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1. Introduction. Piatetski-Shapiro [14] initiated the problem of find-
ing, for a given natural number s, a range of values of c > 1 (c /∈ N) such
that the Diophantine inequality

|pc1 + · · ·+ pcs −R| < R−η

has many solutions in primes p1, . . . , ps, for all sufficiently large positive
real numbers R. Here and below, η is a sufficiently small positive constant
depending only on c. For s = 3 (the smallest s that can be attacked at
present), we find papers by Tolev [16], Cai [4], Kumchev and Nedeva [12]
and most recently Kumchev [11], where it is shown that the range

1 < c <
61

55
= 1.10909 . . .

is permissible. In the present paper we sharpen Kumchev’s approach to
obtain the following result.

Theorem 1. Let 1 < c < 10/9 = 1.11111 . . . . The number of prime
triples satisfying

(1.1) |pc1 + pc2 + pc3 −R| < R−η

is � R3/c−1−η(logR)−3 for R > C1(c).

We elaborate Kumchev’s use of Harman’s ‘alternative sieve’ by using two
decompositions of

∑
X<p≤2X e(xp

c) in a similar way to Baker and Weingart-

ner [3]. To get satisfactory numerical results, we use five Buchstab iterations
in both decompositions: see Sections 4 and 5 for details.
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The quality of the result in Theorem 1 depends on being able to make a
satisfactory power saving for exponential sums (Im denoting a subinterval
of (N, 2N ])

SI =
∑
m≤M

am
∑
n∈Im

e(xmcnc) (MN � X, X−1+8η < x < X3η)

with arbitrary am, |am| ≤ 1, for as long a range of M as possible (we obtain
this for M < X1/2); and a similar saving for sums

SII =
∑

M<m≤2M

∑
N<n≤2N

X<mn≤2X

ambne(xm
cnc) (X−1+8η < x < X3η)

with arbitrary am, bn, |am| ≤ 1, |bn| ≤ 1, for sufficiently generous ranges
Xα ≤ N ≤ Xβ; our ranges for SII are [α, β] =

[
2
9 ,

127
470

]
and [α, β] =

[
10
27 ,

19
45

]
.

The latter range would vanish if the constant 10/9 in Theorem 1 were to
be increased. To get our results for SI, we follow Kumchev [11, Lemma 7],
but fill in a great many details and aim for maximum generality, with a
view to further applications to be considered elsewhere. The first SII range
above depends on work of Huxley [10]. The second (as in [11]) depends on
work of Sargos and Wu [15]; we take the opportunity to fill in details not
given in [15].

We abbreviate ‘M < m ≤ 2M ’ to ‘m ∼ M ’ and ‘U � u � U ’ to
‘u � U ’. We write f (j) for the jth derivative of a real function f on an
interval or a holomorphic function f on an open set V in C, and g(i,j) for
the partial derivatives of a function g of two real variables. For 0 < ρ1 < ρ2,
0 < α < π/4, we write

S(ρ1, ρ2, α) = {reit ∈ C : ρ1 < r < ρ2, |t| < α}.

We reserve the symbol X for a large positive number and write L = logX.

Constants implied by ‘O’ or written as C,C1, C2, . . . depend at most
on c, λ, θ, α, β. The numbering of the Cj begins anew in each section. The
constant C need not be the same in different occurrences in the same section.
Constants implied by ‘�’ are permitted also to depend on η.

2. Type I exponential sums. We shall prove the following result
about ‘Type I monomial exponential sums’ SI.

Theorem 2. Let θ, λ be constants, θ(θ − 1)(θ − 2)λ(λ − 1)(θ + λ − 2)
× (θ + λ− 3)(θ + 2λ− 3)(2θ + λ− 4) 6= 0. Let

SI =
∑
m∼M

∑
n∈Im

ame(Bm
λnθ)
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where B > 0, M ≥ 1, N ≥ 1, |am| ≤ 1 and Im is a subinterval of (N, 2N ].
Let F = BMλN θ. Then

(2.1) S � (MN)η(F 3/14M41/56N29/56 + F 1/5M3/4N11/20

+ F 1/8M13/16N11/16 +M3/4N +MN3/4 +MNF−1).

We require a number of preliminary lemmas.

Lemma 1. Let L(Q) =
∑J

j=1AjQ
aj+

∑K
k=1BkQ

−bk , where Aj , aj , Bk, bk
are positive. For any H > 0, there exists Q ∈ (0, H] such that

L(Q)�
J∑
j=1

K∑
k=1

(Abkj B
aj
k )1/(aj+bk) +

K∑
k=1

BkH
−bk .

The implied constant depends only on J,K.

Proof. This is a slight variation of Graham and Kolesnik [7, Lem-
ma 2.4].

Lemma 2. Suppose that f has four continuous derivatives on I = [a, b]
and that f ′′ < 0 on I. Suppose further that I ⊆ [N, 2N ] and that α = f ′(b),
β = f ′(a). Assume that, for some F > 0,

f (2)(x) � FN−2, f (j)(x)� FN−j (j = 3, 4)

on I. Let xν be defined by f ′(xν) = ν and let φ(ν) = νxν − f(xν). Then

(2.2)
∑
n∈I

e(f(n)) =
∑

α≤ν≤β

e(−φ(ν)− 1/8)

|f ′′(xν)|1/2
+O(log(FN−1+2)+F−1/2N).

Proof. This version of van der Corput’s B-process is Lemma 3.6 of [7].

It is helpful to note that if f (j)(x) = (Kxλ)(j)(1 +O(ρ)) (0 ≤ j ≤ 1) for
constants K > 0, λ > 0, λ 6= 1 with sufficiently small ρ, then

(2.3) φ(ν) = C1K
− 1
λ−1 ν

λ
λ−1 (1 +O(ρ))

where C1 = λ−
1

λ−1−λ−
λ
λ−1 . This formula needs a little modification if λ < 0,

K < 0, or both; we disregard this for simplicity of exposition.

Lemma 3. Let F > 0. Let A be a subset of R= [C2H,C3H]×[C4N,C5N ]
and

S =
∑

(h,n)∈A

f(h, n) e(g(h, n))

where f and g are real functions on R with

(2.4) |f (i,j)(u, v)| < C6KH
−iN−j ((u, v) ∈ R, 0 ≤ i, j ≤ 1).
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Then for some subrectangle R′ of R,

(2.5) S � K
∣∣∣ ∑
(h,n)∈A∩R′

e(g(h, n))
∣∣∣.

The implied constant depends on C2, C3, C4, C5, C6.

Proof. We apply the identity [9, p. 90]

H2∑
h=H1

N2∑
n=N1

f(h, n)G(h, n) = f(H1, N1)

H2∑
h=H1

N2∑
n=N1

G(h, n)

+

H2�

H1

f (1,0)(x,N1)

H2∑
h=x

N2∑
n=N1

G(h, n) dx

+

N2�

N1

f (0,1)(H1, y)

H2∑
h=H1

N2∑
n=y

G(h, n) dy

+

N2�

N1

H2�

H1

f (1,1)(x, y)

H2∑
h=x

N2∑
n=y

G(h, n) dx dy.

Our choices of H1, H2 are the smallest and largest integers in [C2H,C3H]
and similarly for N1, N2. Our choice of G(h, n) is χA(h, n) e(g(h, n)), where
χA is the indicator function of A. Each of the four summands on the right
side satisfies a bound of the form (2.5), and the lemma follows.

Lemma 4 (Rouché). Let γ be a piecewise smooth simple closed curve in
a convex domain Ω in C. Suppose that f, g are holomorphic in Ω and

|f(z)− g(z)| < |f(z)| on γ.

Then f and g have the same number of zeros (counted with multiplicity)
enclosed by γ.

Proof. See [1, p. 153].

Lemma 5. Let θ, σ be constants, θ(θ− 1)σ(σ− 1)((θ− 1)σ− 1) 6= 0. Let
B 6= 0, N ≤ X, 1 ≤ q ≤ N/L, and suppose that the function

f(x) =
(
((x+ q)θ − xθ)σ

)(1)
is positive on [N, 2N ]. Let St = S(tηN,N/(tη), η/t). Then f has a holomor-
phic extension to S2 with a holomorphic inverse Φ on f(S2). Moreover, for
w ∈ f(S3), j ≥ 0, we have

(2.6) Φ(j)(w) = (Lw1/τ )(j)(1 +O(q/N))

where τ = (θ−1)σ−1 and L = (C7|B|qσ)−1/τ with the constant C7 depending
on θ, σ. The implied constant depends only on θ, σ, η, j.
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Proof. In the region Re z > 0, we write log z for the branch of the log-
arithm that is real on (0,∞), and zβ = exp(β log z) (β ∈ C). We suppose
for definiteness that B > 0, θ > 0, and approximate f (defined in this way
on S1) by g, itself defined by

g(z) = B((θqzθ−1)σ)(1) = Kzτ (Re z > 0)

with K = C7Bq
σ.

Applying the binomial expansion to (1 + q/z)θ, we find that

(2.7) f(z) = g(z)(1 +O(q/N))

for Re z ≥ ηN . Now g maps S1 bijectively onto

T1 := S(K(ηN)τ ,K(N/η)τ , η|τ |).

Let w ∈ f(S2). We claim that there is exactly one z in S2 such that
f(z) = w. This would certainly hold with g in place of f . Now when z is on
the boundary of S1,

|(f(z)− w)− (g(z)− w)| < |g(z)− w|.
(The left side is O(L−1|g(z)|) and the right side is� |g(z)|.) Hence f(z)−w,
like g(z)−w, has exactly one zero in S2. It is easy to see that f ′ 6= 0 in S2,
so there is a holomorphic inverse Φ of f , Φ : f(S2)→ S2.

Let z = Φ(w), w ∈ f(S2). From (2.7),

w = C7Bq
σzτ (1 +O(q/N)).

An easy calculation gives in turn

zτ − w

C7Bqσ
� q

N
N τ , z −

(
w

C7Bqσ

)1/τ

� q

N
N.

This gives the case j = 0 of the lemma for all w in f(S2). If w is in the
smaller set f(S3), we apply the Cauchy formula

Φ(j)(w) =
j!

2πi

�

C

Φ(ζ) dζ

(ζ − w)j+1
,

where the circle C has center w and radius� BqσN τ , with C and its interior
contained in f(S2). This immediately yields (2.6).

Proof of Theorem 2. Suppose first that

F ≥MN.

We begin the proof like [2, proof of Theorem 4]. With Q ∈ [1,L−1N ] at our
disposal, this yields

(2.8)
S2
I

L2
� M2N2

Q
+
MN

Q

∑
q≤Q

∣∣∣ ∑
N<n≤2N−q

∑
m∼M

e(f(m,n))
∣∣∣
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with

f(m,n) = Bmλ((n+ q)θ − nθ).
After conjugating the sum over m,n in (2.8) if necessary (the same device
occurs implicitly below), we apply Lemma 2 to the summation over m. This
gives rise to functions xν = xν(n) and φ(ν) = φ(ν, n), say. Explicitly,

φ(ν, n) = C8A
σ((n+ q)θ − nθ)σνλ/(λ−1),

where C8 = C8(λ, θ) 6= 0 and σ = −1
λ−1 , so that

σ(σ − 1)(σ(θ − 1)− 1) 6= 0.

As pointed out in the last paragraph of [7, p. 35], we have

1

|f (2,0)(xν(n))|1/2
= |φ(2,0)(ν, n)|1/2.

Thus

(2.9)
S2
I

L2
� M2N2

Q

+
MN

Q

∑
q≤Q

∣∣∣ ∑
N<n≤2N−q

∑
ν∈I1(n)

|φ(2,0)(ν, n)|
1
2 e(kAσ((n+q)θ−nθ)σν

λ
λ−1 )

∣∣∣+E1.

Here the interval I1(n) has endpoints f (1,0)(jM) (j = 1, 2), and E1 denotes
the total error arising from the error terms in (2.2). Clearly

(2.10) E1 � LMN2

(
1 +

(
FQ

N

)−1/2
M

)
.

Let h−11 denote the inverse function of h1(n) := (n+q)θ−nθ on [ηN,∞).
Applying Lemma 3, and rewriting the summation over n, ν,

(2.11)
S2
I

L2
� M2N2

Q

+
MN

Q

∑
q≤Q

(FqN−1M−2)−1/2
∣∣∣ ∑
(n,ν)∈I2×J2
n∈I3(ν)

e
(
kAσ((n+q)θ−nθ)σνλ/(λ−1)

)∣∣∣,
where I2 × J2 is a rectangle of the form

[N, 2N − q]× [C9Fq(NM)−1, C10Fq(MN)−1],

and the interval I3(ν) has endpoints h−11

(
ν

λA(jM)λ−1

)
(j = 1, 2).

We now apply Lemma 2 for a second time, to the sum over n ∈ I2∩I3(ν)
in (2.11). Let us denote the new variable introduced by µ (instead of ν).
Rather than xµ and φ(µ), we write z(µ, ν) and f0(µ, ν). Thus

f0(µ, ν) = µ z(µ, ν)− φ(ν, z(µ, ν)).
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Let G = FqN−1. Using Lemma 5 and the remark after Lemma 2, we obtain
the approximation

(2.12) f
(a,b)
0 (µ, ν) = A(µ−αν−β)(a,b)(1 +O(q/N)) (0 ≤ a, b ≤ 4)

for ν � G/M , µ � G/N , where the constant A satisfies

A(G/M)−α(G/N)−β � G.

Here

α =
θ − 1

2− (θ + λ)
, β =

λ

2− (θ + λ)
.

Writing (α)0 = 1, (α)s = (α)s−1(α + s − 1) for s = 1, 2, . . . , we may
verify that

(2.13) (α)3(β)3(α+ β + 1)2 6= 0.

With a little thought, we see that the range I4(ν) of the variable µ
when we apply Lemma 2 the second time is a (possibly empty) interval
whose endpoints, written as a function of the real variable ν, are continuous
piecewise monotonic functions of ν. We obtain, after a second application
of Lemma 3,

(2.14)
S2
I

L2
� M2N2

Q
+
MN

Q

∑
q≤Q

(
M2N

Fq

)1/2(N3

Fq

)1/2

|S1|+ E1 + E2,

where E2 is the total error arising from the error terms in (2.2) for the
second application of Lemma 2, and

(2.15) S1 = S1(q) =
∑
ν∈I2

∑
µ∈I4(ν)

e(f0(µ, ν)).

It is easy to see that

E2 �
LMN

Q

∑
q≤Q

(
M2N

Fq

)1/2 Fq

MN

(
1 +

(
Fq

N

)−1/2
N

)
(2.16)

� L(MN1/2Q1/2 +MN2).

Let us write X = max(G/M,G/N), Y = min(G/M,G/N), W = XY ,
δ = q/N . Recalling the condition (2.13) on α, β, a variant of [2, Theorem 7]
enables us to give the upper bound

(2.17) S1 � L(G1/3W 1/2 +W 5/6 +G−1/8W 15/16 +G1/2W 1/2Y −1/2

+ δ2/5W 1/2G1/5Y 2/5 + δ1/4W 3/4Y 1/4).

The variant is fairly straightforward if the following remarks are noted.



166 R. Baker and A. Weingartner

(a) There are two further terms on the right side of the bound in [2]
corresponding to (2.17). These can be omitted since

δ1/4G1/4W 1/2Y 1/4 � (δ2/5W 1/2G1/5Y 2/5)5/8(G1/3W 1/2)3/8,

G1/2W 1/2Y 5/12 � (G1/2W 1/2Y −1/2)1/6(W 5/6)5/6.

(b) Let us write (m,n) instead of (µ, ν) (if X = G/N) or instead of (ν, µ)
(if X = G/M), in order to make comparison with [2] easier. Let

f1(m,n) = f(m+ s, n+ r)− f(m,n)

for a given (s, r) ∈ Z2 \ {(0, 0)}. Following the argument in [2], we must
estimate averages of |S(s, r)| over a rectangle R,

(s, r) ∈ R \ {(0, 0)}.
Here

S(s, r) =
∑

(m,n)∈D∩(D−(s,r))

e(f1(m,n))

where D is the set of pairs (m,n) given in the summation (2.15). Let us
focus on pairs (s, r) with

ρ :=

∣∣∣∣ rY
∣∣∣∣ ≥ ∣∣∣∣ sX

∣∣∣∣.
In [8], f0 is restricted to the form Ah1(u)h2(v) where h1, h2 are ‘close to’
monomials. This does not matter, since for the estimation of S(s, r) we still
have the easily verified approximation

(2.18) f
(a,b)
1 (m,n) = (−1)a+b+1Am−α−an−β−b

r

n

{
Ta,b

(
sn

rm

)
+O(ρ+ δ)

}
with

Ta,b(z) = (α)a+1(β)bz + (α)a(β)b+1.

(c) In [2, Theorem 7], only the case of a summation over a rectangle R,
rather than the more complicated domain D, is considered. This causes
no difficulty when, at certain points of the argument, we sum over subsets
E of R ∩ (R − (s, r)) with the property that vertical and horizontal lines
intersect E in O(1) intervals. (This property holds good if we replace E by
E ∩ D ∩ (D − (s, r)).)

(d) Polynomial approximations arising from (2.18), together with Lem-
ma 4, are used in [2] to prove that certain functions h(v) have a bounded
number of zeros. The most complicated example is

(2.19) h(v) := −H(1,0)(k, v)f
(1,1)
1 (k, v) +H(0,1)(k, v)f

(2,0)
1 (k, v)

where k is fixed, v is restricted by

(k, v) ∈ R ∩ (R− (s, r)),
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and H denotes the Hessian f
(1,1)
1 f

(2,2)
1 − (f

(1,2)
1 )2. Once the polynomial ap-

proximation is given, and v is allowed to vary over a suitable open set in C,
it suffices to show that a pair of polynomials with coefficients depending on
α, β (two cubics in the case (2.19)) are not proportional. For full details, see
the argument following (3.10) in Baker and Weingartner [3]. No change is
needed in the present discussion because (2.18) remains valid.

We have thus established (2.17). We consider first the case M ≥ N . We
rewrite (2.17) in the form

S1
L
� F 7/4q7/4

M15/16N43/16
+

F 5/3q5/3

M5/6N5/2
+

F 8/5q2

M9/10N5/2
+

F 4/3q4/3

M1/2N11/6

+
F 7/4q2

MN11/4
+

Fq

N3/2
.

We use this in conjunction with (2.14), (2.10), (2.16) to obtain

S2

L3
� M2N2

Q
+MN2 +

M2N5/2

F 1/2Q1/2
+ F 1/2MN1/2Q1/2

+ F 3/4M17/16N5/16Q3/4 + F 2/3M7/6N1/2Q2/3 + F 3/5M11/10N1/2Q

+ F 1/3M3/2N7/6Q1/3 + F 3/4MN1/4Q+M2N3/2

= T1 + · · ·+ T10,

say. Since F ≥MN , M ≥ N and Q ≥ 1, we have

T2, T3 ≤ T10, T4 ≤ T6.

Thus (arguing trivially for Q < 1) we deduce

S2

L4
� M2N2

Q
+ F 3/4M17/16N5/16Q3/4 + F 2/3M7/6N1/2Q2/3

+F 3/5M11/10N1/2Q+F 1/3M3/2N7/6Q1/3 +F 3/4MN1/4Q+M2N3/2,

for all Q, 0 < Q ≤ L−1N . Applying Lemma 1, we find that

S2

L4
� F 3/7M41/28N29/28 + F 2/5M3/2N11/10 + F 3/8M3/2N9/8

+ F 3/10M31/20N5/4 + F 1/4M13/8N11/8 +M2N +M2N3/2

= U1 + · · ·+ U7,

say. Since F ≥MN and M ≥ N , we have

U3, U4 ≤ U2, U6 ≤ U7,

and Theorem 2 follows in the case F ≥MN , M ≥ N .
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Now suppose that N > M . Lemma 4 gives

S1
L
� F 7/4q7/4

M15/16N43/16
+

F 5/3q5/3

M5/6N5/2
+

F 7/4q2

M3/4N3
+

F 4/3q4/3

M1/2N11/6

+
F 8/5q2

M1/2N29/10
+

Fq

M1/2N
.

Proceeding as in the case M ≤ N , we see that

S2

L3
� M2N2

Q
+MN2 +

M2N5/2

F 1/2Q1/2
+ F 1/2MN1/2Q1/2

+ F 3/4M17/16N5/16Q3/4 + F 2/3M7/6N1/2Q2/3 + F 3/5M3/2N1/10Q

+ F 3/4M5/4Q+ F 1/3M3/2N7/6Q1/3 +M3/2N2

= V1 + · · ·+ V10,

say. Since F ≥MN , N ≥M and Q ≥ 1, we have

V2, V3 ≤ V10, V4 ≤ V6,
and, for 0 < Q ≤ N ,

S2

L3
� M2N2

Q
+ F 3/4M17/16N5/16Q3/4 + F 2/3M7/6N1/2Q2/3

+F 3/5M3/2N1/10Q+F 3/4M5/4Q+F 1/3M3/2N7/6Q1/35+M3/2N2.

Applying Lemma 1, we find that

S2

L4
� F 3/7M41/28N29/28 + F 2/5M3/2N11/10 + F 3/8M13/8N

+ F 3/10M7/4N21/20 + F 1/4M13/8N11/8 +M2N +M3/2N2

= R1 + · · ·+R7,

say. Since F ≥MN and M ≤ N , we have

R3, R4 ≤ R2, R6 ≤ R7,

and
S

L2
� F 3/14M41/56N29/56 +F 1/5M3/4N11/20 +F 1/8M13/16N11/16 +M3/4N.

This completes the proof of Theorem 2 in the case F ≥MN .
Consider finally the case of F < MN . By Theorem 1 of [13], which has

no restrictions on F ,

(2.20) S � (MN)1+η
((

F

MN2

)1/4

+
1

N1/2
+

1

F

)
.

The third summand appears in (2.1), and the second summand is acceptable.
Finally,

(MN)ηF 1/4M3/4N1/2 < (MN)ηMN3/4

and the theorem follows in the case F < MN .
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Corollary 1. Let M ≥ 1, N ≥ 1, MN � X, X−c+6η < x < X3η,
|am| ≤ 1, and let Im be a subinterval of (N, 2N ]. Then for 1 < c < 10/9,
M � X1/2, we have∑

m∼M

∑
n∈Im

am e(xm
cnc)� min(X1−4η, x−1X8/9).

Proof. For X4/9+20η < M � X1/2, we apply Theorem 2. The term
MNF−1 has a satisfactory bound since x > X−c+6η. All other terms have
satisfactory bounds since x < X3η, the restriction M � X1/2 coming from
F 1/8M13/16N11/16 and the restriction M > X4/9+20η coming from M3/4N .

Now suppose that M < X4/9+20η. We apply (2.20). We have already
discussed the term (MN)1+ηF−1, and the term (MN)1+ηN−1/2 gives no
difficulty. For the remaining term,

x1/4Xc/4+ηM3/4N1/2 < X1/2+c/4+2ηM1/4 < X8/9−3η,

since c < 10/9, M < X4/9+20η, and η is sufficiently small.

3. Type II exponential sums. We begin with a bound for SII(x) that
holds over a wide range of N .

Lemma 6. Let

SII(x) =
∑
m∼M

∑
n∼N

X<mn≤2X

ambn e(xm
cnc)

where 1< c≤ 6/5, M ≥ 1, MN �X, |am| ≤ 1, |bn| ≤ 1, X−c+8η < x < X3η.
Then

SII(x)� X1−3η whenever X8η � N � X1/2.

Proof. Let Q = ηN . Arguing as in [2, proof of Theorem 5],

(3.1) SII(x)2 � X2

Q
+
X

Q

Q∑
q=1

∑
n∼N

∣∣∣ ∑
m∼M

X<mn≤2X

e
(
xmc((n+ q)c − nc)

)∣∣∣.
We apply the exponent pair (1/6, 2/3) (see [7]) to the sum over m in (3.1):

(3.2)
∑
m∼M

X<mn≤2X

e
(
xmc((n+ q)c−nc)

)
� (xqN−1Xc)1/6M1/2 +

M

xqN−1Xc
.

Inserting this into (3.1) shows that the first term on the right in (3.2) pro-
duces � X2−8η since Xc/6 � X2/5 and M � X1/2. The second term on
the right in (3.2) produces � X2−6η since xXc > X8η.



170 R. Baker and A. Weingartner

We need another four lemmas, the first two due to Bombieri and Iwaniec
(see e.g. [7, Lemmas 7.3, 7.5]) and the others respectively to Fouvry and
Iwaniec [6, Lemma 2] and Sargos and Wu [15, Theorem 3].

Lemma 7. Let 1 ≤M ≤ N < N1 ≤M1. Let

K(t) = min{M1 −M + 1, (π|t|)−1, (π|t|)−2}.
Then ∣∣∣ ∑

N<n≤N1

an

∣∣∣ ≤ ∞�

−∞
K(t)

∣∣∣ ∑
M<m≤M1

ame(mt)
∣∣∣dt.

Moreover,
∞�

−∞
K(t) dt� log(M1 −M + 2).

Lemma 8. Let {xr}r∼R, {ys}s∼S be two sequences in [−1, 1], and let
ϕr, ψs ∈ C. Let T > 0,

Bϕ,ψ =
∑
r∼R

∑
s∼S

ϕrψs e(Txrys),

Bϕ(1/T ) =
∑∑

|xr′−xr′′ |≤1/T

|ϕr′ϕr′′ |,

Bψ(1/T ) =
∑∑

|ys′−ys′′ |≤1/T

|ψs′ψs′′ |.

Then

|Bϕ,ψ|2 ≤ 20(1 + T )Bϕ(1/T )Bψ(1/T ).

Lemma 9. Let N,Q ≥ 1 and zn ∈ C. Then∣∣∣ ∑
N<n≤2N

zn

∣∣∣2 ≤ (2 +N/Q)
∑
|q|<Q

(1− |q|/Q)
∑

N<n−q,n+q≤2N
zn+qzn−q.

Lemma 10. Let 1 ≤ Q ≤M1−η ≤ X, ∆ > 0, δ > 0, α ∈ R, α 6= 0, 1, 2,

t(m, q) = (m+ q)α − (m− q)α.
Let E(M,Q,∆, δ) denote the number of quadruples (m, m̃, q, q̃) with m, m̃
∼M and Q ≤ q, q̃ ≤ (1 + δ)Q satisfying

|t(m, q)− t(m̃, q̃)| ≤ ∆Mα−1Q.

Then there is a δ ∈ [1/Q, 1] such that

δ−1
∑

0≤k≤K
E(M,Qk, ∆, δ)� L4(MQ+∆(MQ)2 + (MQ9)1/4)

where Qk = (1 + δ)kQ, K = [(log 2)/δ].
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We are now ready to prove the following result, which is essentially [15,
Theorem 9].

Theorem 3. Let

S =
∑
m∼M

∑
n∼N

X<mn≤2X

ambne(Bm
βnα)

where M ≥ 1, N ≥ 1, α(α−1)(α−2)β(β−1)(β−2) 6= 0, |am| ≤ 1, |bn| ≤ 1.
Suppose that

F := BMβNα �MN.

Then

SX−η� F 1/20N19/20M29/40 + F 3/46N43/46M16/23 + F 1/10N9/10M3/5

+ F 3/28N23/28M41/56 + F 1/11N53/66M17/22 + F 2/21N31/42M17/21

+ F 1/5N7/10M3/5 +N1/2M + F 1/8N3/4M3/4.

Proof. Obviously we may suppose that F ≤ (MN)2.

Let 1 ≤ Q ≤ N1−η. It follows from Lemma 9 together with Cauchy’s
inequality that

S2 � M2N2

Q
+
MN

Q

∑
q≤Q

∑
n∼N

∣∣∣ ∑
m∼M

X<mn≤2X

e(Bmβt(n, q))
∣∣∣.

We apply Lemma 2 to the sum over m. After a simple splitting-up argument
and a partial summation, we obtain

S2

L
� M2N2

Q

+
MN

Q

∑
q∼Q1

∑
n∼N

(FqN−1M−2)−1/2
∣∣∣ ∑
n1∈I(n,q)

e
(
C1(B t(n, q))

1
1−β nβ11

)∣∣∣+ E1

where β1 = β
β−1 and I(n, q) is a subinterval of [N1, 2N1], with N1 �

FQ1/(MN), and

E1 = N2M((FQN−1M−2)−1/2 + 1).

Using Lemma 7, we replace the condition n1 ∈ I(n, q) by n1 ∼ N1 at the
cost of a factor L. Then we apply Lemma 9 again. Write

t1(n1, r) = (n1 + r)β1 − (n1 − r)β1 .

We find that for any R, 1 ≤ R ≤ N1−η
1 , there is an R1, 1 ≤ R1 ≤ R, such
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that

(3.3)
S4

L4
� M4N4

Q2
+
N5M4

FQ
+N4M2

+
M4N4

FQ2

∑
n∼N

∑
q∼Q1

{
N2

1

R
+
N1

R

∑
r∼R1

(
1− |r|

R

)

×
∑

n1∈I(r)

e
(
C1(B t(n, q))

1
1−β t1(n1, r)

)}
.

Here I(r) is a subinterval of (N1, 2N1] depending on r. Let U denote the
quadruple exponential sum over n, q, n1, r on the right side of (3.3). We split
up the range of q, r into (K1 + 1)(K2 + 1) parts as in Lemma 10, so that
δ1 = δ(M,Q1), K1 = [(log 2)/δ1], δ2 = δ(N1, R1), K2 = [(log 2)/δ2] and

U =

K1∑
k1=0

K2∑
k2=0

U(k1, k2), U2 � (δ1δ2)
−1

K1∑
k1=0

K2∑
k2=0

|U(k1, k2)|2.

Applying Lemma 8 to each subsum U(k1, k2) we deduce

U2 � (δ1δ2)
−1F1

K1∑
k1=0

K2∑
k2=0

E
(
M,Q(k1),

1

F1
, δ1

)
E
(
N1, R(k2),

1

F1
, δ2

)
where F1 � FQ1R1N

−1N−11 � MR1, Q(k1) = (1 + δ1)
k1Q1 and R(k2) =

(1 + δ2)
k2R1. The bounds arising from Lemma 10 show that

U2

L8
�MR1

{
NQ1 +

(NQ1)
2

MR1
+N1/4Q

9/4
1

}
×
{
FQ1R1

MN
+
F 2Q2

1R1

M3N2
+
F 1/4Q

1/4
1 R

9/4
1

M1/4N1/4

}
.

We insert this bound into (3.3) and multiply out. Noting that all powers of
Q1 and R1 obtained are positive, we may replace Q1, R1 by Q,R in all but
three terms:

S8

L16
� N8M8

Q4
+N8M4 +

N10M8

F 2Q2
+
N6M4Q6

1F
2

Q4R2

+N27/4M27/4Q−3/4R5/4F 1/4 +N31/4M23/4Q1/4R1/4F 1/4

+N21/4M6Q5/4F +N17/4M4Q9/4F 2 +
N7M5FQ5

1

Q4R

+N6M27/4Q1/2R5/4F 1/4 +N6M6F +
N6M3F 2Q6

1

Q4R
+N5M4QF 2

= T1 + · · ·+ T13,
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say. From the condition R ≤ Q1F
MN we have N ≤ Q1F

MR . Thus

T2 = N8M4 ≤ N6

(
Q1F

MR

)2

M4 ≤ N6M3Q2
1R
−1F 2 = T ′12,

say;

T3 = N10M8Q−2F−2 ≤ N6

(
Q1F

MR

)4

M8Q−2F−2 ≤ N6M4Q4
1F

2

Q2R2
= T ′4,

say. Finally,

T9 =
N7M5FQ5

1

Q4R
≤ N6

(
Q1F

MR

)
M5Q5

1F

Q4R
=
N6M4Q6

1F
2

Q4R2
≤ T ′4.

Hence

S8

L16
� N6M6F +N8M8Q−4 +N21/4M6Q5/4F +N17/4M4Q9/4F 2

+N5M4QF 2 +
N6M4Q4

1F
2

Q2R2
+N6M3Q2

1R
−1F 2

+N31/4M23/4Q1/4R1/4F 1/4 +N27/4M27/4Q−3/4R5/4F 1/4

+N6M27/4Q1/2R5/4F 1/4.

If we recall the first appearance of R in (3.3), this estimate holds trivially

for 0 < R < 1. Optimizing via Lemma 1 over 0 < R ≤
(Q1F
MN

)1−η
, we

obtain

S8

(MN)4η
� N6M6F +N8M8Q−4+N21/4M6Q5/4F(3.4)

+N17/4M4Q9/4F 2+N5M4QF 2+N68/9M50/9Q4/9F 4/9

+N37/5M26/5Q3/5F 3/5+N84/13M74/13Q4/13F 12/13

+N19/3M14/3Q7/9F 11/9+N6M14/3Q4/3F 11/9

+N6M74/13Q14/13F 12/13+N8M6+N7M4QF

= V1+ · · ·+V13,

say. We can discard V9 and V10, because

V9 = N19/3M14/3Q7/9F 11/9 = V
4/9
5 V

5/9
7 ,

V10 = N6M14/3Q4/3F 11/9 = V
4/9
4 V

5/9
7 .
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Since (3.4) is trivial for Q < 1, we can optimize the remaining expression
on the right side of (3.4) over 0 < Q < N1−η to obtain

S8

(MN)8η
� N38/5M29/5F 2/5 +N172/23M128/23F 12/23(3.5)

+N36/5M24/5F 4/5 +N46/7M41/7F 6/7

+N212/33M68/11F 8/11 +N124/21M136/21F 16/21

+N28/5M24/5F 8/5 +N28/5M136/25F 32/25

+N4M8 +N8M6 +N6M6F

= U1 + · · ·+ U11,

say. Since F ≥MN ,

U10 = N8M6 ≤ N8M6

(
F

MN

)2/5

≤ N38/5M29/5F 2/5 = U1.

Also

U8 = N28/5M136/25F 32/25 = U
21/75
6 U

50/75
7 U

4/75
9 .

Removing these two terms from (3.5), we obtain the theorem.

Corollary 2. Let SII(x) be as in Lemma 6. Suppose now that 1 < c
< 10/9,

X1−c < x < Xη.

Then

(3.6) SII(x)� x−1X1−c−4η

whenever

(3.7) X10/27 � N � X19/45.

Proof. We apply Theorem 3 with

F � xXc �MN.

The term F 3/28N23/28M41/56 gives rise to the condition N � X19/45; the
term F 2/21N31/42M17/21 gives rise to the condition N � X10/27; and the
term F 1/8N3/4M3/4 gives rise to the condition c < 10/9. The other terms
are easily dealt with, and the corollary follows.

By using two results of Huxley [9], we can alter the endgame in the proof
of Theorem 3 to obtain (3.6) for a different range of N .

Lemma 11. Let G(w) be four times continuously differentiable on [1, 2].
Suppose that

(3.8) G(r)(w) � 1
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for r = 2, 3, 4 and

(3.9) |G(2)(w)G(4)(w)− 3G(3)(w)| � 1.

Let

S =

M1∑
m=M

e(TG(m/M)),

where 1 ≤M ≤M1 ≤ 2M and

(3.10) T 141/328+η ≤M ≤ T 187/328−η.

Then
S �M1/2T 32/205+η.

Proof. This is a consequence of [9, Theorem 1].

Note that (3.8), (3.9) are satisfied if

(G(w))(j+2) = (wβ)(j)(1 +O(η)) (1 ≤ j ≤ 2),

for a real β with β(β + 1/2) 6= 0.

Lemma 12. Let G(w, y) be a function on R = [1, 2]× [0, 1] having partial
derivatives G(i,j) (i, j ≤ 5). Suppose that on R,

(3.11) G(r,0)(w, y) � 1

for r = 2, 3, 4 and

(3.12) |G(r+1,0)(w, y)G(r+1,1)(w, y)−G(r,1)(w, y)G(r+2,0)(w, y)| � 1

for r = 2, 3. Let y1, . . . , yJ satisfy

(3.13) 0 ≤ y1 < · · · < yJ ≤ 1, yj+1 − yj � J−1.

Let

S(y) =

M2(y)∑
m=M1(y)

e(TG(m/M, y)),

where 1 ≤M ≤M1(y) ≤M2(y) ≤ 2M and

(3.14) T 1/3+η ≤M ≤ T 1/2.

Then

(3.15)
J∑
j=1

|S(yj)|5

�Mη(J43/69M449/138T 63/138 + JM59/34T 37/54 + JM5/2T 141/190).

Proof. This is a consequence of [9, Theorem 2].

Let G(w, y) = g1(w)g2(y) where

(g1(w))(j+2) = (wβ)(j)(1 +O(η)), (g2(y))(j) = ((y + 1)γ)(j)(1 +O(η))
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for j ≤ 5. It may be verified that (3.11), (3.12) hold provided that we have
γβ(β − 1)(β − 2) 6= 0.

Lemma 13. The conclusion of Corollary 2 remains valid if (3.7) is re-
placed by

X2/9 � N � X127/470.

Proof. We begin with (3.3), where now α = β = c, B = x, F � xXc.
We choose Q = X2c−2+9η and R = Q3

1X
c−2Nx5. It is easy to check that

Q ≤ N1−η since N � X2/9. With N1 � FQ1/(MN), we may verify that

R ≤ N1−η
1 . Because of the choice of Q and R, the terms M4N4/Q2 and

M4N5N2
1Q1/(FQ

2R) on the right side of (3.3) are acceptable. The terms
N5M4/(FQ) and N4M2 are also acceptable:

N5M4

FQ
� N5M4

xXcQ
� N4M4

Q2x2
since QN � N2 � Xc−3η,

N4M2 � N4M4

Q2x2
since Q� N �MX−1/3.

We now choose q ∼ Q1 and r ∼ R1 so that the remaining term in (3.3) is
bounded by

� M4N4N1qr

FQ2R

∑
n∼N

∣∣∣ ∑
n1∈I(r)

e
(
C1(B t(n, q))

1
1−β t1(n1, r)

)∣∣∣
=
M4N4N1qr

FQ2R

∑
n∼N
|Vn|,

say. Thus we need to show that

(3.16)
∑
n∼N
|Vn| �

FR

qrN1x4
.

We shall show that one of Lemmas 11, 12 is applicable to
∑

n∼N |Vn| (with
n1, N1 in the roles of m,M). Let us write

T = C2
Fq

N
· r
N1
� Xr

N
.

We show to begin with that

N1 � T 187/328X−η,

that is,

X328c−328(qx)328 � X187−Cηr187N−187.

It suffices to show that

N187 < X187−984(c−1)−Cη = X1171−984c−Cη.

For this, N < X3/10 suffices.
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We show next that

N1 � T 1/3Xη,

that is,

(3.17) (Xc−1qx)3 � X1+ηr/N.

The right side of (3.17) cannot exceed q3Xc−1+2ηx5, and (3.17) follows at
once.

We now divide the argument into two cases.

Case 1: N1 > T 141/328Xη. We shall obtain (3.16) by showing for each
n ∼ N that

Vn �
FR

qrN1x4N
.

It is clear that Lemma 11 is applicable, since the exponent in the approxi-
mating monomial for f(n1) := C1(B t(n, q))

1/(1−β)t1(n1, r) is

c

c− 1
− 1 =

1

c− 1
> 9,

and

f (j) � TN−j1 .

Thus it remains to verify that

(Xc−1qx)1/2
(
Xr

N

)32/205

Xη � FR

qrN1x4N
� xXc−1q

r
.

We require

r237/205 � q1/2x1/2X(c−1)/2−32/205−ηN32/205.

We recall that

X328(c−1)(qx)328 � N328
1 > T 141Xη > X141r141N−141

or

r141 � X328c−469N141(qx)328.

Hence it suffices to show that

(X328c−469N141q328x328)237/(205·141) � q1/2x1/2X(c−1)/2−32/205−ηN32/205.

In verifying this, the worst case is qx = X2c−2+12η. After a short calculation,
the condition on N reduces to

N57810 � X437511−379701c−Cη,

which is a consequence of c < 10/9 and N � X127/470.
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Case 2: N1 ≤ T 141/328Xη. We apply Lemma 12 with

G(w, y) =
NN1

qr

{(
w +

r

N1

) c
c−1

− w
c
c−1

}{(
y + 1 +

q

N

)c
− (y + 1)c

} −1
c−1

(1 ≤ w ≤ 2, 0 ≤ y ≤ 1),

taking (N,N1) in the role of (J,M) and yn−N = (n−N)/N (N < n ≤ 2N).
If C2 is suitably chosen, then

TG(n1/N1, yn−N ) = C1(B t(n, q))
−1
c−1 t1(n1, r).

Lemma 12 gives the estimate∑
n∼N
|Vn|5 � Xη(N43/69N

449/138
1 T 63/138 +NN

59/34
1 T 37/34 +NN

5/2
1 T 141/190).

By Hölder’s inequality

(3.18)
∑
n∼N
|Vn| ≤ N4/5

( ∑
n∼N
|Vn|5

)1/5
� Xη(N319/345N

449/690
1 T 63/690 +NN

59/170
1 T 37/170 +NN

1/2
1 T 141/950).

There is in fact something to spare in bounding the right side of (3.18) by the
expression on the right of (3.16). The worst case is x = X3η, q � X2c−2+9η,
r � X7c−8+CηN , so that N1 � X3c−3+Cη, T � X7c−7+Cη. We require

N319/345(X3c−3)449/690(X7c−7)63/690 � X5−4c−Cη,

N(X3c−3)59/170(X7c−7)37/170 � X5−4c−Cη,

N(X3c−3)1/2(X7c−7)141/950 � X5−4c−Cη.

Each of these bounds follows from N � X127/470, c < 10/9. This concludes
the proof in Case 2, and the proof of Lemma 13 is complete.

4. The alternative sieve. We require a variant of Theorem 3.1 of
Harman [8]. The details are intricate and deserve a full discussion.

Lemma 14. Let w(n) be a complex function with support in (X, 2X]∩Z,
|w(n)| ≤ X1/η (n ∼ X). For r ∈ N, z ≥ 2, let P (z) =

∏
p<z p and

S(r, z) =
∑

(n,P (z))=1

w(rn).

Suppose that, for some α > 0, β ≤ 1/2, M ≥ 1, Y > 0, we have (for
any coefficients am, |am| ≤ 1, and bn, |bn| ≤ τ(n), the number of positive
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divisors of n) ∑
m≤M

am
∑
n

w(mn)� Y,(4.1)

∑
Xα≤m≤Xα+β

am
∑
n

bnw(mn)� Y.(4.2)

Let ur (r ≤ R), vs (s ≤ S) be complex numbers with |ur| ≤ 1, |vs| ≤ 1,
ur = 0 for (r, P (Xη)) > 1, vs = 0 for (s, P (Xη)) > 1,

(4.3) R < Xα, S < MX−α.

Then ∑
r≤R

∑
s≤S

urvsS(rs,Xβ)� Y L3.

Proof. We write z = Xβ and define

ψ(m) =
∑
n

w(mn).

We have

S(rs, z) =
∑
n

( ∑
d|P (z)
d|n

µ(d)
)
w(rsn)

=
∑
d|P (z)

µ(d)ψ(rsd) =
∑

1
(r, s) +

∑
2
(r, s),

where∑
1
(r, s) =

∑
d|P (z)
rsd≤M

µ(d)ψ(rsd),
∑

2
(r, s) =

∑
d|P (z)
rsd>M

µ(d)ψ(rsd).

Now ∑
r≤R

ur
∑
s≤S

vs
∑

1
(r, s) =

∑
r≤R

∑
s≤S

urvs
∑
d|P (z)
rsd≤M

µ(d)ψ(rsd)

=
∑
m≤M

am
∑
n

w(mn),

where

am =
∑
d|P (z)

∑
r≤R,s≤S
rsd=m

urvsµ(d).

Because m has at most η−1 prime factors ≥ Xη, we get |am| ≤ (21/η)2. Thus∑
r≤R

∑
s≤S

urvs
∑

1
(r, s)� Y,
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and it remains to show that

(4.4)
∑
r≤R

∑
s≤S

urvs
∑

2
(r, s)� YL3.

We make repeated use of the identity

(4.5)
∑
d|P (z)

µ(d)g(d) = g(1)−
∑
p<z

∑
d|P (p)

µ(d)g(dp)

(see [8, (3.1.2)]). Fix r ≤ R, s ≤ S and take

g(d) =

{
ψ(drs) if drs > M ,

0 otherwise.

Then g(1) = 0 from (4.3). Hence∑
2
(r, s) = −

∑
p<z

pdrs>M

∑
d|P (p)

µ(d)ψ(pdrs) = −
(∑

3
(r, s) +

∑
4
(r, s)

)
,

where pr < Xα in
∑

3(r, s) and pr ≥ Xα in
∑

4(r, s).

We repeat this splitting procedure for
∑

3(r, s). Let us give the general
form of the recursive step. For t ≥ 1, let πt = p1 · · · pt and∑

3
(r, s, t) =

∑
pt<···<p1<z
πtdrs>M
πtr<Xα

∑
d|P (pt)

µ(d)ψ(drsπt)

so that
∑

3(r, s, 1) =
∑

3(r, s). We apply (4.5) for given r, s, p1, . . . , pt, with

g(d) =

{
ψ(drsπt) if drsπt > M ,

0 otherwise.

For r ≤ R, s ≤ S, πtr < Xα, we have

(rπt)s < Xα(MX−α) = M.

Hence g(1) = 0,∑
3
(r, s, t) = −

∑
pt<···<p1<z
πtdrs>M
πtr<Xα

∑
pt+1<pt

∑
d|P (pt+1)

drsπtpt+1>M

µ(d)ψ(drsπtpt+1)

= −
(∑

3
(r, s, t+ 1) +

∑
4
(r, s, t+ 1)

)
,

where πt+1r < Xα in
∑

3(r, s, t + 1) (in accordance with our notation for∑
3(r, s, . . .)) and πtr < Xα, πt+1r ≥ Xα in

∑
4(r, s, t+ 1).
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We shall show that∑
r≤R

∑
s≤S

urvs
∑

4
(r, s)� Y L2,(4.6) ∑

r≤R

∑
s≤S

urvs
∑

4
(r, s, t+ 1)� Y L2 (t ≥ 1).(4.7)

Since
∑

3(r, s, t) is clearly empty for t > C1L/logL, (4.4) follows from (4.6)
and (4.7).

The key to proving (4.7) is that

rπtpt+1 ≥ Xα, rπtpt+1 < Xαpt+1 < Xα+β

in the sum. But we need a little more work before we use (4.2), because the
groups of variables rπtpt+1, ds are ‘linked’ by the condition d |P (pt+1).

Let σ(u) be the indicator function of (M,∞). By (4.5),

(4.8)
∑
r≤R

∑
s≤S

urvs
∑

4
(r, s, t+ 1)

=
∑
r≤R

∑
s≤S

urvs
∑

pt+1<···<p1<z
πtr<Xα, πt+1r≥Xα

(
σ(rsπt+1)ψ(rsπt+1)

−
∑

d|P (pt+2)

∑
pt+2<pt+1

drsπt+1pt+2>M

µ(d)ψ(drsπt+1pt+2)

)
.

We rewrite the subtracted part as

−
∑
r≤R

∑
s≤S

urvs
∑

pt+2<pt+1<···<p1<z
πtr<Xα, πt+1r≥Xα

∑
d|P (pt+2)

drsπt+1pt+2>M

µ(d)
∑
k

w(rsdπt+1pt+2k).

Grouping the variables as m = p1 · · · pt+1r, n = pt+2sdk, there are just two
joint conditions of summation pt+2 < pt+1, drsπt+1pt+2 > M . These can be
removed at a cost of a factor L2; see [8, Section 3.2] for the discussion of
this standard ‘cosmetic surgery’, which we shall use again later in Section 4.
Moreover, for given m, the coefficient of m is � 1 because p1, . . . , pt are
determined by r. The coefficient of n is � τ(n) because in the equation

n = pt+2sdk,

once k is specified, there are O(1) possibilities for s, and pt+2 is the largest
prime factor of the remaining factor pt+2d. We conclude that the subtracted
portion in (4.8) is

� Y L2.
The residual part of the right side of (4.8) can be bounded similarly. The
treatment of the sum in (4.6) is similar but simpler. This establishes (4.6),
(4.7), and the proof of Lemma 14 is complete.



182 R. Baker and A. Weingartner

In the remainder of the paper, let 1 < c < 10/9. Let R be a large
positive number, X = (R/4)1/c. As in [3], we employ a continuous function
ϕ : R→ [0, 1] such that

(4.9) ϕ(y) = 0 (|y| ≥ R−η), ϕ(y) = 1 (|y| ≤ 4R−η/5)

with Fourier transform Φ(x) =
	∞
−∞ e(−xy)ϕ(y) dy satisfying

(4.10)
�

|x|>X3η

|Φ(x)|dx� X−3.

We write briefly dµ = e(−Rx)Φ(x)dx and define

τ = X8η−c.

We also write

T (x) =
∑
p∼X

e(pcx), I0(x) =

2X�

X

e(tcx) dt, I(x) =

2X�

X

e(tcx)

log t
dt.

We let U(x) denote an arbitrary sum of the form U(x) =
∑

n∼X une(n
cx)

with real un � 1 (n ∼ X), and U+(x) denote a sum with the further
property un ≥ 0 (n ∼ X). It is convenient to write

a =
2

9
, b =

127

470
, d =

10

27
, f =

19

45

and

g = f − d =
7

135
, h =

1

2
− d =

7

54
, l = 0.291954.

In writing our exponential sums containing variables p1, . . . , pj , we set

αj = (α1, . . . , αj) = ((log p1)/L, . . . , (log pj)/L), si = α1 + · · ·+ αi

(1 ≤ i ≤ j),

F (m) =

{
e(mcx) (m ∼ X),

0 otherwise.

Let Pj be the region of Rj given by

Pj = {(y1, . . . , yj) : g ≤ yj < yj−1 < · · · < y1,

y1 + · · ·+ yj−1 + 2yj ≤ 1 + (log 3)/L}.

Let G = [a, b] ∪ [d, f ] ∪ [1− f, 1− d] and

Gj =
{
yj = (y1, . . . , yj) ∈ Pj :

∑
i∈σ

yi ∈ G for some set σ ⊆ {1, . . . , j}
}
,

Bj = Pj \Gj .
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For yj+1= (y1, . . . , yj+1)∈Pj+1, write y∗j+1= (y1, . . . , yj). For E ⊆Pj , let

E′ = {yj+1 ∈ Pj+1 : y∗j+1 ∈ E}.

Let {1, . . . , j} have a partition into two (disjoint) sets σ1, σ2. We say that
a point yj ∈ Pj splits using σ1, σ2 if∑

j∈σ1

yj < d,
∑
j∈σ2

yj ≤ h.

Lemma 15. Let K(x) be either of the following:

(i) for Qj a polytope (i.e. a finite intersection of half-spaces) with
Qj ⊆ Gj,

K(x) =
∑

(α1,...,αj)∈Qj
(n,P (pj))=1

F (πjn);

(ii) for some partition σ1, σ2 of {1, . . . , j},

K(x) =
∑

(α1,...,αj)∈Lj
(n,P (Xg))=1

F (πjn)

where Lj is a polytope, Lj ⊆ Pj and every point of Lj splits using
σ1, σ2.

Then for any U(x),

(4.11)

∞�

τ

T (x)U(x)K(x) dµ� X3−c−2η.

Proof. Recalling (4.10), it suffices to show that

y′�

y

T (x)U(x)K(x) dµ� X3−c−2ηL−1

whenever τ ≤ y < X3η, y < y′ ≤ 2y. Now

y′�

y

|U(x)|2 dx =

y′�

y

{ ∑
n∼X

u2n + 2
∑

X<n<n+j≤2X
unun+j e

(
(nc − (n+ j)c)x

)}
dx

� Xy +
∑
n∼X

∑
j≤X

1

(n+ j)c − nc

� Xy +
∑
n∼X

1

nc−1

∑
j≤X

j−1 � Xy +X2−cL.
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The same bound applies to
	y′
y |TU |dx ≤

1
2

	y′
y (|T |2 + |U |2) dx. Since

‖Φ‖∞ ≤ R−η from (4.9),

y′�

y

TUK dµ� X−cη
y′�

y

|TUK|dx(4.12)

� sup
[y,2y]

|K(x)|(X1−cηy +X2−c−cηL),

and it suffices to show that

(4.13) K(x)� min(X1−η, X2−c−ηx−1).

In case (i), we rewrite the sum as∑
k<20

∑
(α1,...,αj)∈Qj
pj≤pj+1≤···≤pk

F (πjpj+1 · · · pk).

We use cosmetic surgery to remove the conditions ps < pt, ps ≤ pt, and
further conditions arising from (α1, . . . , αj) ∈ Qj , at the cost of a log power.
Now we group the variables into products m1,m2 with (logm1)/L ∈ G. The
desired bound (4.13) follows from Lemma 6, Corollary 2 and Lemma 13.

In case (ii), we apply Lemma 14 with

w(n) =

{ 	y′
y T (x)U(x)e(ncx) dµ if n ∼ X,

0 otherwise.

Take Y = X3−c−2η, M = X1/2, α = d, β = g. Then

(4.14)
∑
m≤M

amw(mn) =

y′�

y

T (x)U(x)
∑

m≤X1/2

mn∼X

am e((mn)cx) dµ,

and

(4.15) ∑
Xα≤m≤Xα+β

ambnw(mn) =

y′�

y

T (x)U(x)
∑

Xα≤m≤Xα+β

mn∼X

ambn e((mn)cx) dµ.

The right-hand side in (4.14), (4.15) is seen to be � Y , by arguing as in
(4.12), (4.13), using Corollary 1, Lemma 6 and Corollary 2. We conclude
that∑

r<Xd

∑
s≤Xh

urvsS(rs,Xg)

=

y′�

y

T (x)U(x)
∑
r<Xd

∑
s≤Xh

urvs
∑

rsn∼X
(n,P (Xg))=1

e((rsn)cx) dµ� Y L3.
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We can bring
	y′
y TUK dµ into the form of the latter integral by writing

r =
∏
i∈σ1 pi, s =

∏
i∈σ2 pi, and summing over (α1, . . . , αj) ∈ Lj . We have

to vary the proof of Lemma 14 to accomodate a bounded number of joint
conditions of summation coming from αj ∈ Lj , but the loss of a power of L
via cosmetic surgery is harmless. This completes the proof of Lemma 15.

Our proof of Theorem 1 requires two decompositions:

(4.16) T (x) = K(1)(x)−D(1)(x) = K(2)(x)−D(2)(x) +D(3)(x)

where K(j) is of the form U(x), D(j) is of the form U+(x), and (for any U)

(4.17)

∞�

τ

TUK(j) dµ� X3−c−2η.

(K is for ‘keep’, D for ‘discard’ !) We obtain the decompositions by using
Buchstab’s identity. We have

T (x) =
∑
n∼X

(n,P ((3X)1/2))=1

F (n)(4.18)

=
∑
n∼X

(n,P (Xg))=1

F (n)−
∑

Xg≤p1<(3X)1/2

(n,P (p1))=1

F (p1n).

When we iterate the procedure, our general step has the following shape. Let
Ej be a polytope, Ej ⊆ Pj , and let Hj+1, Ej+1 be a partition into polytopes
of Bj+1∩E′j (j = 1, . . . , 5), with E5 empty. We shall choose Ej so that every
point of Ej splits using suitable sets of indices. Let

Sj =
∑

αj∈Ej
(n,P (pj))=1

F (πjn), Kj =
∑

αj∈Ej
(n,P (Xg))=1

F (πjn),(4.19)

K∗j+1 =
∑

αj+1∈E′j∩Gj+1

F (πjn),(4.20)

Dj+1 =
∑

αj+1∈Hj+1

F (πj+1n), Sj+1 =
∑

αj+1∈Ej+1

(n,P (pj+1))=1

F (πj+1n).(4.21)

Since E′j partitions into E′j ∩Gj+1, Hj+1, Ej+1, we have

(4.22) Sj = Kj −K∗j+1 −Dj+1 − Sj+1.

Similarly, we partition the domain of α1 in the subtracted part in (4.18)
into G1, H1, E1, where H1 ∪ E1 = B1, giving

(4.23) T = K0 −K∗1 −D1 − S1
in a notation analogous to (4.19)–(4.21).



186 R. Baker and A. Weingartner

For a small part of H5, we iterate twice more. Let

Ĥ5 = {α5 ∈ H5 : s4 > b}, L = H5 \ Ĥ5

so that

(4.24) D5(x) = D̂5(x) +K6(x)

where D̂5 is a sum over Ĥ5. The point is that each of the sums in

K6(x) =
∑
α5∈L

(n,P (Xg))=1

F (π5n)−
∑

α6∈L′
(n,P (Xg))=1

F (π6n) +
∑

α7∈(L′)′
(n,P (p7))=1

F (π7n)

can be handled via Lemma 15. We have s5 < a in the first sum; s6 < 3a/2 <
d in the second sum. In the third sum, α7 could not be in B7, since this
would lead to

s7 < 7a/4 < f, hence s7 < d, s5 < d− 2g < b,

and finally

5g ≤ s5 < a,

which is absurd. So K(x) = K6(x) has the property (4.11).

We assemble (4.22)–(4.24) to get

T (x) = K(x)−D−(x) +D+(x)

where K is a sum of terms ±Kj ,±K∗j ,

D+ = D2 +D4, D− = D1 +D3 + D̂5.

For the splitting property of Ej , it clearly suffices to have

α1 < d (α1 ∈ E1),(4.25)

α1 + α2 < d (α2 ∈ E2),(4.26)

α3 ≤ h (α3 ∈ E3),(4.27)

α1 + α2 + α4 ≤ h or α3 + α4 ≤ h (α4 ∈ E4).(4.28)

We are now ready to write down the decompositions (4.16). We first
consider K(2) −D(2) +D(3). Here we let

E1 = [g, a) ∪ (b, l),

E2 = {α2 ∈ E′1 ∩B2 : α1 + α2 < d},
E3 = {α3 ∈ E′2 ∩B3 : α3 ≤ h},
E4 = {α4 ∈ E′3 ∩B4 : α1 + α2 + α4 < d or α3 + α4 ≤ h},
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which fulfils (4.25)–(4.28). Hence

H1 = [l, d) ∪
(
f,

1

2
+

log 3

2d

)
,

H2 = {α2 ∈ E′1 ∩B2 : α1 + α2 > f},
H3 = {α3 ∈ E′2 ∩B3 : α3 > h},
H4 = {α4 ∈ E′3 ∩B4 : α1 + α2 + α4 > f, α3 + α4 > h},
Ĥ5 = {α5 ∈ E′4 ∩B5 : α1 + α2 + α3 + α4 > b}.

We shall prove several properties of H3, H4, Ĥ5.

Lemma 16. Let αj ∈ Bj, σ ⊆ {1, . . . , j}, s =
∑

t∈σ αt.

(i) Let σ′ = (σ \ {i}) ∪ {k} where i ∈ σ, k /∈ σ. If |αi − αk| < 0.0479,
then s and s′ =

∑
t∈σ′ αt are either both to the left, or both to the

right, of [a, b]. If |αi − αk| < g, then s and s′ are either both to the
left, or both to the right, of [d, f ].

(ii) Let i /∈ σ, k /∈ σ ∪ {i}. If s+αi +αk < d, then s < a. If s > b, then
s+ αi + αk > f .

(iii) Let σ = {i, i′, i′′}, i < i′ < i′′. If s < d, then αi′ + αi′′ < a.
(iv) If j = 5, s4 < d, then α4 − α5 < 0.041.
(v) If j = 5, s3 < d, then s5 < 1− f .
(vi) If α3 ∈ H3, then α1 < a.

Proof. The first assertion in (i) follows from |s− s′| = |αi −αk| < b− a.
The second assertion is proved similarly.

For the first assertion in (ii), we need only note that s < d−2g < b. The
second assertion now follows.

For (iii), we observe that αi′ + αi′′ < 2d/3 < b.
For (iv), we use α4 − α5 < d/4− g < 0.041.
For (v), we have s5 < 5s3/3 < 5d/3 < 1− d, hence s5 < 1− f .
For (vi), we use α1 < d− α2 < d− α3 < d− h < b.

We can ‘concatenate’ in (i): for instance, if we have α1 +α2 +α3 > b and
max(α3 − α4, α4 − α5) < 0.0479, then α1 + α2 + α5 > b.

Lemma 17. Let α4 ∈ H4. Then g ≤ α4 < α3 < α2 < α1; either α1 < a
or b < α1 ≤ l; α1 + α2 < d; α3 ≤ h; α1 + α2 + α4 > f ; α3 + α4 > h;
max(a− (α2 + α3), α2 + α3 − b) > 0; max(a− (α2 + α4), α2 + α4 − b) > 0;
max(d − (α1 + α3 + α4), α1 + α3 + α4 − f) > 0; max(a − (α2 + α3 + α4),
α2 + α3 + α4 − b) > 0. Moreover,

(i) α3 + α4 < a,
(ii) s4 < 1− f ,
(iii) α1 + α4 > b,
(iv) α2 + α3 + α4 < d.



188 R. Baker and A. Weingartner

Proof. Everything except (i)–(iv) follows from the definition.

For (i), α3 +α4 < 2α3 ≤ 2h < b. For (ii), (α1 +α2)+(α3 +α4) < d+a <
1− d. For (iii), α1 + α4 > f − α2 > f − d/2 > a. Finally, α2 + (α3 + α4) <
d/2 + a < f , yielding (iv).

Lemma 18. Let α5 ∈ Ĥ5. Then g ≤ α5 < α4 < α3 < α2 < α1; α3 ≤ h;
s2 < d; either α1 + α2 + α4 < d or α3 + α4 ≤ h; s4 > b; α1 < a. Moreover,
one of the following alternatives holds:

(i) s4 < d, s2 < a, α3 + α4 + α5 > b, s5 > f ;

(ii) s4 < d, s2 < a, α2 + α3 + α4 < a, α1 + α4 + α5 > b, s5 > f ;

(iii) s4 < d, α1 + α3 + α4 + α5 > b, s3 < a;

(iv) s4 > f , s2 < a, α1 + α2 + α3 + α5 < d;

(v) α1 +α2 +α4 +α5 > f , s3 < d, α2 +α3 +α4 +α5 < d, α2 +α3 < a,
α1 + α4 + α5 > b, α1 + α2 > b, α3 + α4 + α5 < a, s5 < 1− f ;

(vi) α1 +α3 +α4 +α5 > f , s3 < d, α2 +α3 +α4 +α5 < d, α2 +α3 < a,
α3 + α4 + α5 > b, α1 + α5 > b, s5 < 1− f ;

(vii) α2 + α3 + α4 + α5 > f , s2 < a, s5 < 1− f ;

(viii) α2+α4 < a, α1+α3 > b, α1+α2+α4 < d, s3 > f , α2+α3+α5 > b,
α1 + α3 + α4 + α5 > f , s5 < 1− f .

Proof. The first assertion we need to prove is α1 < a. This follows from
Lemma 16 if α1 +α2 +α4 < d. If α1 +α2 +α4 > f , then α3 + α4 ≤ h. This
leads to a contradiction if α1 > b: we would have α1 + α3 + α4 > f from
Lemma 16, hence α1 > f − h > l, which is absurd. So α1 < a.

To show that one of (i)–(viii) holds, we observe that one of the following
alternatives is clearly valid:

(A) s4 < d, α2 + α3 + α4 > b;

(B) s4 < d, α2 + α3 + α4 < a, α1 + α3 + α4 > b;

(C) s4 < d, α1 + α3 + α4 < a, s3 > b;

(D) s4 < d, s3 < a;

(E) α1 + α2 + α3 + α5 > f , s3 < d, α2 + α3 + α4 + α5 < d;
(F) α2 + α3 + α4 + α5 > f , s3 < d;

(G) s3 > f , α1 + α2 + α4 < d;

(H) α1 + α2 + α4 > f , α3 + α4 ≤ h.

Suppose (A) holds. Then α1 < d−b < 0.1002. We cannot have α4 < α2−
0.04, since then α2 +α3 +α4 < 0.3006−0.04 < b. Moreover, α4−α5 < 0.041
by Lemma 16(iv), so we obtain α3 +α4 +α5 > b by concatenation. Further,
s2 < a and s5 > f from Lemma 16. So (i) holds.
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Suppose (B) holds. Then s2 < a, s5 > f from Lemma 16. Now α3 +α4 <
2a/3, α3 < 2a/3− g, α3 − α5 < 2a/3− 2g < 0.045. Hence α1 + α4 + α5 > b
from Lemma 16, and (ii) holds.

Suppose (C) holds. Then s2 < a, s5 > f from Lemma 16. Hence α2 <
a/2, α2 + α5 > f − (α1 + α3 + α4) > f − a = 1/5, α5 > 1/5 − a/2 > 0.08,
α1 + α3 + α4 > 0.24, which is absurd.

Suppose (D) holds. We have 2α2 < a − g, α2 < 0.09, α2 − α5 < 0.04.
Hence α1 + α3 + α4 + α5 > b from Lemma 16. So (iii) holds.

Suppose (E) holds. Since s2 < a from Lemma 16, (iv) holds.

Suppose (F) holds. Then α2+α3 < a, α2 < a−g, s5 < 1−f by Lemma 16.
Now α1 + α3 > α2 + α5, so α1 + α3 > f/2, α1 + α3 + α5 > f/2 + g > a and
α1 +α3 +α5 > b. Also α3 +α5 < d/2, α1 +α2 > f−d/2 > a, so α1 +α2 > b,
giving α1 + α2 + α4 + α5 > f from Lemma 16. So α1 + α4 + α5 > f − α2 >
f − a + g > a and α1 + α4 + α5 > b. If α3 + α4 + α5 < a, we get (v).
If α3 + α4 + α5 > b, we have α1 + (α3 + α4 + α5) > b/2 + b > d, hence
α1 + α3 + α4 + α5 > f . Also, α3 + α4 + α5 > b implies α2 < d− b < 0.1002.
Suppose α1 + α5 < a. Then, by Lemma 16, α2 − α5 > 0.0479, α5 < 0.0523,
so α3 + α4 + α5 < 0.2004 + 0.0523 < b, which is absurd. Hence α1 + α5 > b
and (vi) holds.

Suppose (G) holds. Lemma 16 yields s5 < 1− f , α2 + α3 < a. We claim
that s2 < a. For suppose s2 > b. Now α4 +α5 > f −a = 1/5, α3 +α4 +α5 >
3/10, and α1 + α2 < 0.278, α2 < 0.139. Also α3 < d − b < 0.1002, hence
α5 > 0.3 − 0.2004 = 0.0996, and α2 − α5 < 0.04. We thus get α1 + α5 > b
from α1 + α2 > b. Now s5 > b+ α2 + α3 + α4 > b+ 3f/4 > 1− f , which is
absurd. So s2 < a and (vii) holds.

Suppose (H) holds. Then α2 + α4 < a from Lemma 16. Next, s5 =
(α1 + α3 + α5) + (α2 + α4) < d+ a < 1− d, so s5 < 1− f . Now α2 < d/2,
α1 + α3 > f − d/2 > a, so α1 + α3 > b. Hence α1 + α3 + α4 + α5 > f from
Lemma 16. Finally, α2 + α3 > f − a = 1/5, therefore α2 + α3 + α5 > a and
α2 + α3 + α5 > b. So (viii) holds.

Suppose (I) holds. Now α2 < d/2, so α1 + α4 > f − d/2 > a, and
α1 + α4 > b. We obtain α1 + α4 + α3 + α5 > f from Lemma 16. Hence
α3 + α4 + α5 > f − α1 > 1/5, contrary to the bound α3 + α4 + α5 ≤ 3h/2.
This completes the proof of Lemma 18.

We now turn to the decomposition

T (x) = K(1)(x)−D(1)(x).

We use (4.19)–(4.24) with H2, H4 empty, and so D2 = D4 = 0. We write

our choice of Ei as Ei and H1, . . . ,H4, Ĥ5 rather than H1, . . . ,H4, Ĥ5.
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Let

E1 = [g, 19/90];

E2 = E ′1 ∩B2 (so that H2 = ∅);
H3 = {α3 ∈ E ′2 ∩B3 : s3 > f}, so that

E3 = {α3 ∈ E ′2 ∩B3 : s3 < d};
E4 = E ′3 ∩B4 (so that H4 = ∅).

Thus

Ĥ5 = {α5 ∈ E ′4 ∩B5 : s4 > b}.
Note that in E2, s2 < f , hence s2 < d; so any αi in Ei obviously splits for
i = 1, 2, 3. Any α4 in E4 splits using {1, 2, 3}, {4}, since α4 < α3 < d/3 < h.

It is easy to write down the conditions satisfied by points of H3, so we
simply note the following lemma for Ĥ5.

Lemma 19. Let α5 ∈ Ĥ5. Then

g ≤ α5 < α4 < α3 < α2 < α1 ≤ 19/90, s3 < d.

Moreover, one of the alternatives (i)–(vii) of Lemma 18 holds.

Proof. The first two assertions follow from the definition. Since Ĥ5 ⊆ H5,
one of (i)–(viii) of Lemma 18 holds, and (viii) is ruled out since s3 < d.

In Section 5 we shall need bounds for several integrals. Let f1(α1) =
α−21 , f2(α2) = α−11 α−22 , and generally fj(αj) = (α1 · · ·αj−1)−1α−2j (j ≥ 2).
Let ω(. . .) denote Buchstab’s function (see e.g. [8] for more information).
Now let

Jj =
�

Hj

fj(αj)ω

(
1− sj
αj

)
dα1 · · · dαj ,

J5 =
�

Ĥ5

f5(α5)ω

(
1− s5
α5

)
dα1 · · · dα5.

Define J†1 , J
†
3 , J

†
5 in the same way with H1,H3, Ĥ5 in place of H1, H3, Ĥ5.

Computer calculations yield

J†1 < 0.992255, J1 < 0.704010,

J2 < 0.126406,

J†3 < 0.094570, J3 < 0.050281,

J4 < 0.003991,

J†5 < 0.006422, J5 < 0.007383.

The integrals in j dimensions are bounded for j ≤ 3 using a precise evalu-
ation. For each of the other integrals, we allow a possibly larger region of
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integration defined via Lemma 17, 18 or 19, and multiply its measure by an
upper bound for the integrand to give the upper bound quoted.

5. Proof of Theorem 1. We need just two more lemmas. Write dαj

for dα1 · · · dαj .

Lemma 20. Let E be a polytope, E ⊆ Pj. Let

f(E;X) =
∑
αj∈E

∑
j+1≤k≤19

∑
pj≤pj+1≤···≤pk−1

πk−1pk−1≤2X

1

πk−1 log(X/πk−1)
.

As X →∞,

f(E;X) = (1 + o(1))
1

L

�

E

fj(αj)ω

(
1− sj
αj

)
dαj .

Proof. Fix p1, . . . , pj with αj ∈ E. Let N (αj) be the number of integers
n with πjn ∼ X, (n, P (pj)) = 1. The solution of

(X/πj)
1/u = pj

is u = (1− sj)/αj . Using a well-known asymptotic formula (see e.g. [8]), we
deduce that

N (αj) = (1 + o(1))
uω(u)

log(X/πj)

X

πj
= (1 + o(1))

X

Lπjαj
ω

(
1− sj
αj

)
as X →∞, uniformly for αj ∈ E. Hence∑

αj∈E
N (αj) = (1 + o(1))

X

L
∑
αj∈E

1

πjαj
ω

(
1− sj
αj

)
.

Using the prime number theorem to approximate the sum by an integral in
standard fashion,

(5.1)
∑
αj∈E

N (αj) = (1 + o(1))
X

L

�

E

fj(αj)ω

(
1− sj
αj

)
dαj .

On the other hand,∑
αj∈E

N (αj) =
∑
αj∈E

∑
j+1≤k≤19

∑
pj≤pj+1≤···≤pk−1

πk−1pk−1≤2X

∑
X<pk≤2X
pk≥pk−1

1.

The error incurred in removing the condition pk ≥ pk−1 from the last
summation is 0 unless

pk−1 ∼ Y := X/πk−1,
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in which case the error is O(Y L−1). Thus the prime number theorem yields

(5.2)
∑
αj∈E

N (αj)

= (1 + o(1))
∑
αj∈E

∑
j+1≤k≤19

∑
pj≤pj+1≤···≤pk−1

πk−1pk−1≤2X

X

πk−1 log(X/πk−1)

+O

(
X

L
∑

Xg≤p1≤···≤pk−2
πk−2≤X

1

πk−2

∑
pk−1∼Y

1

pk−1

)
.

The error term on the right side of (5.2) is readily seen to be O(XL−2),
while the main term is clearly � XL−1 for nonempty E. Hence the lemma
follows on comparing (5.1), (5.2).

Lemma 21. Let E be a polytope, E ⊆ Pj. Let k be fixed, j+ 1 ≤ k ≤ 19.
Then for 0 < x ≤ τ ,

(5.3)
∑
αj∈E

∑
pj≤pj+1≤···≤pk

F (πjpj+1 · · · pk)

=
∑
αj∈E

∑
pj≤pj+1≤···≤pk

1

πk−1

2X�

max(πk−1pk−1,X)

e(tcx)

log(t/πk−1)
dt

+O(X exp(−C1L1/4)).

Proof. By a slight variant of [3, Lemma 24], we have, for 1<A<A′≤ 2A,
0 < y ≤ A−c+1−2η,

(5.4)
∑

A≤pk<A′
e(pcky) =

A′�

A

e(ucy)

log u
du+O(A exp(−3(logA)1/4)).

Fix αj ∈ E and pj+1, . . . , pk−1 with pj ≤ pj+1 ≤ · · · ≤ pk−1, πk−1pk−1 ≤ 2X
(other tuples give an empty sum on both sides of (5.3)). Set

A = max(pk−1, X/πk−1), A′ = 2X/πk−1, y = πck−1x

so that logA ≥ gL. We verify that

y ≤ A−c+1X−2η.

Indeed, we have

yAc−1X2η ≤ πck−1X−c+10η(X/πk−1)
c−1 = πk−1X

−1+10η ≤ 1,
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since πk−1X
g ≤ 2X. Now (5.4) yields∑

pk≥pk−1
X<πk−1pk≤2X

e((p1 · · · pk)cx)

=

2X/πk−1�

max(pk−1,X/πk−1)

e(ucπck−1x)

log u
du+O

(
X

πk−1
exp(−C1L1/4)

)
with C1 = 3g1/4. A change of variables gives the integral in the form

1

πk−1

2X�

max(πk−1pk−1,X)

e(tcx)

log(t/πk−1)
dt,

and the lemma follows on summing over p1, . . . , pk−1.

Proof of Theorem 1. Let N be the number of solutions of (1.1) with
pi ∼ X (1 ≤ i ≤ 3). Using an initial step that goes back to Davenport and
Heilbronn [5], we observe that

N ≥
∑
pi∼X

(1≤i≤3)

ϕ(pc1 + pc2 + pc3 −R) =

∞�

−∞
T 3 dµ(5.5)

=

∞�

−∞
T 2(K(2) −D(2) +D(3)) dµ

=

∞�

−∞
T 2(K(2) +D(3)) dµ−

∞�

−∞
T (K(1) −D(1))D(2) dµ

≥
∞�

−∞
(T 2K(2) − TK(1)D(2)) dµ.

(Compare the argument below [3, (5.4)] for the last step.) In view of (4.17),
then,

N ≥
τ�

−τ
(T 2K(2) − TK(1)D(2)) dµ+O(X3−c−2η)(5.6)

=

τ�

−τ
(T 3 − T 2D(3) − TD(1)D(2)) dµ+O(X3−c−2η).

We now use approximations to T,D(i) that arise from (5.4) with (A,A′)
= (X, 2X) and from (5.3). In [−τ, τ ],

D(l)(x) = Il(x) +O(X exp(−C1L1/4)) (1 ≤ l ≤ 3).
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Here

I1(x) = Q1(x) +Q3(x) +Q5(x),

I2(x) = Q2(x) +Q4(x),

I3(x) = Q6(x) +Q7(x) +Q8(x),

with

Qj(x) =
∑

αj∈Hj

∑
j+1≤k≤19

∑
pj≤pj+1≤···≤pk−1

πk−1pk−1≤2X

1

πk−1

2X�

max(πk−1pk−1,X)

e(tcx)

log(t/πk−1)
dt

for 1 ≤ j ≤ 4; Q5, Q6, Q7, Q8 are defined similarly with Hj replaced respec-

tively by Ĥ5,H1,H3, Ĥ5.

We make the simple observation that for any functions f1, f2 chosen from
{D1, D2, D3, I1, I2, I3} and for f = D(l), f0 = Il,

τ�

−τ
ff1f2 dµ =

τ�

−τ
f0f1f2 dµ+O(X3−c−cη exp(−C1L1/4)).

A similar approximation is discussed below [3, (5.13)]. Replacing T,D(1),
D(2), D(3) by I, I1, I2, I3 one step at a time, we deduce from (5.6) that

(5.7) N ≥
τ�

−τ
(I3 − I2I2 − II1I3) dµ+O(X3−c−cη exp(−C1L1/4)).

To extend this integral to infinity, we use the same bound as in [3],
namely

I(x), Il(x)� |x|−1L−1X1−c (x 6= 0, 1 ≤ l ≤ 3).

Since
∞�

τ

x−3X3(1−c) dx < τ−2X3(1−c) = X3−c−16η,

we infer from (5.7) that

N ≥
∞�

−∞
(I3 − I2I2 − II1I3) dµ+O(X3−c−cη exp(−C1L1/4))

=

∞�

−∞
{I3 − I2(Q2 +Q4)− I(Q1 +Q3 +Q5)(Q6 +Q7 +Q8)}dµ

+O(X3−c−cη exp(−C1L1/4)).

We now rewrite the various integrals
	∞
−∞ I

2Qj dµ,
	∞
−∞ IQjQk dµ in

terms of
	∞
−∞I

3
0 dµ. Consider, for example, the contribution to

	∞
−∞IQ2Q7 dµ

from α2 ∈ H2, p2 ≤ p3 ≤ · · · ≤ pk−1, πkpk−1 ≤ 2X and α′3 ∈ H3,



A ternary Diophantine inequality over primes 195

p′3 ≤ p′4 ≤ · · · ≤ p′l−1, π′l−1p′l−1 ≤ 2X (in an obvious notation). We write

s(t) = tc1 + tc2 + tc3 −R, dt = dt1dt2dt3.

This contribution may be brought, using Fubini’s theorem, to the form

∑
p1,...,pk−1

∑
p′1,...,p

′
l−1

1

πkπ
′
l−1

2X�

X3

2X�

X2

2X�

X

∞�

−∞

e(xs(t))Φ(x) dx dt

(log t1)(log(t2/πk−1))(log(t3/π′l−1))

=
∑

p1,...,pk−1

∑
p′1,...,p

′
l−1

1

πkπ
′
l−1

2X�

X3

2X�

X2

2X�

X

ϕ(s(t)) dt

(log t1)(log(t2/πk−1))(log(t3/π′l−1))

≤ H
∑

p1,...,pk−1

∑
p′1,...,p

′
l−1

1

πkπ
′
l−1

1

(logX)(log(X/πk−1))(log(X/π′l−1))
,

where

H =

∞�

−∞
I0(x)3 dµ.

For the last step we replace the positive integrand by a larger one using
log tj ≥ logX, and then reverse the order of integration. In this way we see
that

N ≥
(

1

(log 2X)3
− W1

L2
− W2W3

L

)
H +O(X3−c−cη exp(−C1L1/4)),

where

W1 = f(H2;X) + f(H4;X),

W2 = f(H1;X) + f(H3;X) + f(H5;X),

W2 = f(H1;X) + f(H3;X) + f(H5;X).

Now we use Lemma 20 to obtain, as X →∞,

N ≥ (1 + o(1))
H

L3
(1− (J2 + J4)− (J1 + J3 + J5)(J

†
1 + J†3 + J†5))

+O(X3−c−cη exp(−C1L1/4)).

For large X, the upper bounds given in Section 4 for Ji, J
†
i yield

N ≥ 0.0369H

L3
.

Since

H � X3−c−cη

(Tolev [16]), this completes the proof of Theorem 1.
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