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1. Introduction and main results. Consider the q-exponential func-
tion

(1.1) Eq(z) =
∞∑
n=0

zn∏n
j=1(qj − 1)

,

which is an entire function in the complex z-plane for any q ∈ C, |q| > 1. It
is not difficult to adapt the classical proof of the irrationality of

e =
∞∑
n=0

1
n!

to the case of the number Eq(1) for an integer q > 1. Indeed, assuming, by
contradiction, that Eq(1) = r/s for certain positive integers r and s, we see
that the real number

(1.2) r

k∏
j=1

(qj − 1)− s
k∑

n=0

k∏
j=n+1

(qj − 1)

= s
k∏
j=1

(qj − 1) ·
(
Eq(1)−

k∑
n=0

1∏n
j=1(qj − 1)

)
= s

∞∑
n=k+1

1∏n
j=k+1(qj − 1)

is integral (according to the left-hand side representation) and positive (be-
cause of the right-hand side representation), hence it is at least 1, for any
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integer k ≥ 1. On the other hand,

s
∞∑

n=k+1

1∏n
j=k+1(qj − 1)

<
s

qk+1 − 1

∞∑
n=0

1
2n

=
2s

qk+1 − 1
→ 0 as k →∞,

leading to a contradiction.
The above proof is based on the simple observation that truncations

of the series defining Eq(1) (see the intermediate term in (1.2)) provide
rational approximations that are good enough to deduce the irrationality
of the number in question. This argument has been generalized in vari-
ous ways. For example, this truncation idea lies at the heart of Mahler’s
method [13] of proving the algebraic independence of values of the series
satisfying certain, quite restrictive, functional equations. In the same pa-
per [13], K. Mahler posed a transcendence problem for values of the series
that form a solution to more general functional equations. This problem
remains unsolved until today, with the sole exception of values of quasi-
modular functions [14]. In particular, only irrationality and linear inde-
pendence results are known so far for values of the q-exponential func-
tion.

Recently, J.-P. Bézivin [1] proposed a new approach for the study of
arithmetic properties of values of certain q-series. Among other things, he
managed to prove the non-quadraticity of values of the so-called Tschakaloff
function

(1.3) Tq(z) =
∞∑
n=0

q−n(n+1)/2zn

at non-zero rational points if q = %/σ ∈ Q satisfies γ := log |%|/log |σ|
> 14. Furthermore, he proved the irrationality of these values if γ >
28/15 = 1.866 . . . , and thus extended considerably the possible values of q
in the earlier irrationality results [18], [2]–[5], where γ > (3 +

√
5)/2 =

2.618 . . . . It is interesting that Bézivin’s approach was also an implicit gen-
eralization of the truncation idea. The method of [1] was applied to the
q-exponential function by R. Choulet [6], who could not prove the non-
quadraticity of its values, but improved the bound γ > 7/3 of the ear-
lier irrationality result of Bundschuh [2] for Eq(z) to γ > 2. He also im-
proved the above bound γ > 14 in Bézivin’s non-quadraticity result for
Tq(z) to γ > 14/3 and the bound γ > 28/15 in the irrationality result to
γ > 28/17.

The aim of this article is two-fold. First of all, we further generalize
Bézivin’s method [1] to prove non-quadraticity results for values of the q-
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series

(1.4) F (z) = Fq(z;λ) =
∞∑
n=0

zn∏n
j=1(qj − λ)

, |q| > 1,

that include the Tschakaloff function and the q-exponential function as spe-
cial cases (λ = 0 and λ = 1, respectively), and we further extend the values
of q giving irrational values for Fq(z;λ). Secondly, in our proofs we use a
more direct method than the p-adic approach used in [1] and [6]. This al-
lows us to perceive the additional arithmetic information which can hardly
be seen from the p-adic considerations.

We state our results in the following two theorems.

Theorem 1. Let q = %/σ ∈ Q with |q| > 1, and let α and λ satisfy
α 6= 0, λ /∈ qZ>0 and α /∈ −λqZ>0. If

γ =
log |%|
log |σ|

>


126π2

47π2 − 72
√

3 Im Li2(e2π
√
−1/3)

= 3.27694460 . . . if λ = 0,

27π2

5π2 − 18
√

3 Im Li2(e2π
√
−1/3)

= 9.43194241 . . . if λ 6= 0,

then α, λ, and µ = Fq(α;λ) in (1.4) cannot all belong to a quadratic exten-
sion of Q. In particular , if α and λ are rational then Fq(α;λ) is neither
rational nor quadratic.

In the case that λ 6= 0, the above result is entirely new, while its special
case λ = 0 improves Choulet’s bound γ > 14/3 considerably.

The next theorem gives improvements for the above mentioned lower
bounds of γ in the irrationality results.

Theorem 2. Under the hypotheses of Theorem 1, if

γ =
log |%|
log |σ|

>


252π2

173π2−72
√

3 Im Li2(e2π
√
−1/3)

= 1.53237645 . . . if λ= 0,

27π2

16π2−9
√

3 Im Li2(e2π
√
−1/3)

= 1.80828115 . . . if λ 6= 0,

then α, λ, and µ = Fq(α;λ) in (1.4) cannot all be rational.

Since the function Fq(z;λ) satisfies the functional equation

F (qz) = (z + λ)F (z) + (1− λ),

the irrationality of the values of Fq(z;λ) at non-zero rational points not
in −λqZ>0 follows from [17] if λ is a rational number and λ /∈ qZ>0 and a
rational number q satisfies γ > 7/3 for λ ∈ qZ≤0 and γ > 2 +

√
2 otherwise.
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Sections 2–4 prepare for the proofs of these theorems. In Section 2, we re-
view Bézivin’s construction, applied to our more general context. It involves
in particular the introduction of a sequence (vn)n∈Z, the Hankel determi-
nant of which plays a fundamental role. This determinant is a polynomial
in q and two other variables. Propositions 1 and 2 in Section 3 address the
power of q which appears in this Hankel determinant as a polynomial factor,
while an asymptotic upper bound for the Hankel determinant is found in
Proposition 3. Finally, Proposition 4 in Section 4 detects large amounts of
cyclotomic factors (in q) in the Hankel determinant. All these ingredients
are put together in the proofs of Theorems 1 and 2 in Section 5.

2. Review of Bézivin’s construction. The general idea of Bézivin’s
method [1] refers to a function

(2.1) F (z) =
∞∑
n=0

an(q)zn, a0(q) = 1,
an−1(q)
an(q)

= bn(q) = b(qn)

for n = 1, 2, . . . , where b( · ) is a polynomial (in general, a rational function)
over a number field. Let α ∈ C. One takes the coefficients vn appearing in

(2.2)
F (αz)− F (α)

z − 1
=
∞∑
n=0

vnan(q)zn

and forms the Hankel determinant

(2.3) Vn = det
0≤i,j≤n−1

(vi+j).

Then one has to provide an analytic upper bound for |Vn| and, under the
assumption that both α and µ = F (α) belong to a certain algebraic number
field K, an arithmetic lower bound, in order to find them contradictory; this
shows that the assumption on α and µ cannot be true.

Before going into the details of the construction, note that relation (2.2)
may be written in the form

∞∑
n=0

an(q)αnzn − µ = (z − 1)
∞∑
n=0

vnan(q)zn

= −v0 +
∞∑
n=1

(vn−1an−1(q)− vnan(q))zn,

yielding

(2.4) v0 = µ− 1, vn = vn−1bn(q)− αn for n = 1, 2, . . . .

Hence, by induction, we easily arrive at the formula

(2.5) vn = µ
n∏
j=1

bj(q)−
n∑
k=0

αk
n∏

j=k+1

bj(q).
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Remark 1. Since we shall make use of it later on, we point out that
formula (2.5) also holds for negative n (that is, if we extend the sequence
(vn) to all integers n by letting the recurrence (2.4) hold for all integers n)
under the conventions

n−1∑
k=m

Expr(k) =


∑n−1

k=m Expr(k), n > m,

0, n = m,

−
∑m−1

k=n Expr(k), n < m,

and

n−1∏
k=m

Expr(k) =


∏n−1
k=m Expr(k), n > m,

1, n = m,

1
/∏m−1

k=n Expr(k), n < m.

Assuming that b( · ) in (2.1) is a polynomial of degree s, formula (2.5)
shows that, for positive integers n, Vn is a polynomial in µ, α, and q of
degree at most n in µ, n(n− 1) in α, and

(2.6) s
n−1∑
i=0

2i(2i+ 1)
2

=
sn(n− 1)(4n+ 1)

6

in q (cf. [1, Lemma 2.4]). Formula (2.5) may also be written as

vn =
n∏
j=1

bj(q) ·
(
µ−

n∑
k=0

αk
k∏
j=1

1
bj(q)

)

= an(q)−1 ·
( ∞∑
k=0

ak(q)αk −
n∑
k=0

ak(q)αk
)

= an(q)−1 ·
∞∑

k=n+1

ak(q)αk =
∞∑

k=n+1

αk∏k
j=n+1 bj(q)

,

showing that the above vn’s are nothing else but tails of the series µ =∑∞
k=0 ak(q)α

k (normalized by the factors an(q)−1; cf. the intermediate part
of (1.2)). This fact somehow explains why the determinant in (2.3) is ex-
pected to be “small”.

Our basic example (1.4) corresponds to the choice bn(q) = qn − λ, for
a fixed algebraic number λ. In this case, we have an(q) =

∏n
k=1(qk − λ)−1,

and the Hankel determinant Vn is also a polynomial in λ of degree at most
n(n − 1). The choice bn(q) = qn (that is, λ = 0), yielding the Tschakaloff
function (1.3), was the illustrative example of the method in [1], while the
choice bn(q) = qn − 1 (when λ = 1) results in the q-exponential func-
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tion (1.1). In [6], Choulet treated both the Tschakaloff and q-exponential
cases.

We replace the argument of Bézivin and Choulet by a more direct ap-
proach (see Sections 3–5 below); in particular, we do not require the non-
trivial p-adic techniques used in [1] and [6], thus making our proofs more
“concrete” and elementary. An essential gain, which allows us to succeed in
proving the non-quadraticity of the values of (1.4), is due to extraction of
cyclotomic factors in the factorization of the Hankel determinant (2.3); this
is explained in Section 4.

3. Determinant calculus. Define the (q-)order of a Laurent series
f(q) =

∑
n∈Z cnq

n as

ord f(q) = ordq f(q) = min{n : cn 6= 0}.

The q-binomial coefficient
[
m
k

]
q

is defined by[
m

k

]
q

=

 (1− qm)(1− qm−1) · · · (1− qm−k+1)
(1− qk)(1− qk−1) · · · (1− q)

if k ≥ 0,

0 if k < 0.
Moreover, we adopt the usual notation for shifted q-factorials, given by
(a; q)m := (1− a)(1− aq) · · · (1− aqm−1) if m > 0, and (a; q)0 := 1.

Specializing bj(q) = qj − λ in (2.4), where λ 6∈ qZ>0 , we consider the
sequence defined by

(3.1) v0 = µ− 1, vn = (qn − λ)vn−1 − αn,

where

(3.2) µ =
∞∑
n=0

αn∏n
k=1(qk − λ)

.

We follow Remark 1 in requiring the recursive relation to be valid for all
n ∈ Z. This does not, in fact, work if qn − λ = 0 for some integer n ≤ 0.
However, since the only places where we need the extension of (3.1) to
negative integers is in Remark 2 and in the proof of Proposition 2, in a
context where λ = 0, we do not have to worry about these exceptional
cases.

Let N denote the backward shift operator acting (solely) on the index of
the sequence (vn)n∈Z, that is, N vn = vn−1. Introduce the difference operator

(3.3) Dl = (−λN ; q)l (αN ; q)l =
l−1∏
k=0

(I + (λ− α)qkN − λαq2kN 2),

where I is the identity operator.
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Lemma 1. For n ∈ Z and l ≥ 0 we have

(3.4) Dlvn = ql(n−l)
l∑

s=0

[
l

s

]
q

q(
l−s+1

2 )(−α)svn−l−s.

Proof. By the q-binomial theorem (cf. [9, Ex. 1.2(vi)])

(3.5) (1 + z)(1 + qz) · · · (1 + qm−1z) =
m∑
`=0

q(
`
2)
[
m

`

]
q

z`,

we can write

Dl =
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2N k1+k2 .

Hence, what we want to prove is

(3.6)
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2

= ql(n−l)
l∑

s=0

[
l

s

]
q

q(
l−s+1

2 )(−α)svn−l−s

for n ∈ Z and l ∈ N0. For l = 0, 1, this equality can be readily verified.
We now assume that (3.6) is valid for some l ≥ 1 and all n. Substituting

n− 1 and n− 2 instead of n, we get

(3.7)
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2−1

= ql(n−l−1)
l∑

s=0

[
l

s

]
q

q(
l−s+1

2 )(−α)svn−l−s−1,

respectively

(3.8)
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2−2

= ql(n−l−2)
l∑

s=0

[
l

s

]
q

q(
l−s+1

2 )(−α)svn−l−s−2.

Next we form the linear combination

(3.9) (3.6) + (λ− α)ql · (3.7)− λαq2l · (3.8).

We claim that the left-hand side of (3.9) is equal to the left-hand side of (3.6)
with l replaced by l+1. To see this, we rewrite the left-hand side of λql ·(3.7)
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in the form

(3.10) λql
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2−1

=
l+1∑
k1=0

l+1∑
k2=0

ql−k1+1+(k12 )+(k22 )
[

l

k1 − 1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2 ,

we rewrite the left-hand side of −αql · (3.7) in the form

(3.11) − αql
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2−1

=
l+1∑
k1=0

l+1∑
k2=0

ql−k2+1+(k12 )+(k22 )
[
l

k1

]
q

[
l

k2 − 1

]
q

λk1(−α)k2vn−k1−k2 ,

and we rewrite the left-hand side of −λαq2l · (3.8) in the form

(3.12) − λαq2l
l∑

k1=0

l∑
k2=0

q(
k1
2 )+(k22 )

[
l

k1

]
q

[
l

k2

]
q

λk1(−α)k2vn−k1−k2−2

=
l+1∑
k1=0

l+1∑
k2=0

q(l−k1+1)+(l−k2+1)+(k12 )+(k22 )
[

l

k1−1

]
q

[
l

k2−1

]
q

λk1(−α)k2vn−k1−k2 .

By summing the left-hand side of (3.6) and the right-hand sides of (3.10),
(3.11), and (3.12), we obtain indeed the left-hand side of (3.6) with l replaced
by l + 1, after little simplification.

We now turn our attention to the right-hand side of (3.9), that is, to

ql(n−l)
l∑

s=0

[
l

s

]
q

q(
l−s+1

2 )(−α)s(vn−l−s + (λ− α)vn−l−s−1 − λαvn−l−s−2).

By (3.6) with l = 1 and n replaced by n− l − s, this is equal to

ql(n−l)
l∑

s=0

[
l

s

]
q

q(
l−s+1

2 )(−α)sqn−l−s−1(qvn−l−s−1 − αvn−l−s−2).

It is not difficult to transform this into the right-hand side of (3.6) with l
replaced by l + 1.

As a corollary, for l ≥ 0 and n ≥ 2l − 1 we get

(3.13) ordq Dlvn = l(n− l).
Moreover, we have

q−l(n−l)Dlvn
∣∣
q=0

= (−α)lvn−2l

∣∣
q=0

.
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Remark 2. In the proof of Proposition 2 below, under the hypothesis
λ = 0, we require the estimate

ordq Dlvn > l(n− l) if n < 2l − 1,

which complements (3.13) and also follows from Lemma 1. This estimate
is valid for negative indices n as well: recall that the definition (3.1) of our
sequence (vn)n∈Z in the case λ = 0 and α 6= 0 results in

v−n−1 = qn(v−n + α−n),

whence ordq v−n = n−1 for n ≥ 1, implying the desired estimate for negative
indices.

Proposition 1. Let λ 6= 0, and let the sequence vn be given by (3.1).
Then the Hankel determinant Vn = det0≤i,j≤n−1(vi+j), viewed as an analytic
function (in fact , a polynomial) in q, α, λ, and µ, admits the representation

Vn = αn(n−1)/2λn(n−2)/4(λ− (λ+ α)µ)n/2 · qe0(n) +O(qe0(n)+1)

if n is even, and

Vn = αn(n−1)/2λ(n−1)2/4(µ− 1)(λ− (λ+ α)µ)(n−1)/2 · qe0(n) +O(qe0(n)+1)

if n is odd , where

(3.14) e0(n) =
n(n− 1)(n− 2)

6
=
(
n

3

)
.

In particular , its q-order under any specialization of α, λ, and µ is at
least e0(n).

Proof. We act on the ith row of the matrix (vi+j)0≤i,j≤n−1 by the opera-
tor Dbi/2c, for i = n−1, n−2, . . . , 1, 0 (in this order!). By definition (3.3) we
have a sequence of elementary row operations, hence the new matrix with
entries aij = Dbi/2cvi+j , 0 ≤ i, j ≤ n − 1, has the same determinant Vn.
According to (3.4),

eij := ordq aij =
⌊
i

2

⌋(
i+ j −

⌊
i

2

⌋)
=
⌊
i

2

⌋(⌈
i

2

⌉
+ j

)
,

and for a permutation τ of {0, 1, . . . , n− 1} we have

n−1∑
i=0

ei,τ(i) =
n−1∑
i=0

⌊
i

2

⌋⌈
i

2

⌉
+
n−1∑
i=0

⌊
i

2

⌋
τ(i).

We claim that the minimal value of the latter expression is equal to
(
n
3

)
and

is attained, e.g., for τ(0) > τ(1) > · · · > τ(n− 1). To see this, first observe
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that, if
⌊
i1/2

⌋
>
⌊
i2/2

⌋
and j1 > j2, then⌊

i1
2

⌋
j1 +

⌊
i2
2

⌋
j2 >

⌊
i1
2

⌋
j2 +

⌊
i2
2

⌋
j1.

Hence we necessarily have τ(0) > τ(i) and τ(1) > τ(i) for all i ≥ 2. In other
words, the 2-element set {τ(0), τ(1)} is {n − 1, n − 2}. Continuing in this
manner, we obtain {τ(2), τ(3)} = {n−3, n−4}, {τ(4), τ(5)} = {n−5, n−6},
and so on. It follows that indeed, for any permutation τ , we have

n−1∑
i=0

ei,τ(i) ≥
n−1∑
i=0

⌊
i

2

⌋⌈
i

2

⌉
+
bn/2c−1∑
i=0

i(n− 1− 2i+ n− 2− 2i) =
(
n

3

)
.

Moreover, the coefficient of the minimal power qn(n−1)(n−2)/6 is equal to the
determinant of the “anti-diagonal” matrix

(3.15)



0 vn−2 vn−1

vn−1 vn

· · ·

(−α)lvn−2l−2 (−α)lvn−2l−1

(−α)lvn−2l−1 (−α)lvn−2l

· · · 0


evaluated at q = 0. Here, if n is odd, the left lower angle of the matrix
contains just the 1×1-matrix (−α)(n−1)/2v0. Let us compute the determinant
of a 2× 2-box in (3.15) assuming q = 0 throughout. For n ≥ 0, the explicit
expression (2.5) for vn with bj(q) = qj − λ = −λ yields

vn = µ(−λ)n − (−λ)n
1− (−α/λ)n+1

1 + α/λ
.

Hence,

det

(
(−α)lvn−2l−2 (−α)lvn−2l−1

(−α)lvn−2l−1 (−α)lvn−2l

)
= αn−1(−λ)n−2l−1

(
µ

(
1 +

α

λ

)
− 1
)
.

Therefore the desired coefficient of qn(n−1)(n−2)/6 in Vn is equal to
n/2−1∏
l=0

(αn−1(−λ)n−2l−2(λ− (λ+ α)µ))

if n is even, and to

(−α)(n−1)/2(µ− 1)
(n−1)/2−1∏

l=0

(αn−1(−λ)n−2l−2(λ− (λ+ α)µ))

if n is odd.
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Proposition 2. Let λ = 0, and let the sequence vn be given by (3.1).
Then the Hankel determinant Vn = det0≤i,j≤n−1(vi+j), viewed as an analytic
function (in fact , a polynomial) in q, α, and µ, admits the representation

Vn = (−1)n(n+2)/8αn(5n−2)/8µn/2 · qe0(n) +O(qe0(n)+1)(3.16)

if n is even, and

Vn = (−1)(n−1)(n−3)/8α(n−1)(5n+1)/8K(n−1)/2 · qe0(n) +O(qe0(n)+1)(3.17)

if n is odd , where the sequence Kn = Kn(α, µ) is defined in (3.20) below ,
and

(3.18) e0(n) =
{
n(n− 2)(5n− 2)/24 if n is even,
n(n− 1)(5n− 7)/24 if n is odd.

In particular , the q-order of Vn under any specialization of α and µ is at
least e0(n).

Proof. This time we act on the ith row of the matrix (vi+j)0≤i,j≤n−1,
for i = n− 1, n− 2, . . . , 1, 0, by the operator Dli , where li = min{i,

⌊
n/2

⌋
}.

Again, these are elementary row transformations because Dl = (αN ; q)l
in (3.3) for λ = 0. For the entries aij = Dlivi+j of the resulting matrix,
whose determinant is Vn, we have eij := ordq aij ≥ li(i + j − li), with
equality occurring when i + j ≥ 2li − 1 (cf. Remark 2). This fact and the
fact that the sequence (li) is non-decreasing imply, for any permutation τ
of {0, 1, . . . , n− 1}, that

(3.19)
n−1∑
i=0

ei,τ(i) ≥
n−1∑
i=0

li(i+ τ(i)− li) ≥
n−1∑
i=0

li(n− 1− li) = e0(n),

for e0(n) defined in (3.18). To get equality in (3.19), the following two con-
ditions should be satisfied: (a) for each i we have i+ τ(i) ≥ 2li − 1, imply-
ing τ(i) ≥ 2

⌊
n/2

⌋
− i − 1 for i ≥

⌊
n/2

⌋
, and (b) for i <

⌊
n/2

⌋
we have

τ(i) = n− i− 1.
In the case of n even, condition (a) gives us τ(i) ≥ n− i− 1 for i ≥ n/2,

which in view of condition (b) is possible if and only if τ(i) = n − i − 1
for each i = 0, 1, . . . , n − 1. Therefore, the unique anti-diagonal product
(−1)n(n−1)/2

∏n−1
i=0 ai,n−1−i provides the lowest power qn(n−2)(5n−2)/24 in the

determinant det(aij)0≤i,j≤n−1, implying (3.16).
If n is odd, conditions (a) and (b) take the form

τ(i) = n− i− 1 for i = 0, 1, . . . , (n− 3)/2,
τ(i) ≥ n− i− 2 for i = (n− 1)/2, . . . , n− 1.

In this case the coefficient of the lowest power qn(n−1)(5n−7)/24 in Vn is equal
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to the determinant of the matrix

0
(−α)0vn−1

(−α)1vn−3

· · ·

(−α)(n−3)/2v2

0 (−α)bn/2cv−1 (−α)bn/2cv0

· · · (−α)bn/2cv0 (−α)bn/2cv1

(−α)bn/2cv−1 · · ·
...

(−α)bn/2cv0 . . . . . . (−α)bn/2cvbn/2c

0


evaluated at q = 0. It is clear that the non-vanishing of the coefficient will
follow from the non-vanishing of the determinant

det


0 v−1 v0

· · · v0 v1

v−1 · · ·
...

v0 . . . . . . v(n−1)/2


∣∣∣∣∣∣∣∣∣∣
q=0

= det


0 µ µ− 1

· · · µ− 1 −α

µ · · ·
...

µ− 1 . . . . . . −α(n−1)/2


= (−1)(n−1)(n−3)/8K(n−1)/2,

where

(3.20) Kn = Kn(α, µ) = det



µ− 1 −α −α2 . . . −αn

µ µ− 1 −α . . . −αn−1

µ µ− 1 . . . −αn−2

. . . . . .
...

0 µ µ− 1


.

Summarizing we have (3.17), and the proposition follows.

Remark 3. Generically, the power e0(n) in (3.18) is exact. Indeed, the
determinant Kn is not identically zero, since it is trivially non-zero for α = 0
and µ 6= 1. In fact, we can also write down explicit formulas for Kn, since
the sequence satisfies the linear recurrence

Kn+2 = (µ− 1− αµ)Kn+1 + αµ2Kn for n = 0, 1, . . . ,

K0 = µ− 1, K1 = (µ− 1)2 + αµ.

To find an (asymptotic) upper bound for our Hankel determinant

det
0≤i,j≤n−1

(vi+j),
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where

(3.21) vn =
∞∑

k=n+1

αk∏k
j=n+1(qj − λ)

for n = 0, 1, . . . ,

we will use the difference operator

(3.22) D̃l = (αq−1N ; q−1)l =
l∏

k=1

(I − αq−kN ).

Remark 4. The operators (3.3) and (3.22) are directly related by

Dlvn = qln−(l2)D̃lvn−l,
where l ≥ 0 and n ∈ Z. This is seen by applying the q-binomial theorem
(3.5) to (3.22), and by comparing the result with (3.4). Equivalently,

D̃lvn = q(
l
2)−l(n+l)Dlvn+l.

Lemma 2. Let q, α, λ be complex numbers with |q| > 1, α 6= 0, and λ
not a (positive) power of q. Then, for 0 ≤ l ≤ n,

|D̃lvn| ≤

{
|q|(

l
2)−nlCn+1

1 if λ 6= 0,
|q|−nlCn+1

2 if λ = 0,

where C1 and C2 are positive real numbers not depending on n and l.

Proof. Let first λ 6= 0. From (3.21), it is easy to see that we can find
a real number C > 1 (depending on q, α and λ, but not on n), such that
|vn| ≤ Cn+1. Making use of the q-binomial theorem (3.5), of the fact that∣∣∣∣[mk

]
q

∣∣∣∣ ≤ [mk
]
|q|

(following from the polynomiality in q of [mk ]q, the coefficients being non-
negative integers), and of our observation in Remark 4, we have

|D̃lvn| = |q|(
l
2)−l(n+l)|Dlvn+l|

≤ |q|−(l+1
2 )−ln

l∑
k1=0

|q|(
k1
2 )
[
l

k1

]
|q|
|λ|k1

l∑
k2=0

|q|(
k2
2 )
[
l

k2

]
|q|
|α|k2 |vn+l−k1−k2 |

≤ |q|−(l+1
2 )−lnCn+l+1

l−1∏
j=0

(1 + |λ| |q|j)(1 + |α| |q|j)

≤ |q|(
l
2)−l−lnCn+l+1(1 + |λ|)l(1 + |α|)l,

which, in view of l ≤ n, is exactly in line with the first assertion of the
lemma.



256 C. Krattenthaler et al.

In the case λ = 0, we can proceed in the same way. The only difference is
that the above sum over k1 reduces to just the summand for k1 = 0. Hence,
we obtain

|D̃lvn| ≤ |q|−(l+1
2 )−ln

l∑
k2=0

|q|(
k2
2 )
[
l

k2

]
|q|
|α|k2 |vn+l−k2 |

≤ |q|−(l+1
2 )−lnCn+l+1

l−1∏
j=0

(1 + |α| |q|j)

≤ |q|−l−lnCn+l+1(1 + |α|)l,
which is exactly in line with the second assertion of the lemma.

Proposition 3. Let the sequence vn be given by (3.21). Then, as n tends
to ∞, the Hankel determinant Vn = det0≤i,j≤n−1(vi+j) is asymptotically

(3.23) |Vn| ≤

{
|q|−n3/3 exp(O(n2)) if λ 6= 0,
|q|−n3/2 exp(O(n2)) if λ = 0.

Proof. Acting by means of the operator D̃i on the ith row of the matrix
(vi+j)0≤i,j≤n−1 (this results in elementary row operations according to (3.22))
we get the matrix (aij)0≤i,j≤n−1 with entries aij = D̃ivi+j , whose determi-
nant is equal to Vn.

Let now λ 6= 0. Writing Sn for the symmetric group on {0, 1, 2, . . . , n−1},
we have

|Vn| ≤ n! max
τ∈Sn

n−1∏
i=0

|D̃ivi+τ(i)| ≤ n! max
τ∈Sn

n−1∏
i=0

|q|(
i
2)−(i+τ(i))iC

i+τ(i)+1
1

≤ exp(O(n2))
n−1∏
i=0

|q|(
i
2)−(n−1)i,

where, to pass to the last line, we used again the fact that the permutation
achieving the maximum sends i to n − i − 1 for i = 0, 1, . . . , n − 1. This
implies the first claim of the proposition.

On the other hand, if λ = 0, then

|Vn| ≤ n! max
τ∈Sn

n−1∏
i=0

|D̃ivi+τ(i)| ≤ n! max
τ∈Sn

n−1∏
i=0

|q|−(i+τ(i))iC
i+τ(i)+1
2

≤ exp(O(n2))
n−1∏
i=0

|q|−(n−1)i,

implying the second claim of the proposition.

Remark 5. Using an analytic method for the (entire) generating series∑∞
n=0 vnz

n, Choulet [6, Lemmas 3.3 and 3.4] proves estimates that may be
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informally summarized in our setting as follows:

(3.24) ordq Vn ≥

{
5
24n

3 +O(n2) if λ = 0,
1
6n

3 +O(n2) if λ 6= 0,
as n→∞,

and

(3.25) |Vn| ≤

{
|q|−n3/2+O(n2) if λ = 0,
|q|−n3/3+O(n2) if λ 6= 0,

as n→∞.

Therefore, our Propositions 1–2 sharpen the estimate (3.24) of Choulet,
while our Proposition 3 provides a different proof of (3.25). (Strictly speak-
ing, Choulet did not arrive at the better estimate in (3.25) for the case
λ = 0 himself; this had been done earlier by Bézivin [1] using elementary
considerations.) On the other hand, it is Choulet’s method that suggested
to us the form of the difference operators (3.3) and (3.22).

4. Cyclotomic factorization. We now turn to the general Hankel de-
terminant (2.3) with the sequence (vn) defined in (2.4) and (2.5). Let us fix
the notation

Φl(q) =
∏

1≤j≤l
gcd(j,l)=1

(q − e2πj
√
−1/l), l = 1, 2, . . . ,

for the cyclotomic polynomials.

Proposition 4. For any integer l in the range 1 ≤ l < n/2, the Han-
kel determinant Vn = det0≤i,j≤n−1(vi+j), where the vn’s are given in (2.5)
with bj(q) = b(qj) for a polynomial b( · ) of arbitrary degree, is divisible by
Φl(q)el(n), where

(4.1) el(n) =
n−1∑
i=0

(⌊
i+ l

3l

⌋
+
⌊
i

3l

⌋)
.

Remark 6. From (4.1), it is straightforward to compute a compact
formula for el(n), namely,

el(n) =
(n− j)(n+ j−2l)

3l
+
{

0 if 0 ≤ j < 2l,
j−2l if 2l≤ j < 3l,

where n≡ j (mod 3l).

(In other words, j/(3l) is the fractional part of n/(3l).) In particular,

e1(n) =
⌊

(n− 1)2

3

⌋
=
{

(n− 1)2/3 if n≡ 1 (mod 3),
n(n− 2)/3 otherwise,

e2(n) =
⌊

(n− 2)2

6

⌋
.
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Proof of Proposition 4. We have to do some preparatory work first, be-
fore we are in the position to embark on the “actual” proof of the divisibility
assertion in the proposition. The central part of this preparatory work is the
identity (4.10).

Changing notation slightly, recall that, for n ≥ 1, we have

vn = b(qn)vn−1 − αn,
with b(x) = x − λ. (In fact, the subsequent arguments hold for any func-
tion b(x). That is why we shall write b(·) below instead of its explicit form
which is of relevance in our context.) Hence, for n ≥ l ≥ 1, we have

(4.2) vn = vn−l

l−1∏
k=0

b(qn−k)−
l−1∑
j=0

αn−j
j−1∏
k=0

b(qn−k).

If we write

Pj(n, q) =
j−1∏
k=0

b(qn−k)

for non-negative integers j, the recurrence (4.2) takes the form

(4.3) vn = vn−lPl(n, q)−
l−1∑
j=0

αn−jPj(n, q).

Fix a positive integer l and a primitive lth root of unity ζ. For integers
j, t, n with j, t ≥ 0, set

(4.4) P
(t)
j (n) =

dt

dqt
Pj(n, q)

∣∣∣∣
q=ζ

.

In particular, we have

(4.5) P
(t)
0 (n) =

{
1 if t = 0,
0 if t ≥ 1.

For j ≥ 1, we have

(4.6)
dt

dqt
Pj(n, q) =

∑
t0+···+tj−1=t

t!
t0! · · · tj−1!

j−1∏
k=0

dtk

dqtk
b(qn−k).

Applying the Faà di Bruno formula (cf. [7, Sec. 3.4]; but see also [8, 11])
we get

(4.7)
dt

dqt
b(qn−k)

=
∑

m1+2m2+···+tmt=t

t!
m1! · · ·mt!

b(m)(qn−k)
t∏

ν=1

((
n− k
ν

)
qn−k−ν

)mν
,

where m = m1 + · · ·+mk.
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It is straightforward to see that equations (4.4)–(4.7) imply that, for any
non-negative integers j and t, the quantity P

(t)
j (n), as a function of n, is

an l-quasi-polynomial of degree at most t, where an l-quasi-polynomial of
degree at most t is a sequence of complex numbers (Q(n))n∈Z of the form

Q(n) =
t∑

ν=0

aν(n)nν ,

the sequence {aν(n)}n∈Z being l-periodic for each ν (cf. [16, Sec. 4.4]). We de-
note the set of all l-quasi-polynomials of degree at most t byQt = Qt(l). Fur-
thermore, note that if Q(n) ∈ Qt, with t > 0, then Q(n)−Q(n− l) ∈ Qt−1.
These facts will be used repeatedly.

Our next observation is that the sequence (P (0)
l (n))n∈Z is constant, where

P
(0)
l (n) = P

(0)
l (0) =

∏l−1
k=0 b(ζ

k). We let

B = Bl =
l−1∏
k=0

b(ζk).

Clearly, B is independent of the particular choice of the primitive lth root
of unity ζ.

Now we introduce the difference operators

F = I −BN l and G = I − αlN l,

where I and N have the same meaning as earlier. Clearly, the operators F
and G commute.

It is easy to check, using elementary facts of difference calculus, that, for
any Q(n) ∈ Qt, we have

(4.8) Gt+1(Q(n)αn) = 0.

For non-negative integers m and n, let

v(m)
n =

∂mvn
∂qm

∣∣∣∣
q=ζ

.

By differentiating both sides of (4.3) m times, and by subsequently substi-
tuting q = ζ, we obtain for n ≥ l ≥ 1 the equation

(4.9) v(m)
n =

m∑
ν=0

(
m

ν

)
P

(m−ν)
l (n)v(ν)

n−l −
l−1∑
j=0

P
(m)
j (n)αn−j .

We now claim that for an arbitrary Q(n) ∈ Qt, for non-negative integers
t and m, and for any integer n ≥ (2t+ 3m+ 2)l, we have

(4.10) F t+2m+1Gt+m+1(Q(n)v(m)
n ) = 0.

We prove this claim by a double induction: the external induction is over m,
while the inner induction is over t.



260 C. Krattenthaler et al.

We start by proving (4.10) for m = 0, by induction over t. We put m = 0
in (4.9), and rewrite the resulting equation in the form

F(v(0)
n ) = −

l−1∑
j=0

P
(0)
j (n)αn−j .

We apply the operator G on both sides. By (4.8), this implies

FG(v(0)
n ) = 0,

which in turn implies
FG(Q(n)v(0)

n ) = 0

for any l-periodic function Q(n), since the operators F and G are both
polynomials in N l. This is exactly (4.10) for m = t = 0.

Now assume that (4.10) is proved for m = 0 and for t− 1. If Q(n) ∈ Qt
with t > 0, then (4.9) implies

F(Q(n)v(0)
n ) = B(Q(n)−Q(n− l))v(0)

n−l −
l−1∑
j=0

Q(n)P (0)
j (n)αn−j .

After application of F tGt+1 on both sides, we obtain

F t+1Gt+1(Q(n)v(0)
n ) = BGF tGt((Q(n)−Q(n− l))v(0)

n−l)

−
l−1∑
j=0

F tGt+1(Q(n)P (0)
j (n)αn−j).

The summands in the sum over j vanish because of (4.8), while the first
expression on the right-hand side vanishes because of the induction hypoth-
esis. (Recall that Q(n)−Q(n− l) ∈ Qt−1.) This proves (4.10) for m = 0 and
arbitrary t.

Now we assume that (4.10) is proved for 0, 1, . . . ,m− 1 and arbitrary t.
For m > 0, we write (4.9) as

Fv(m)
n =

m−1∑
ν=0

(
m

ν

)
P

(m−ν)
l (n)v(ν)

n−l −
l−1∑
j=0

P
(m)
j (n)αn−j .

We apply F2mGm+1 on both sides, to obtain

F2m+1Gm+1(v(m)
n )

=
m−1∑
ν=0

(
m

ν

)
Fm−ν−1F (m−ν)+2ν+1G(m−ν)+ν+1(P (m−ν)

l (n)v(ν)
n−l)

−
l−1∑
j=0

F2mGm+1(P (m)
j (n)αn−j).
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Again, the summands in the sum over j vanish because of (4.8), while the
first expression on the right-hand side vanishes because of the induction
hypothesis. This establishes (4.10) for m and t = 0.

In order to prove (4.10) for m and arbitrary t, we use again induction
over t. We already know that (4.10) is true for t = 0. Assume that (4.10) is
true for t− 1. We multiply both sides of (4.9) by Q(n), and we apply F on
both sides. The resulting equation can then be written in the form

F(Q(n)v(m)
n ) = B(Q(n)−Q(n− l))v(m)

n−l +
m−1∑
ν=0

(
m

ν

)
Q(n)P (m−ν)

l (n)v(ν)
n−l

−
l−1∑
j=0

Q(n)P (m)
j (n)αn−j .

After application of F t+2mGt+m+1 on both sides, we arrive at

F t+2m+1Gt+m+1(Q(n)v(m)
n ) = BGF t+2mGt+m((Q(n)−Q(n− l))v(m)

n−l)

+
m−1∑
ν=0

(
m

ν

)
Fm−ν−1F (t+m−ν)+2ν+1G(t+m−ν)+ν+1(Q(n)P (m−ν)

l (n)v(ν)
n−l)

−
l−1∑
j=0

F t+2mGt+m+1(Q(n)P (m)
j (n)αn−j).

Again, by (4.8) and the induction hypothesis, the right-hand side in this
identity vanishes. Thus, (4.10) is completely proved.

We are now ready to treat the Hankel determinant Vn. In fact, we need
(4.10) only for t = 0. (For the proof, it was however necessary to play
with t.) What (4.10) says for t = 0 is that, for m ≥ 1 and n ≥ (3m − 1)l,
the polynomial (in q) wm,n = (I −BN l)2m−1(I − αlN l)mvn satisfies

∂jwm,n
∂qj

∣∣∣∣
q=ζ

= 0, 0 ≤ j ≤ m− 1,

for any choice of the primitive lth root of unity ζ. Hence, we have

(4.11) Φl(q)m |wm,n.
This reasoning also shows that for the polynomial

w̃m,n = (I −BN l)2m(I − αlN l)mvn = (I −BN l)wm,n = wm,n −Bwm,n−l
we have

(4.12) Φl(q)m | w̃m,n,
as long as n ≥ 3ml.

For n − 1 ≥ i ≥ 2l we apply the operator (I − BN l)2li−1(I − αlN l)li ,
where li = b(i+l)/(3l)c, to the ith row of the Hankel matrix (vi+j)0≤i,j≤n−1,
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and subsequently, for n− 1 ≥ j ≥ 3l, we apply the operator (I − BN l)2mj
× (I − αlN l)mj , where mj = bj/(3l)c, to the jth column. The resulting
matrix has entries {

w̃ε(i,j),i+j if i < 2l and j ≥ 3l,
wε(i,j),i+j otherwise,

where
ε(i, j) = li +mj = b(i+ l)/(3l)c+ bj/(3l)c,

with the convention that w0,n = vn. As earlier, since the above operations
correspond to row and column operations, the determinant of the resulting
matrix is still equal to Vn.

In view of (4.11) and (4.12), it remains to observe that, for an arbitrary
permutation τ ,
n−1∑
i=0

ε(i, τ(i)) =
n−1∑
i=0

(⌊
i+ l

3l

⌋
+
⌊
τ(i)
3l

⌋)
=

n−1∑
i=0

(⌊
i+ l

3l

⌋
+
⌊
i

3l

⌋)
= el(n).

This completes the proof of the proposition.

Propositions 1, 2 and 4 may be summarized as follows: The Hankel de-
terminant (2.3) of the sequence (3.1) admits the factorization

(4.13) Vn = ∆n(q) · Ṽn,

where

(4.14) ∆n(q) = qe0(n)
∏
l≥1

Φl(q)el(n)

and the exponents e0(n), e1(n), e2(n), . . . are given by very simple formulas.
Since

log |Φl(q)|
log |q|

= ϕ(l) +O(1) as l→∞

and

el(n) = O

(
n2

l

)
as n→∞ uniformly in l ≥ 1,

the asymptotic behaviour of ∆n(q) as n → ∞ is governed by the degree of
the polynomial,

(4.15)
log |∆n(q)|

log |q|
∼ deg∆n = e0(n) +

∞∑
l=1

el(n)ϕ(l) as n→∞.

The following lemma enables us to determine the asymptotic behaviour
of the sum on the right-hand side of (4.15) as n→∞.
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Lemma 3. Let a and c be real numbers with 0 ≤ c < a. Then, as n→∞,∑
l≥1

ϕ(l)
n∑
i=0

⌊
i+ cl

al

⌋
=
n3

π2

∞∑
m=1

1
(am− c)2

+O(n2 log2 n).

Proof. By interchanging summations, we have

(4.16)
∞∑
l=1

ϕ(l)
n∑
i=0

⌊
i+ cl

al

⌋
=

n∑
i=0

∞∑
l=1

⌊
i+ cl

al

⌋
ϕ(l).

Writing Σ(x) =
∑

l≤x ϕ(l), the expression (4.16) can be rewritten in the
form

n∑
i=0

∞∑
m=1

m

(
Σ

(
i

am− c

)
−Σ

(
i

a(m+ 1)− c

))
=

n∑
i=0

∞∑
m=1

Σ

(
i

am− c

)
.

Using Mertens’ classical asymptotic formula (cf. [10, p. 268, Theorem 330])

Σ(x) =
3x2

π2
+O(x log x) as x→∞,

we obtain the following asymptotic estimate for (4.16):

n∑
i=da−ce

b(i+c)/ac∑
m=1

(
3i2

π2(am− c)2
+O

(
i log n
m

))
+O(1)

=
n∑

i=da−ce

(
3i2

π2

∞∑
m=1

1
(am− c)2

+O(i log2 n)
)

+O(1),

which immediately implies the assertion of the lemma.

Using formula (4.1) for el(n) and the asymptotics from Lemma 3, we
obtain

(4.17)
∞∑
l=1

el(n)ϕ(l) ≈ 0.05301135n3 as n→∞,

where the exact value of the constant in (4.17) is

1
54

+
1
π2

∞∑
m=1

1
(3m− 1)2

=
5
54
− Im Li2(e2π

√
−1/3)

π2
√

3
.

Summarizing our findings from Propositions 1 and 2, as well as from
(4.15) and (4.17), we have the following result for the asymptotic degree
of ∆n(q).

Proposition 5. Let ∆n(q) be defined as in (4.14). Then, as n→∞,

log |∆n(q)|
log |q|

∼ degq∆n(q) ∼ Bn3,
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where

B =
5
54
− Im Li2(e2π

√
−1/3)

π2
√

3
+
{ 5/24 if λ = 0,

1/6 if λ 6= 0.

Remark 7. If λ is a root of unity, expected formulas for the exponents
of the cyclotomic factors of Vn obey a different law. To write them down in
the (q-exponential) case λ = 1, we represent the polynomial ∆n from the
factorization (4.13) in the form

∆n = qe0(n)
∏
l≥1

(ql − 1)eel(n).

Then

(4.18) ẽl(n) = 2 max{0, n− 2l},
which, together with (3.14), implies that, in the case λ = 1, we have

deg∆n =
{
n(n− 1)2/4 if n is odd,

n2(n− 2)/4 if n is even.

It is of definite interest to prove also these formulas for the cyclotomic ex-
ponents.

5. Arithmetic ingredients. In this section we provide the proof of
Theorems 1 and 2. It rests on Propositions 3–5, and two additional auxiliary
results, given in Lemmas 4 and 5 below. The first one says that, under certain
arithmetic constraints on the complex parameters α, λ and q, if we generalize
our sequence vn to vn(x), where v0(x) = x− 1 and

(5.1) vn(x) = vn−1(x) · (qn − λ)− αn for n = 1, 2, . . . ,

then the corresponding Hankel determinant

(5.2) Vn(x) = det
0≤i,j≤n−1

(vi+j(x))

is non-zero infinitely often, while the second establishes a (crude) asymptotic
upper bound for it. The reader should note that vn(x) becomes our previous
vn defined in (3.1) if x = µ, where µ is given by (3.2). Hence, if x = µ, the
Hankel determinant Vn(x) becomes our earlier Hankel determinant Vn.

Lemma 4. Let α, λ, q, x be complex numbers with α 6= 0, λ /∈ qZ>0 , and
α /∈ −λqZ>0. Then there are infinitely many positive integers n such that
Vn(x) 6= 0.

Proof. Writing the relation (5.1) for the generating series

G(z) = Gx(z) =
∞∑
n=0

vn(x)zn
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we arrive at

G(z) = v0(x) + z(qG(qz)− λG(z))−
∞∑
n=1

αnzn

= z(qG(qz)− λG(z)) + x− 1
1− αz

.

Equivalently,

(5.3) (1 + λz)G(z)− qzG(qz) = x− 1
1− αz

.

We claim that this equation does not have a rational function solution unless
α ∈ −λqZ>0 . Indeed, if z = 1/β, z = 1/(qβ), . . . , z = 1/(qk−1β) are poles
of G(z), for some k, then z = 1/(qβ), z = 1/(q2β), . . . , z = 1/(qkβ) are
poles of G(qz). Hence, the only way that this is possible in (5.3) is that the
factor 1 + λz cancels the pole z = 1/β of G(z), while the term −1/(1− αz)
on the right-hand side cancels the pole z = 1/(qkβ) of G(qz).

By a result of Kronecker (see [12, pp. 566–567] or [15, Division 7, Prob-
lem 24]), the fact that the series G(z) is not a rational function of z implies
that infinitely many terms of the sequence Vn(x), where n = 1, 2, . . . , do not
vanish.

Lemma 5. Let µ̄, ᾱ, λ̄, q be complex numbers with ᾱ 6= 0 and |q| > 1.
Define the sequence (v̄n)n≥0 by (5.1) with x = µ̄, α replaced by ᾱ, and λ
replaced by λ̄, and let V̄n = det0≤i,j≤n−1(v̄i+j) be the corresponding Hankel
determinant. Then

|V̄n| ≤ |q|2n
3/3+o(n3) as n→∞.

Proof. From (2.5) with α replaced by ᾱ, µ replaced by µ̄, and with
bj(q) = qj − λ̄, we see that

|v̄n| ≤ |q|n
2/2+o(n2).

Hence, we have

|V̄n| ≤ n! max
τ∈Sn

n−1∏
i=0

|v̄i+τ(i)| ≤ n! max
τ∈Sn

n−1∏
i=0

|q|(i+τ(i))2/2+o((i+τ(i))2)

≤ n!
n−1∏
i=0

|q|(2i)2/2+o(n2) ≤ |q|2n3/3+o(n3),

as desired.

We are now finally in a position to prove Theorems 1 and 2. Our proof
simplifies the p-adic approach of Bézivin [1] and Choulet [6].

Proof of Theorems 1 and 2. Let q = %/σ ∈ Q, |q| > 1 and % > 1.
Furthermore, let γ = log %/log |σ| (γ = ∞ if q ∈ Z). Let us now assume
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that all the numbers α, λ and µ = Fq(α;λ) are algebraic and write K =
Q(α, λ, µ), and d = [K : Q].

In considering Vn we write, as before in (4.13), Vn = ∆nṼn and note
that, as n→∞, we have

|Vn| ≤ |q|−An
3+o(n3),(5.4)

degq∆n(q) = Bn3 + o(n3), |∆n(q)| = |q|Bn3+o(n3),(5.5)

where

(5.6)
A =

1
2
, B =

65
216
− Im Li2(e2π

√
−1/3)

π2
√

3
if λ = 0,

A =
1
3
, B =

7
27
− Im Li2(e2π

√
−1/3)

π2
√

3
if λ 6= 0,

by Propositions 3 and 5. On the other hand, by Lemma 5, for all K-
conjugates V [i]

n of Vn we have

|V [i]
n | ≤ |q|Cn

3+o(n3), i = 1, . . . , d,

where C = 2/3. (Of course, for i = 1, that is, in the case where V [i]
n = Vn,

we have a better estimate in (5.4).) Clearly, ∆n(q) remains invariant under
conjugation, whence, by (5.4) and (5.5), we have

(5.7) |Ṽn| = |Ṽ [1]
n | ≤ |q|−(A+B)n3+o(n3) as n→∞,

and, for i = 2, . . . , d,

(5.8) |Ṽ [i]
n | ≤ |q|(C−B)n3+o(n3) as n→∞.

We know that Vn is a polynomial in q, α, λ and µ with integer coefficients,
hence also Ṽn. Since the degree of Vn in each of µ, λ, α is at most n2 (see
the paragraph containing (2.6)), the same is also true for Ṽn. On the other
hand, by (2.6), we know that the degree in q of Vn is at most 2n3/3 + o(n3),
whence we are able to find a positive integer Ω(n), with logΩ(n) = o(n3),
such that

(5.9) σ(C−B)n3
Ω(n)Ṽn ∈ ZK ,

where ZK denotes the ring of integers of K. If Vn 6= 0, then the product of
all K-conjugates of the K-integer in (5.9) is a non-zero integer. Therefore,
by (5.7) and (5.8),

1 ≤
∣∣∣ d∏
i=1

σ(C−B)n3
Ω(n)Ṽ [i]

n

∣∣∣ ≤ |σ|(C−B)dn3
exp(o(n3)) |Ṽn|

d∏
i=2

|Ṽ [i]
n |

≤ |σ|(C−B)dn3 |q|−(A+B)n3+(C−B)(d−1)n3
exp(o(n3))

≤ |σ|(A+C)n3
%−(A+C−d(C−B))n3+o(n3) ≤ %{(A+C)/γ−(A+C−d(C−B))}n3+o(n3).
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If

(5.10)
1
γ

(A+ C)− (A+ C − d(C −B)) < 0,

then the above inequality implies that Vn = 0 for all large n, contradicting
Lemma 4. The reader should note that (5.10) can only hold if

(5.11) A+ C − d(C −B) > 0 or, equivalently, d <
A+ C

C −B
,

in which case we have

(5.12) γ >
A+ C

A+ C − d(C −B)
.

From (5.6) it follows that the only values of the degree d = [K : Q] satis-
fying (5.11) are d = 1 and d = 2. Theorems 1 and 2 then follow from (5.12)
with d = 2 (in Theorem 1) and d = 1 (Theorem 2) by using the values of A
and B from (5.6), and C = 2/3.

Remark 8. We have a strong feeling that the method used in this work
potentially makes it possible to deduce irrationality measures for the values
of Fq(α;λ) in the cases when the number in question is irrational by Theo-
rem 2. The only problem, which we are not able to overcome, is to establish
the required density of non-vanishing of the determinant Vn(x) in (5.2) for
a given x. More precisely, in our proof of Theorems 1 and 2 we use the fact
(see Lemma 4) that Vn(x) 6= 0 infinitely often, and this is (more than) suf-
ficient for a quantitative irrationality, respectively, non-quadraticity result.
We expect that a stronger assertion is true, which would then indeed yield
irrationality measures for values of Fq(α;λ). Namely, for a given x ∈ C and
the sequence vn(x) defined in (5.1), there should exist two positive constants
c1 and c2, with c1 < c2, such that for any m ≥ 1 one can find an index n in
the range c1m < n < c2m for which the Hankel determinant Vn(x) in (5.2)
does not vanish. (In fact, we need this statement only for rational values of x,
but this does not seem to be easier than the general case.) The belief in this
statement rests upon the fact that the sequence vn(x) is “highly structured”
(for instance, it is a solution of the simple recurrence relation (2.4) or (5.1)
with general x; cf. [1] and [6]); hence Vn(x) should admit a certain structure
as well. In fact, it was pointed out by the anonymous referee that in the case
λ = 0 of the Tschakaloff function, Vn = Vn(µ) is non-zero for all n if q > 1
and α > 0. This follows from Lemma 2.2 in [1], which provides in this case
the expression

Vn = αn
2−n

∑
1≤j1<···<jn

wj1 · · ·wjn
(
α

q

)j1+···+jn
(V (sj1 , . . . , sjn))2,

where wj = q−j(j+1)/2, sj = q−j , and V (sj1 , . . . , sjn) is the Vandermonde
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determinant built on sj1 , . . . , sjn . The proof of this result is based on the tail
expression (3.21) of vn = vn(µ) and does not work for Vn(x) with x general.
This fact clearly supports our expectations above, although it is not enough
for irrationality measures.
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