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Functional equation for partial zeta functions
twisted by additive characters

by

Hugo Chapdelaine (Québec)

1. Introduction. Let K be a number field of degree n over Q and let
{σ1, . . . , σr1} be a complete set of real embeddings of K where r1 + 2r2 = n.
Let ω be a sign character of K, i.e., a product over elements of a subset of
the characters

sign ◦ σi : K× → R× → {±1}.

Let V be a lattice of maximal rank of K and let

OV = {α ∈ K : αV ⊆ V }.

Note that OV is an order of K and V is an invertible OV -ideal with inverse
given explicitely by V −1 = {x ∈ K : xV ⊂ OV }. Let

V ∗ = {x ∈ K : TrK/Q(xv) ∈ Z for all v ∈ V }

be the dual lattice of V . Note that V ∗ is an invertible OV -module and that
V ∗∗ = V . For elements a, b ∈ K we define

(1.1) Γa,b,V = {ε ∈ OV : σi(ε) > 0 ∀i, (ε− 1)a ∈ V,
(ε− 1)b ∈ V ∗, (ε− 1)ab ∈ d−1

K },

where d−1
K = (OK)∗ = {x ∈ K : TrK/Q(xy) ∈ Z for all y ∈ OK} is the

inverse of the different ideal of K. One can verify that Γa,b,V = Γ−b,a,V ∗ is a
subgroup of finite index in O×K .

For the set of data (a, b, ω, V ) we define a partial zeta function twisted
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by an additive character as

ΨV (a, b, ω, s) := [OK : V ]s
∑
v∈R
a+v 6=0

ω(a+ v)
e2πiTrK/Q(b(a+v))

|NK/Q(a+ v)|s
,(1.2)

where [OK : V ] is a positive rational number which plays the role of an index
(see Definition 3.3), and R = {vi ∈ V }i∈I is a complete set of representatives
of {a + V }/Γa,b,V in the sense that every element 0 6= (a + v) ∈ a + V can
be written uniquely as ε(a + vi) for some vi ∈ R and ε ∈ Γa,b,V . It is easy
to see that (1.2) does not depend on the set of representatives R and that
it converges absolutely for any complex number s such that Re(s) > 1.

Let p = {pi}r1i=1 be the signature of ω, i.e., ω =
∏r1
i=1(sign ◦ σi)pi where

pi ∈ {0, 1}. Then we define

F pV (s/2) := |dK |s/2π−ns/2
r1∏
i=1

Γ

(
s+ pi

2

)
(21−sΓ (s))r2 ,

where NK/Q(dK) = dK is the discriminant of K and Γ (x) stands for the
usual gamma function evaluated at x.

We can now state the main theorem which is proved in this paper.

Theorem 1.1. Let

ZV (a, b, ω, s) = F pV (s/2)ΨV (a, b, ω, s)

be the completed zeta function of ΨV (a, b, ωp, s). Then ZV (a, b, ω, s) admits
an analytic continuation to C \ {0, 1} and has at most a pole of order one
at s ∈ {0, 1}. A pole of order one at s = 0 occurs exactly when pi = 0 for
all i and a ∈ V . Similarly , a pole of order one at s = 1 occurs exactly when
pi = 0 for all i and −b ∈ V ∗. Moreover , ZV (a, b, ω, s) satisfies the functional
equation

(−i)Tr(p)e−2πiTrK/Q(ab)ZV (a, b, ω, s) = ZV ∗(−b, a, ω, 1− s).(1.3)

The ideas which are used in the proof of Theorem 1.1 are due for the
large part to Riemann and Hecke. Let

ζQ(s) =
∑
n≥1

1
ns

=
∏
p

1
1− 1/ps

be the Riemann zeta function. The idea of using the transformation formula
of the one-variable theta function θ(z) =

∑
n∈Z e

πin2z to prove the functional
equation

π−s/2Γ (s/2)ζQ(s) = π−(1−s)/2Γ ((1− s)/2)ζQ(1− s)(1.4)

is due to Riemann [Rie59]. Its generalisation to an arbitrary number field
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K of degree n over Q, namely

AsΓ (s)r2Γ (s/2)r1ζK(s) = A1−sΓ (1− s)r2Γ ((1− s)/2)r1ζK(1− s),(1.5)

where

ζK(s) =
∑

aEOK

1
NK/Q(a)s

=
∏
p

1

1− 1
NK/Q(p)s

and A = 2−r2π−n/2
√
|dK |, is due to Hecke [Hec17].

The functional equation (1.3) can be viewed, in some sense, as a natural
generalisation of (1.4) and (1.5). However, there is one important aspect in
which the zeta function ΨV (a, b, ω, s) differs from ζK(s), namely that in gen-
eral, ΨV (a, b, ω, s) does not have any Euler product. The latter observation
might be a reason why Hecke never published the functional equation (1.3).

It is clear that Hecke had at his disposal all the necessary tools to prove
Theorem 1.1. In fact, in [Hec20], he proves a functional equation for the
most general class of zeta functions which admit a degree one Euler product,
namely for

ζK(λ, s) =
∑

aEOK

λ(a)
NK/Q(a)s

=
∏
p

1

1− λ(p)
NK/Q(p)s

(1.6)

where λ is a so-called Größencharakter. It would be fair to say that the
proof of the functional equation of ζK(λ, s) requires more ideas than the
proof of Theorem 1.1. For example, Hecke introduced the notion of “idealer
Zahlen” (1) (see p. 17 (255) of [Hec20]) in order to work with complex
numbers rather than ideals. These “idealer Zahlen”allowed him in particular
to define certain Gauss sums (depending on λ) which play a crucial role in
the proof of the functional equation of ζK(λ, s).

The zeta function ΨV (a, b, ωp, s) arose naturally in some of the previous
work of the author (see for example [Cha07a]). Let us explain in more detail
the context in which it arose. Let K be a totally real number field and let
V = a/fdK where a, f are integral ideals which are coprime. Assume that the
sign character ωp is chosen so that ωp = 1 or ωp = sign◦NK/Q. In [Cha07b],
it is explained how the special values at negative integers of

ΨV ∗(1, 0, ωp, s) = NK/Q(f)s
( ∑
{06=µ∈1+fa−1}/Γa

ωp(µ)
|NK/Q(µa)|s

)
(1.7)

(see equation (5.1) for more details) can be related to special values at

(1) The English translation of idealer Zahlen is ideal numbers. These ideal numbers,
which have the drawback of not being defined in a canonical way, can be viewed in some
sense as a precursor to the notion of idèles introduced by Chevalley in the mid-1930s.
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negative integers of classical partial zeta functions, namely

ζ(a, f∞, s) := NK/Q(a)−s
∑

Γa\{λ∈a−1 :λ≡1 (mod fa−1), λ�0}

1
|NK/Q(λ)|s

(1.8)

=
∑

b⊆OK
b∼fa

1
NK/Q(b)s

,

where b ∼f a means that b and a lie in the same narrow ray ideal class
modulo f, and Γa = OK(∞)×∩ (1+ fa−1) where OK(∞)× denotes the group
of totally positive units of OK . Note that the summation in (1.8) is taken
over totally positive elements of a−1. Special values of ζ(a, f∞, s) at negative
integers turns out to be rational numbers (see [Kli62], [Sie69] and [Shi76]).
These rational numbers satisfy many remarkable congruence relations which
have been exploited by many number theorists to construct various p-adic
objects. In particular, one can construct p-adic L-functions which interpolate
these special values (see [DR80] and [CN79]). In the last section of this paper
we show essentially that unless K is a totally real number field and ωp = 1
or sign ◦NK/Q, no such p-adic L-function exists since the special values at
negative integers of (1.7) are all equal to zero.

When the author wrote the paper, he was unaware that a special case
of the functional equation (1.3) had already appeared in a paper of Siegel
(see equation (10) of [Sie70]). In the paragraph below that equation, Siegel
writes:

Es ist sonderbar, daß (10) bisher in der Literatur nicht erwähnt worden ist.
Auch wenn man die Funktionalgleichung der L-Reihen im Auge hat, erscheint
es übrigens durchsichtiger, zunächst die einfachere Formel (10) zu beweisen und
erst nachher die notwendigen algebraischen arithmetischen Sätze über Charaktere
herzuleiten.

Thirty eight years later, the author of this paper shares the exact same
view.

Finally, let us mention some connection between the Lerch zeta function
and the zeta function ΨV (a, b, ω, s) in the case where K = Q. For real
numbers 0 < u, v ≤ 1 consider the Lerch zeta function

ϕ(u, v, s) =
∞∑
n=0

e2πinv

|n+ u|s
, Re(s) > 1.

Let ω = 1, V = Z and a, b ∈ Q ∩ (0, 1). Then a direct computation shows
that

ΨV (a, b, ω, s) = e2πiab
∑
n∈Z

e2πibn

|n+ a|s
= e2πiab(ϕ(a, b, s) + ϕ(1− a, b, s)).
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The contribution of this paper consists essentially in filling a gap in the
literature by providing a detailed proof of the functional equation (1.3). In
writting the paper, we have decided to follow a more modern account of
the work of Riemann and Hecke on zeta functions: namely we borrow most
of our notation from Chapter 7 of Neukirch’s book [Neu99] on algebraic
number theory. The interested reader may consult as well that chapter in
order to find a proof of the functional equation for ζK(λ, s).

2. Notation. Let K be a number field of degree n over Q and let
X = Hom(K,C) be a complete set of embeddings of K into C. The set X
can be written in the following way:

X = {σ1, . . . , σr1 , %1, %1, . . . , %r2 , %r2},(2.1)

where r1+2r2 = n, the σi’s are the real embeddings, the %i’s are the complex
embeddings such that c ◦ %i = %i where c : C → C corresponds to complex
conjugation. Note that up to permutation there is still a choice in our way of
writing the set X which corresponds to a choice of a privileged representative
%i for every pair of complex embeddings of K. Usually, for an element a ∈ C
we will denote its complex conjugate c(a) by a. Note that X is naturally a
left Gal(C/R)-set. For τ ∈ X we will also denote c ◦ τ by τ .

We consider the n-dimensional C-algbera attached to X,

CX :=
∏
τ∈X

C,

of all tuples z = (zτ )τ∈X , zτ ∈ C, with componentwise addition and multi-
plication. Since the subset X is fixed from the beginning we will denote CX

simply by C.
For the remainder of the paper we will use the set of notations attached

to C which is introduced on pages 444 and 445 of [Neu99]. The C-algebra
C is endowed with three involutions. For every element z = (zτ )τ∈X ∈ C
we define the elements z∗, ∗z, z ∈ C as

(z∗)τ = zτ , (∗z)τ = (zτ ), (z)τ = (∗z∗)τ = (zτ ).

The C-algebra C is equipped with certain distinguished subsets, namely

(1) R = {z ∈ C : z = z},
(2) R± = {x ∈ R : x = x∗},
(3) R×+ = {x ∈ R± : x > 0},
(4) H = R± + iR×+.

If δ ∈ R, the notation x > δ means that xτ > δ for all τ ∈ X. By definition
we have the following inclusions:

H ⊆ C ⊇ R ⊇ R± ⊇ R×+.

Note that the subset R is naturally an R-subalgebra of the C-algebra C.
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For every infinite place ν of K there exists a unique field inclusion
ιν : R → Kν . Because of the uniqueness of ιν we can view the set R
as being naturally included in Kν . We thus have a natural isomorphism
K ⊗Q R →

∏
ν|∞Kν given by α ⊗ β 7→ (αβ)ν|∞. Our choice of a complete

set of pairwise non-conjugate complex embeddings {%i}r2i=1 gives rise to a
natural isomorphism

∏
ν|∞Kν → R given by (xν)ν|∞ 7→ (yτ )τ∈X where

yτ = xν if τ is the real embedding corresponding to the real place ν, and
yτ = xν (resp. yτ = xν) if τ = %i (resp. τ = %i) is a complex embed-
ding corresponding to the complex place ν. In this way we obtain a natural
isomorphism of R-algebras

ι : K ⊗Q R ∼→ R.

From now on we will think of the number field K as being naturally included
in the R-algebra K ⊗Q R via the natural map α 7→ α⊗ 1.

The C-algebra C and certain of its subsets are equipped with various
maps. For the additive group C (resp. multiplicative group C×) we have
the homomorphisms

Tr : C→ C, Tr(z) =
∑
τ

zτ , N : C× → C×, N(z) =
∏
τ

zτ .

We have on C an hermitian scalar product

〈x, y〉 =
∑
τ

xτyτ = Tr(x(∗y)) and ‖z‖ =
√
〈z, z〉.

It is invariant under conjugation, i.e., 〈x, y〉 = 〈x, y〉, and restricting it yields
a euclidian metric on the R-vector space R. If z ∈ C, then ∗z is the adjoint
element, i.e., 〈xz, y〉 = 〈x, ∗zy〉. For two tuples z = (zτ )τ , (pτ )τ ∈ C the
power

zp = (zpττ ) ∈ C where zpττ = epτ log zτ ,

is well defined if we agree to take the principal branch of logarithm and
assume that the zτ ’s move only in the plane cut along the negative real axis.
Finally we define

‖ ‖ : R× → R×+, x = (xτ )τ 7→ ‖x‖ = (|xτ |)τ ,
log : R×+

∼→ R±, x = (xτ )τ 7→ log x = (log xτ )τ .

3. Multivariable θ-function and Γ -function

Definition 3.1. We say that a tuple p = (pτ )τ∈X of non-negative inte-
gers is admissible (resp. strictly admissible) if pτ ∈ {0, 1} when τ = τ and
pτpτ = 0 (resp. pτ = pτ = 0) if τ 6= τ .
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Definition 3.2. Let V ⊆ R be a lattice of maximal rank, let a, b ∈ R
and let p ∈

∏
τ∈X Z be admissible. We define the theta series

θpV (a, b, z) =
∑
v∈V

N((a+ v)p)eπi〈(a+v)z,(a+v)〉e2πi〈b,a+v〉,

which converges absolutely for every z ∈ H.

Remark 3.1. Note that our definition of θpV (a, b, z) is slightly different
from the one appearing on the bottom of page 450 of [Neu99].

Definition 3.3. Let V be a lattice of maximal rank inK. Let {e1, . . . , en}
be a Z-basis of OK and let {e′1, . . . , e′n} be a Z-basis of V . Let M ∈Mn(Q) be
the matrix which sends the ordered basis (ei)ni=1 to the ordered basis (e′i)

n
i=1.

Then we define the index [OK : V ] to be the rational number |det(M)|.
It is easy to see that [OK : V ] is a well defined positive rational number

independent of the choice of the bases. It is also convenient to define the
positive rational number

dV = [OK : V ]2|dK |,
where dK is the discriminant of K. The quantity

√
dV can be interpreted as

the covolume of the lattice ι(V ) ⊂ R with respect to the Haar measure dx on
(R, 〈, 〉) which ascribes the volume 1 to the cube spanned by an orthonormal
basis.

The key ingredient to prove the functional equation appearing in Theo-
rem 1.1 is the following transformation formula for the theta function.

Theorem 3.1 (theta transformation formula). Let a, b ∈ R and let p ∈∏
τ Z be admissible. Then

θpV (a, b,−1/z) = (iTr(p)e−2πi〈a,b〉
√
dV )−1N((z/i)p+

1
2
·1)θpV ∗(−b, a, z)

for all z ∈ H,

where 1 is the unit element in R and V ∗ is the dual lattice of V , i.e.,

V ∗ = {v′ ∈ R : 〈v′, v〉 ∈ Z for all v ∈ V }.
Proof. See equation (19) on p. 26 (264) of [Hec20] or (3.6) on page 454

of [Neu99].

We have

R×+ =
∏
ν|∞

R×+,ν and R×± =
∏
ν|∞

R×±,ν(3.1)

where R×+,ν = R×+ (resp. R×±,ν = R×±) if ν is real and R×+,ν = {(y, y) :
y ∈ R×+} (resp. R×±,ν = {(y, y) : y ∈ R×±}) if ν is complex. We define
isomorphisms R×+,ν → R×+ given by y 7→ y if ν is real and (y, y) 7→ y2 if
ν is complex. We thus obtain an isomorphism R×+ →

∏
ν|∞R×+. We denote
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by dy
y the Haar measure on R×+ which corresponds to the pull back of the

product measure
∏
ν
dt
t where dt

t is the usual Haar measure on R×+. The
Haar measure thus defined is called the canonical measure on R×+. Consider
the isomorphism

R×+
log−→ R±

j→
∏
ν|∞

R

where j : R±,ν → R is given by xν 7→ xν (resp. (xν , xν) 7→ 2xν) if ν is real
(resp. if ν is complex). Then the canonical Haar measure dy

y pushes forward
to the Lebesgue measure on

∏
ν|∞R.

Definition 3.4. For s = (sτ )τ ∈ C such that Re(sτ ) > 0 and p =
(pτ )τ an admissible tuple, we define the gamma function associated to the
Gal(C/R)-set X as

Γ pX(s) =
�

R×+

N(e−yys+
1
2
p)
dy

y
,

where y = (yτ )τ ∈ R×+, e−y = (e−yτ )τ and ys+
1
2
p = (e(sτ+

1
2
pτ ) log yτ )τ .

Using (3.1) we can write Γ pX(s) as

Γ pX(s) =
∏
ν|∞

Γ pνν (sν)

where sν = sσi (resp. pν = pσi) if ν is the real place corresponding to σi
and sν = (s%i , s%i) (resp. pν = (p%i , p%i)) if ν is the complex place corre-
sponding to %i. The factors are given explicitly by

Γ pνν (sν) =

{
Γ
(
sν + 1

2pν
)

if ν is real,
21−Tr(sν+

1
2
pν)Γ

(
Tr(sν + 1

2pν)
)

if ν is complex,

where Γ (x) is the usual one-variable gamma function.

4. Proof of the functional equation. Consider the multivariable
gamma function

Γ pX(s) =
�

R×+

N(e−yys1+ 1
2
p)
dy

y
,(4.1)

where s ∈ C, Re(s) > 0, 1 is the unit of C and p = (pτ )τ is an admissible
tuple. Let V be a lattice of maximal rank in K and let a, b ∈ R. In the
integral of (4.1) we substitute

y 7→ π|a+ v|2y/d1/n
V
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where | | denotes the map R× → R×+, (xτ )τ 7→ (|xτ |)τ . We then obtain

(4.2)
�

R×+

e−π〈(a+v)y/d
1/n
V ,(a+v)〉N(ys1+ 1

2
p)
dy

y

= π−Tr( 1
2
p)(|dV |1/n)Tr( 1

2
p)|dK |sπ−nsΓ pX(s)

[OK : V ]2s

|N((a+ v)p)| |N(a+ v)|2s

for Re(s) > 1.
Remember that OV = {α ∈ K : αV ⊆ V }. Denote by dK the discrimi-

nant ideal of K, i.e., d−1
K = {x ∈ K : TrK/Q(xy) ∈ Z for all y ∈ OK}. From

now on we identify V with ι(V ) ⊆ R. We define

(4.3) Γa,b,V = {ε ∈ OV : σi(ε) > 0 ∀i, (ε− 1)a ∈ ι(V ),

(ε− 1)b ∈ ι(V ∗), (ε− 1)ab ∈ ι(d−1
K )}.

One can verify that the subgroup Γa,b,V has finite index in O×K . Let ε ∈ Γa,b,V
and let v ∈ V be such that a+v 6= 0. Since ε ∈ Γa,b,V we have ε(a+v) = a+v′

for (a unique) v′ ∈ V . Assume furthermore that the tuple p = (pτ )τ is strictly
admissible. Then a direct computation shows that

N((a+ v)p)
|N((a+ v)p)|

e2πi〈b,a+v〉

|N(a+ v)|2s
=

N((a+ v′)p)
|N((a+ v′)p)|

e2πi〈b,a+v
′〉

|N(a+ v′)|2s
.(4.4)

Note that x 7→ N(xp)/|N(xp)| is nothing else than a sign character of K,
i.e., a group homomorphism ωp : (K ⊗Q R)× → {±1}.

Recall that R = {vi ∈ V }i∈I is a complete set of representatives of
{a + V }/Γa,b,V in the sense that every element 0 6= a + v ∈ a + V can be
written uniquely as ε(a+ vi) for some vi ∈ R and ε ∈ Γa,b,V . Let ωp be the
sign character associated to the strictly admissible tuple p = (pτ )τ . Using
(4.2) and (4.4) we deduce that

(4.5)
1
C

�

R×+

(θ̃pV (a, b, iy/d1/n
V )− cpV (a, b))N(ys+

1
2
p)
dy

y

= |dK |sπ−ns[OK : V ]2sΓ pX(s)
∑
v∈R
a+v 6=0

ωp(a+ v)
e2πi〈b,a+v〉

|N(a+ v)|2s

= |dK |sπ−nsΓ pX(s)ΨV (a, b, ωp, 2s),

where

θ̃pV (a, b, z/d1/n
V ) =

∑
v∈R
a+v 6=0

N((a+ v)p)eπi〈(a+v)z/d
1/n
V ,(a+v)〉e2πi〈b,a+v〉
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for z ∈ H, and

cpV (a, b) = lim
z→i∞

θ̃pV (a, b, z/d1/n
V ) and C = π−Tr( 1

2
p)(|dV |1/n)Tr( 1

2
p).

Note that cpV (a, b) = 0 unless pτ = 0 for all τ ∈ X and a ∈ V . In the latter
case we have cpV (a, b) = 1.

Definition 4.1. We define the completed zeta function ZV (a, b, ωp, 2s)
to be

ZV (a, b, ωp, 2s) := F pV (s)Ψ(a, b, ωp, 2s),

where F pV (s) = |dK |sπ−nsΓ pX(s).

The image of Γa,b,V under the mapping | | : R× → R×+ is contained in
the norm-one hypersurface

S = {x ∈ R×+ : N(x) = 1}.

We can write every y ∈ R×+ in the form

y = xt1/n, x =
y

N(y)1/n
, t = N(y).

We thus obtain a direct decomposition

R×+ = S× R×+.

We let d∗x be the unique Haar measure on the multiplicative group S such
that the canonical Haar measure dy

y on R×+ becomes the product measure

dy

y
= d∗x× dt

t
.

Proposition 4.1. The completed zeta function ZV (a, b, ωp, 2s) is the
Mellin transform

ZV (a, b, ωp, 2s) = L(f, s) =
∞�

0

(f(t)− f(∞))ts
dt

t
, Re(s) > 1,

of the function

f(t) =
1
C

�

F

θpV (a, b, ωp, ixt1/n/d
1/n
V )N((ixt1/n/d1/n

V )
1
2
p) d∗x(4.6)

where F is a fundamental domain for the action of ι(Γa,b,V ) ⊆ S on S,

C = π−Tr( 1
2
p)(|dV |1/n)Tr( 1

2
p) and f(∞) =

cpV (a, b)
C

vol(F).

Proof. This is the same argument as the proof of Proposition (5.5) of
[Neu99].
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Lemma 4.1. The fundamental domain F of S has the following volume
with respect to the measure d∗x:

vol(F) = [O×K : Γa,b,V ]RK ,

where RK is the regulator of K.

Proof. This is the same argument as Lemma (5.6) of [Neu99].

Proposition 4.2. The function

t 7→ f(t) =
1
C

�

F

θpV (a, b, ωp, ixt1/n/d
1/n
V )N((ixt1/n/d1/n

V )
1
2
p) d∗x

for t ∈ R+ satisfies the functional equation

f(1/t) = (iTr(p)e−2πi〈a,b〉)−1
√
t g(t),(4.7)

where

g(t) =
1
C

�

F′

θpV ∗(−b, a, ωp, ixt
1/n/d

1/n
V ∗ )N((ixt1/n/d1/n

V )
1
2
p) d∗x,

and F′ is a fundamental domain for the action of ι(Γ−b,a,V ∗) on S and
Γ = Γa,b,V ∩ Γ−b,a,V ∗. Moreover , if we let

A0 =
cpV (a, b)
C

�

F

N((ixt1/n/d1/n
V )

1
2
p) d∗x,

which is equal to 0 unless cpV (a, b) = 1, in which case by Lemma 4.1 it is
equal to C−1 vol(F), and similarly if we let

B0 =
cpV ∗(−b, a)

C

�

F′

N((ixt1/n/d1/n
V )

1
2
p) d∗x,

then

f(t) = A0 +O(e−αt
1/n

) and g(t) = B0 +O(e−βt
1/n

)(4.8)

for t→∞ and suitable α, β > 0.

Proof. The proof of (4.8) follows from easy estimates. Let us prove (4.7).
We have

f(1/t) =
1
C

�

F

θpV (a, b, ωp, ixt−1/n/d
1/n
V )N((ixt−1/n/d

1/n
V )

1
2
p) d∗x

=
1
C

�

F

θpV (a, b, ωp,−1/(ix−1(dV t)1/n))N(−1/(ix−1(dV t)1/n)
1
2
p) d∗(x−1)
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=
1
C

�

F−1

θpV (a, b, ωp,−1/(ix(dV t)1/n))N(−1/(ix(dV t)1/n)
1
2
p) d∗x

=
1

dV tC

�

(dV t)1/nF−1

θpV (a, b, ωp,−1/(iy))N((−1/iy)
1
2
p) d∗y

with y = x(dV t)1/n. The second equality uses the fact that the transforma-
tion x 7→ x−1 fixes the Haar measure d∗x. The third equality uses the fact
that 1

dV t
d∗y = d∗x where d∗y is the corresponding measure on (dV t)1/nF−1

and F−1 = {x−1 ∈ S : x ∈ F}. Now applying Theorem 3.1 to the last
equality we find that

f(1/t) =
(iTr(p)e−2πi〈a,b〉√dV )−1

dV tC

×
�

(dV t)1/nF−1

N(yp+
1
2
·1)θpV ∗(−b, a, ωp, iy)N((−1/iy)

1
2
p) d∗y

=
(iTr(p)e−2πi〈a,b〉√dV )−1

dV tC

×
�

(dV t)1/nF−1

N(y
1
2
·1)θpV ∗(−b, a, ωp, iy)N((iy)

1
2
p) d∗y

= (−i)Tr(p) (e−2πi〈a,b〉√dV dV ∗)−1

dV dV ∗C

√
t

×
�

(dV dV ∗ )
1/nF−1

θpV ∗(−b, a, ωp, iut
1/n/d

1/n
V ∗ )N((iut1/n/d1/n

V ∗ )
1
2
p) d∗u

where y = ut1/n/d
1/n
V ∗ and dy∗ = t

dV ∗
d∗u and where d∗u is the corresponding

measure on (dV /dV ∗)1/nF−1. A direct computation shows that dV dV ∗ = 1
and that F−1 is a fundamental domain for the action of ι(Γa,b,V ) on S. We
can thus rewrite the last equality as

f(1/t) =
(−i)Tr(p)e2πi〈a,b〉

C

√
t(4.9)

×
�

F−1

θpV ∗(−b, a, ωp, iut
1/n/d

1/n
V ∗ )N((iut1/n/d1/n

V ∗ )
1
2
p) d∗u.

Note that F−1 is also a fundamental domain for the action of ι(Γ−b,a,V ∗) =
ι(Γa,b,V ) on S. Therefore using (4.9) we deduce that

f(1/t) =
(iTr(p)e−2πi〈a,b〉)−1

C

√
t

×
�

F′

θpV ∗(−b, a, ωp, iut
1/n/d

1/n
V ∗ )N((iut1/n/d1/n

V ∗ )
1
2
p) d∗u.
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Assume that Re(s) > 1. From Proposition 4.1 we
get

ZV (a, b, ωp, 2s) =
∞�

0

(f(t)−A0)ts
dt

t

=
1�

0

(f(t)−A0)ts
dt

t
+
∞�

1

(f(t)−A0)ts
dt

t

=
∞�

1

f(1/t)t−s
dt

t
+
∞�

1

(f(t)−A0)ts
dt

t
− A0

s
.

Substituting (4.7) into the first integral of the last equality we get

(4.10) ZV (a, b, ωp, 2s) = (−i)Tr(p)e2πi〈a,b〉
∞�

1

(g(t)−B0)t−s+1/2 dt

t

+
∞�

1

(f(t)−A0)ts
dt

t
− A0

s
− B0

−s+ 1/2
(−i)Tr(p)e2πi〈a,b〉.

The two integrals of the last equality converge for all complex number s ∈ C.
It follows from this that ZV (a, b, ωp, 2s) admits an analytic continuation to
all s ∈ C \ {0, 1/2}. This proves the first part of Theorem 1.1. The equality
(4.10) can be rewritten as

(4.11) iTr(p)e−2πi〈a,b〉ZV (a, b, ωp, 2s)

=
∞�

1

(g(t)−B0)t−s+1/2 dt

t
+ e−2πi〈a,b〉

∞�

1

(f(t)−A0)ts
dt

t

− B0

−s+ 1/2
− A0

s
iTr(p)e−2πi〈a,b〉.

In the exact same way as we obtained (4.10) one has that

(4.12) ZV ∗(−b, a, ωp, 2s) = (−i)Tr(p)e−2πi〈a,b〉
∞�

1

(f(t)−A0)t−s+1/2 dt

t

+
∞�

1

(g(t)−B0)ts
dt

t
− A0

−s+ 1/2
(−i)Tr(p)e−2πi〈a,b〉 − B0

s
.

Replacing s by −s + 1/2 in (4.11) and comparing the result with (4.12)
reveals that

(−i)Tr(p)e−2πi〈a,b〉ZV (a, b, ωp, 2(−s+ 1/2)) = ZV ∗(−b, a, ωp, 2s).
This concludes the proof.
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5. Partial zeta functions twisted by sign characters. Let K be a
number field of degree n = r1 + 2r2 over Q with different ideal dK . Let f be
an integral ideal of OK . Choose an integral ideal b which is prime to f and
consider the lattice V = b/fdK . Note that V ∗ = fb−1. Let a = 0, b = −1 and
p = (pτ )τ be a strictly admissible tuple corresponding to a sign character
ωp : (K ⊗Q R)× → {±1}. By definition we have

Γ0,−1,V = OK(∞)× ∩ (1 + fb−1),

where OK(∞)× corresponds to the group of totally positive units of OK .
A direct computation shows that

ΨV (0,−1, ωp, s) = NK/Q

(
b

dKf

)s ∑
{0 6=µ∈b/fdK}/Γ

ωp(µ)
e2πiTrK/Q(µ)

|NK/Q(µ)|s

for Re(s) > 1, where Γ = Γ0,−1,V . When ωp is trivial, the right hand side of
the last equality is an example of what we call a zeta function twisted by an
additive character. Similarly one has

ΨV ∗(1, 0, ωp, s) = NK/Q(fb−1)s
∑

{06=µ∈1+fb−1}/Γ

ωp(µ)
|N(µ)|s

(5.1)

= NK/Q(f)s
( ∑
{0 6=µ∈1+fb−1}/Γ

ωp(µ)
|NK/Q(µb)|s

)
for Re(s) > 1. The right hand side of the last equality is an example of what
we call a partial zeta function twisted by a sign character. From Theorem
1.1 we deduce that

(−i)Tr(p) F pV (s/2)
F pV ∗((1− s)/2)

ΨV (0,−1, ωp, s) = ΨV ∗(1, 0, ωp, 1− s),(5.2)

where F pV (s/2)/F pV ∗((1− s)/2) is given explicitly by

(5.3)
F pV (s/2)

F pV ∗((1− s)/2)

=
|dK |s/2π−ns/2

|dK |(1−s)/2π−n(1−s)/2

∏r1
i=1 Γ ((s+ pi)/2)(21−sΓ (s))r2∏r1

i=1 Γ ((1− s+ pi)/2)(2sΓ (1− s))r2
.

For any s ∈ Z≥1 the function ΨV (0,−1, ωp, s) is holomorphic at s (for s = 1
this uses the fact that f - b). From (5.2) and (5.3) we deduce that for s ∈ Z≥1

the value ΨV ∗(1, 0, ωp, 1− s) is not zero only when

(1) r2 = 0, s ≡ 0 (mod 2) and pi = 0 for all i

or

(2) r2 = 0, s ≡ 1 (mod 2) and pi = 1 for all i.
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For a given totally real number field K, the relationships between spe-
cial values at negative integers of ΨV ∗(1, 0, ωp, s) and classical partial zeta
functions as in (1.8) were treated in [Cha07b].

Remark 5.1. In [Del79], Deligne introduced the notion of critical inte-
gers for an L-function L(M, s) attached to a motive M . In the absence of
a motive associated to the zeta function ΨV (a, b, ω, s), it seems to be still
useful to introduce the notion of critical integer. We will say that an integer
n is critical for the zeta function ΨV (a, b, ωp, s) if

F pV (n/2) 6=∞ and F pV ∗((1− n)/2) 6=∞ ⇔
F pV (n/2)

F pV ∗((1− n)/2)
6= 0,∞.

Let S be the set of critical integers of ΨV (a, b, ωp, s). A direct calculation,
similar to the one we did previously, shows that

S =


2Z≥1 ∪ (1 + 2Z≤−1) if r2 = 0, ωp = 1,
(1 + 2Z≥0) ∪ 2Z≤0 if r2 = 0, ωp = sign ◦NK/Q,
∅ otherwise.
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Invent. Math. 51 (1979), 29–59.

[Cha07a] H. Chapdelaine, p-units and Gauss sums, submitted.
[Cha07b] —, On some arithmetic properties of partial zeta functions weighted by sign

characters, submitted.
[Del79] P. Deligne, Valeurs de fonctions L et périodes d’intégrales, in: Proc. Sympos.
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