . , d − 1 and t = 1, . . . , qd − 2 (see Subsection 2.3). Since
ω(a) ≡ φ(a) mod pOM , we have

φ
( ∑
amonic
deg(a)=i

at mod mA
)
≡ si(ωt) mod pOM .

We see that φ naturally induces an isomorphism φ∗ : (A/mA)[X]→ RM [X].
For this isomorphism, we have

φ∗(Bt(X) mod mA) = Φ̄ωt(X),

where Bt(X) ∈ A[X] is defined by

Bt(X) =



d−2∑
i=0

( ∑
amonic

0≤deg(a)≤i

at
)
Xi if t ≡ 0 mod q − 1,

d−1∑
i=0

( ∑
amonic
deg(a)=i

at
)
Xi if t 6≡ 0 mod q − 1

for t = 1, . . . , qd − 2. In particular,

deg(Bt(X) mod mA) = deg(Φ̄ωt(X)).(3.2)

Remark 3.1. Goss considered the above polynomial Bt(X), and showed
that Bt(X) is closely related to the values of characteristic p zeta functions.
For the properties of Bt(X), see [Ge] and [Go2].

By equations (3.1) and (3.2), we have the following result.

Lemma 3.1. Let m ∈ A be a monic irreducible polynomial of degree d.
Then
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• λ+
m = 0 if and only if ∑

amonic
0≤deg(a)≤i

at ≡ 0 mod mA

for i = 1, . . . , d− 2 and t = 1, . . . , qd − 2 with t ≡ 0 mod q − 1.
• λ−m = 0 if and only if ∑

amonic
deg(a)=i

at ≡ 0 mod mA

for i = 1, . . . , d− 1 and t = 1, . . . , qd − 2 with t 6≡ 0 mod q − 1.

By the above result, we will determine monic irreducible polynomials m
with λ+

m = 0 (resp. λ−m = 0). To do this, we need the following lemma.

Lemma 3.2.∑
amonic

0≤deg(a)≤1

aq
2−1 = −(T q − T )q−1,

∑
amonic

deg(a)=1

a(q−1)+q = −(T q − T ).

Proof. This follows from Corollary 3.14 and Theorem 4.1 in [Ge].

Now we conclude the irreducible case.

Proposition 3.1. Let m ∈ A be a monic irreducible polynomial. Then

• λ+
m = 0 if and only if degm ≤ 2.

• λ−m = 0 if and only if q = 2 or degm = 1.

Proof. First, we assume that λ+
m = 0. Notice that T q−T =

∏
α∈Fq

(T−α).
By Lemmas 3.1 and 3.2, we have degm ≤ 2. By the same argument, λ−m = 0
implies that q = 2 or degm = 1.

Conversely, by the Riemann–Hurwitz formula, we can easily check that
g+
m = 0 if degm ≤ 2, and g−m = 0 if q = 2 or degm = 1. Notice that λ+

m ≤ g+
m

and λ−m ≤ g−m. Hence we obtain the conclusion.

3.2. The irreducible power case. In this subsection, we suppose that
Q is a monic irreducible polynomial of degree d, and n is a non-negative
integer. First we state a classical result on the Hasse–Witt invariant.

Theorem 3.1 (cf. [Su], [Ro1]). Let K be a global function field over Fq,
and let L/K be a geometric cyclic extension of degree p. Let λL and λK be
the Hasse–Witt invariants of L and K, respectively. Let SK be the set of all
primes of K. Then

λL − 1 = p(λK − 1) +
∑
P∈SK

(eP − 1) degK P
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where eP is the ramification index of P in L/K, and degK P is the degree
of P .

By using the above formula, we will calculate λ+
Qn (resp. λ−Qn) from λ+

Q

(resp. λ−Q). To do this, we need the following lemma.

Lemma 3.3 (cf. [Ro2]). Let Q be a monic irreducible polynomial, and let
n be a non-negative integer. Then:

1. The prime Q is totally ramified in KQn/k.
2. The prime P∞ splits completely in K+

Qn/k, and each prime of K+
Qn

over P∞ is totally ramified in KQn/K+
Qn.

3. Any prime except Q and P∞ is unramified in KQn/k.

By the Galois isomorphism (2.1), we see that KQn/KQ is a Galois ex-
tension of degree qd(n−1) = ped(n−1). We use Theorem 3.1 and Lemma 3.3,
repeatedly, and obtain the following relations:

λQn = λQq
d(n−1) + (degQ− 1)(qd(n−1) − 1),

λ+
Qn = λ+

Qq
d(n−1) + (degQ− 1)(qd(n−1) − 1),

λ−Qn = λ−Qq
d(n−1).

By the above relations and Proposition 3.1, we obtain the next result.

Proposition 3.2. Let Q ∈ A be a monic irreducible polynomial of de-
gree d, and let n be a non-negative integer. Then:

• λ+
Qn = 0 if and only if either degQ = 1 or n = 1 and degQ = 2.

• λ−Qn = 0 if and only if q = 2 or degQ = 1.

3.3. The general case. Our goal in this subsection is to prove The-
orem 1.1. To do this, we need some preparations. For a monic polynomial
m ∈ A, put

Zm(X) = 1 + c1,mX + c2,mX
2 + · · ·+ c2gm,mX

2gm ,

Z(+)
m (X) = 1 + c

(+)
1,mX + c

(+)
2,mX

2 + · · ·+ c
(+)

2g+m,m
X2g+m ,

Z(−)
m (X) = 1 + c

(−)
1,mX + c

(−)
2,mX

2 + · · ·+ c
(−)

2g−m,m
X2g−m .

Then c1,m = c
(+)
1,m + c

(−)
1,m. First, we will calculate c(+)

1,m and c
(−)
1,m.

Lemma 3.4 (cf. [Ro2, Theorem 5.9]). For a global function field K
over Fq, we put

ZK(X) = 1 + c1(K)X + c2(K)X2 + · · ·+ c2gK (K)X2gK .

Then 1 + q+ c1(K) = a1(K), where a1(K) is the number of primes of K of
degree one.
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By assertion 2 of Lemma 3.3, and Lemma 3.4, we obtain

1 + q + c1,m = Φ(m)/(q − 1) +
∑
R

Wm,R,(3.3)

1 + q + c
(+)
1,m = Φ(m)/(q − 1) +

∑
R

W+
m,R,(3.4)

where R runs through all monic irreducible polynomials of A. Here Wm,R

(resp. W+
m,R) is the number of primes of Km (resp. K+

m) of degree one over R.
We notice that Wm,R = 0, and W+

m,R = 0 if degR ≥ 2. By equations (3.3),
(3.4), we have

c
(−)
1,m =

∑
R

(Wm,R −W+
m,R).

Proposition 3.3. Suppose that m =
∏
QQ

nQ, where Q is a monic
irreducible polynomial, and nQ ≥ 0. Let R be a monic polynomial of degree
one. Then

Wm,R =


0 if deg(m/RnR) ≥ 2,
0 if deg(m/RnR) = 1 and R 6≡ 1 mod m/RnR ,
q − 1 if deg(m/RnR) = 1 and R ≡ 1 mod m/RnR ,
1 if deg(m/RnR) = 0,

(1)

W+
m,R =


0 if deg(m/RnR) ≥ 2,
1 if deg(m/RnR) = 1,
1 if deg(m/RnR) = 0.

(2)

To prove this, we need the following lemma.

Lemma 3.5. Let m ∈ A be a monic polynomial, and let R ∈ A be a monic
irreducible polynomial which is prime to m. Let R (resp. R+) be a prime of
Km (resp. K+

m) over R. Then R is unramified in Km/k, degKm
R ≥ degm

and degK+
m
R+ ≥ degm.

Proof. By Theorem 12.10 in [Ro2], the primeR is unramified inKm/k, and
σR mod m=(R,Km/k) (see the Galois isomorphism (2.1)), where (R,Km/k)
is the Artin symbol of R in Km/k. It follows that RfR − 1 ∈ mA, where fR
is the relative degree of R in Km/k. Hence degKm

R = fR degR ≥ degm.
On the other hand, we recall that the subgroup F×q (⊆ (A/mA)×) corre-

sponds to K+
m. Hence there is an α ∈ F×q such that Rf

+
R −α ∈ mA, where f+

R

is the relative degree of R in K+
m/k. Hence degK+

m
R+ = f+

R degR ≥ degm.

Proof of Proposition 3.3. First we prove assertion (2). Put m′ = m/RnR .
Then we see that K+

m′ ⊆ K
+
m. We consider the following three cases:

(I) We assume degm′ ≥ 2. By Lemma 3.5, the degree of a prime of K+
m′

over R is at least 2. It follows that W+
m,R = 0.
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(II) We assume degm′ = 1. Then K+
m′ = k. By Lemma 3.3, we see that

R is unramified in Km′/K
+
m′ . It follows that each prime of K+

m over R is
unramified in Km/K

+
m. On the other hand, the ramification index of R in

KRnR/k is equal to Φ(m)/(q − 1). It follows that R is totally ramified in
K+
m/k. Hence W+

m,R = 1.

(III) We assume degm′ = 0. Then m = RnR . The prime R is totally
ramified in K+

m/k. Hence W+
m,R = 1.

Next we prove assertion (1). By the same argument as in (I), (III), we
can prove (1) if degm′ ≥ 2 or degm′ = 0. Hence we only consider the
following two cases:

(IV) We assume degm′ = 1 and R 6≡ 1 mod m′. Then the relative degree
of R in Km′/k is at least 2. It follows that Wm,R = 0.

(V) We assume degm′ = 1 and R ≡ 1 mod m′. Then R splits completely
in Km′/k. On the other hand, each prime of Km′ over R is totally ramified
in Km/Km′ . Hence Wm,R = q − 1.

Proof of Theorem 1.1. First, we prove assertion 2. If m = Qn where Q is
a monic polynomial of degree one and n ≥ 0, then λ−m = 0 by Proposition 3.1.

Conversely, we assume that λ−m = 0. By Corollary 2.2 and Proposi-
tion 3.2, we can suppose that m =

∏s
i=1R

ni
i where Ri (i = 1, . . . , s) are

distinct polynomials of degree one. We assume s ≥ 2. Put m′ = R1R2.
By using (2) of Proposition 3.3, we have W+

m′,R1
= W+

m′,R2
= 1. Hence

c
(−)
1,m′ = Wm′,R1 + Wm′,R2 − 2. By using (1) of Proposition 3.3, we see that
Wm′,R1 + Wm′,R2 is 0, q − 1 or 2(q − 1). Noting that p 6= 2, 3, we have
c
(−)
1,m′ 6≡ 0 mod p. This leads to λ−m′ ≥ 1. By Corollary 2.2, we have λ−m ≥ 1.

This contradicts λ−m = 0. Hence s = 1. This completes the proof of asser-
tion 2.

Next we prove assertion 1. By Proposition 3.2, we have λ+
m = 0 if m

satisfies (a) or (b). We assume that m = RQn where R and Q are distinct
polynomials of degree one, and n ≥ 1. By the Riemann–Hurwitz formula,
we have g+

RQ = 0. Hence λ+
RQ = 0. Notice that Q is totally ramified in

K+
RQn/k, and any prime of K+

RQ except over Q is unramified in K+
RQn/K

+
RQ.

By Theorem 3.1, we obtain λ+
RQn = 0.

Conversely, we assume that λ+
m = 0. We will show that m satisfies one

of conditions (a), (b), (c). By Proposition 3.2 and Corollary 2.2, this will
follow if λ+

m ≥ 1 in the following four cases:

(A) m = QR where Q is a monic irreducible polynomial of degree two,
and R is a monic polynomial of degree one.
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(B) m = QR where Q, R are distinct monic irreducible polynomials of
degree two.

(C) m = Q2R2 where Q, R are distinct monic polynomials of degree
one.

(D) m = QRS where Q, S, R are distinct monic polynomials of degree
one.

By Proposition 3.3, we can easily check that c(+)
1,m 6≡ 0 mod p in cases (A),

(B), (C). Hence λ+
m ≥ 1 in these cases.

Finally, we investigate case (D). Let L be an intermediate field in
K+
QRS/K

+
QR with [L : K+

QR]=2. Put ZL(X) = 1+c1(L)X+· · ·+c2gL(L)X2gL ,
where gL is the genus of L. Then a1(L) = 1 + q + c1(L), where a1(L) is the
number of primes of L of degree one. For each prime P of L not over Q, R,
P∞, we have degL P ≥ 2 by applying Lemma 3.5 to K+

QR. Hence

a1(L) = 2(q − 1) +WQ(L) +WR(L)

where WQ(L) (resp. WR(L)) is the number of primes of L of degree one over
Q (resp. R). Since Q and R are totally ramified in K+

QR/k, we can see that
WQ(L)+WR(L) is 0, 2 or 4. Noting that p 6= 2, 3, we have a1(L) 6≡ 1 mod p.
It follows that c1(L) 6≡ 0 mod p. Hence λL ≥ 1. By Corollary 2.1, we have
λ+
QRS ≥ 1.

Remark 3.2. Theorem 1.1 does not work in the case p = 2, 3. We give
counterexamples:

• Assume that q = p = 2. Then λ+
(T 2+T+1)T

= λ−
(T 2+T+1)T

= 0.
• Assume that q = p = 3. Then λ+

T (T−1)(T−2) = λ−T (T−1)(T−2) = 0.
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