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Tame kernels of cyclic extensions of number fields
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1. Introduction. Let F be an algebraic number field, OF the ring of
integers in F and K2 the Milnor K-functor. For an odd prime p, results on
the p-primary part of tame kernels of number fields can be found in [Br1],
[Br2], [Gu], [Ke], [Ko], [Qi], [Wu], [Zh1] and [Zh2]. For m ≥ 1, it is of interest
to find the value of pm- rankK2OF . However, even form = 1, we do not know
this value in general. In this paper we investigate the pm-rank of the tame
kernel K2OE for a cyclic extension E/F of number fields of degree n with
p - n. As applications, for E/Q being a cyclic extension of odd prime order l,
we obtain some results on the divisibility of pm- rankK2OE that generalize
results for l = 3, 5 proved in [Br1], [Zh1] and [Wu]. For a cyclotomic field
Q(ζl), we investigate the divisibility of the orders of K2OQ(ζl) for l < 2000
and l ≡ 3 (mod 4).

We use the following notation, terminology and general facts. Fv denotes
the completion of F with respect to the valuation v, and µv is the group
of roots of unity in Fv. It is well-known that K2OF is the kernel of the
homomorphism τ : K2F →

⊔
F ∗v , v running through discrete valuations

of F , where τ satisfies τ({α, β}) = ((α, β)v)v. Here ( , )v is the tame symbol,
as defined in [Mi]. Let E/F be a number field extension. Denote by trE/F the
transfer homomorphism trE/F : K2(E) → K2(F ), and by jE/F the natural
homomorphism jE/F : K2(F )→ K2(E) induced by the inclusion F ⊆ E.

Let G be a finite group and A a finite abelian group which is a G-module.
Let x ∈ A. The stabilizer of x is denoted by Gx and the G-orbit of x by Gx,
that is,

Gx = {σ ∈ G | σx = x}, Gx = {σx ∈ A | σ ∈ G}.
For H a subgroup of G we set NH =

∑
h∈H h ∈ Z[G]. Let E/F be a Galois

extension with Galois group G = Gal(E/F ). Then we write NG = NE/F .
Therefore, we have jE/F trE/F = NG (see [Ke, (4.5)]). Since jE/F : K2(F )→
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K2(E) and trE/F : K2(E) → K2(F ) can be restricted to the groups K2OE
and K2OF , the equality jE/F trE/F = NG holds for these groups as well.

Let p be a prime and (A)p the p-primary part of A. Suppose that A
is a p-group and m is a positive integer. Then pm- rankA is defined to be
dimZ/pZ(Ap

m−1
/Ap

m
). Set A(pm) = {a ∈ A | pma = 0}. Obviously, also

pm- rankA = p- rankA(pm)/A(pm−1). In this paper, we define

ME = K2OE(pm)/K2OE(pm−1) and MF = K2OF (pm)/K2OF (pm−1).

For an integer n > 1 prime to p, denote by o(n, p) the order of p in the
multiplicative group (Z/nZ)∗, and by c(n, p) the greatest common divisor
of o(l, p) for all prime factors l of n.

2. pm-Rank of the tame kernel

Lemma 1. Let G be a finite cyclic group, and A and B be finite G-
modules with (|A|, |G|) = 1. If 0 → A → B is an exact sequence of G-
modules, then (B/A)G = BG/AG.

Proof. Clearly, 0 → A → B → B/A → 0 is an exact sequence of G-
modules. Then by [Ne, Chapter I, Proposition 3.1] we have the exact se-
quence

0→ AG → BG → (B/A)G → H1(G,A).

From [Ne, Chapter I, Propositions 4.3 and 4.4], it is easy to obtain |H1(G,A)|
= |H0(G,A)|. We have |H0(G,A)| = 1 since (|A|, |G|) = 1. So

0→ AG → BG → (B/A)G → 0

is an exact sequence. Obviously, BG/AG ⊂ (B/A)G. This proves the result.

Lemma 2 ([Zh2, Lemma 4]). Let E/F be a Galois extension with Galois
group G of order n and p - n. For any intermediate field K, the homomor-
phism j : (K2OK)p → (K2OE)p is injective. We identify (K2OK)p with its
image in (K2OE)p. Let H ⊆ G be a subgroup. Then (K2OE)Hp = (K2OEH )p.

Proposition 1. Let E/F be a cyclic extension of degree n prime to p
and G = Gal(E/F ). Then NGME = jE/FMF and ME = jE/FMF⊕KerNG.

Proof. Note the inclusion map 0 → K2OE(pm−1) → K2OE(pm) and
NG : ME →ME . Since (n, p) = 1, we have NGME = MG

E . The first equality
follows from Lemmas 1 and 2. It follows from the assumption that there
exists an a ∈ Z such that an ≡ 1 (mod |MF |). Let x ∈ jE/FMF ∩ KerNG.
Then x = anx = aNGx = 0. This shows that jE/FMF ∩ KerNG = 0.
Comparing the orders, we obtain ME = jE/FMF ⊕KerNG.

Theorem 1. Let E/F be a cyclic extension of degree n prime to p. Then

pm-rankK2OE ≡ pm-rankK2OF (mod c(n, p)).
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Proof. Since G is cyclic, G has the composition series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gt = 1

such that every factor group Hi = Gi−1/Gi has prime order. Note that MGi
E

is an Hi-module and further (MGi
E )Hi = M

Gi−1

E . Therefore, by Proposition 1,
we have p-rankMGi

E − p-rankMGi−1

E = p-rank KerNHi since Hi is cyclic,
where NHi : MGi

E →MGi
E .

Suppose li is the order of |Hi|. Then (li, p) = 1. Let x ( 6= 0) ∈ KerNHi . If
(Hi)x = Hi, then 0 = NHix = lix, which yields x = 0 since (li, p) = 1. This
is a contradiction. Thus (Hi)x = 1 since li is a prime. So # KerNHi ≡ 1
(mod li). It is easy to obtain p-rank KerNHi ≡ 0 (mod o(li, p)).

In view of the sequence

MF = MG
E = MG0

E ⊆MG1
E ⊆ · · · ⊆MGt

E = ME ,

we have

p-rankME − p-rankMF =
t∑
i=1

(p-rankMGi
E − p-rankMGi−1

E )

=
t∑
i=1

p-rank KerNHi .

Therefore p-rankME ≡ p-rankMF (mod c(n, p)). This proves our assertion.

Corollary 1. Let E/F be a cyclic extension of prime degree l 6= p.
Then

pm-rankK2OE ≡ pm-rankK2OF (mod o(l, p)).

Corollary 2. Let E/F be a cyclic extension of degree n. If (n, p) = 1
and c(n, p) - pm-rankK2OF , then pm-rankK2OE ≥ 1 and

pm-rankK2OE ≡ pm-rankK2OF (mod c(n, p)).

Next, for a finite Galois extension E/F , we define a subgroup B(E/F )
of K2OE by

B(E/F ) =
⋂
K

Ker(trE/K : K2OE → K2OK),

where K runs through all the fields such that F ⊆ K ⊂ E and E/K is cyclic
of prime degree. Then we have

Theorem 2. Let E/F be a cyclic extension of degree n prime to p. Then

pm-rankB(E/F ) ≡ 0 (mod o(n, p)).

Proof. Note jE/F trE/F =NG. By Lemma 2, jE/K is injective. So B(E/F )
=

⋂
K KerNGK

, where GK = Gal(E/K).
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Let C = B(E/F )(pm)/B(E/F )(pm−1) and x (6= 0) ∈ C. Suppose that
there exists σ (6= 1) ∈ Gx. Let s be the order of σ. It follows from x ∈
C ⊆ KerN〈σ〉 that sx = N〈σ〉x = 0. Thus x = 0 by assumption. This is a
contradiction. Therefore, Gx = 1. Furthermore, it is obvious that |C| ≡ 1
(mod n). Hence p-rankC ≡ 0 (mod o(n, p)), that is, pm-rankB(E/F ) ≡ 0
(mod o(n, p)). This completes the proof.

Corollary 3. Let E/F be a cyclic extension of prime degree l 6= p.
Assume that there is a subfield k of F such that E/k is cyclic of degree lt.
Then

pm-rankK2OE ≡ pm-rankK2OF (mod o(lt, p)).

Proof. From the assumption we have the identity B(E/k) = KerNG.
Consider the norm map NG : (K2OE)p → (K2OF )p. By the proof of Propo-
sition 1, we have (K2OE)p = (K2OF )p⊕KerNG. Therefore, pm-rank KerNG

= pm-rankK2OE−pm-rankK2OF . The result now follows from Theorem 2.

Remark. Corollary 3 generalizes Corollary 1.

Corollary 4. Let F∞/F be a Zl extension for a prime number l 6= p,
and Fn its nth layer , that is, [Fn : F ] = ln. Then

pm-rankK2OFn ≡ pm-rankK2OFn−1 (mod o(ln, p))

for n ≥ 1.

Corollary 5. Let E/F be a cyclic extension of degree n prime to p.
Assume that p-rankK2OK = p-rankK2OF for any intermediate fields F ⊆
K ⊂ E such that E/K is cyclic of prime degree. Then

p-rankK2OE ≡ p-rankK2OF (mod o(n, p)).

Proof. For an intermediate field K of E/F , we consider the norm map
NGK

: K2OE(p) → K2OK(p), where GK = Gal(E/K). By the proof
of Proposition 1, we have K2OE(p) = K2OK(p) ⊕ KerNGK

. Therefore,
p-rank KerNGK

= p-rankK2OE − p-rankK2OK . If E/K is cyclic of prime
degree, then p-rank KerNGK

= p-rank KerNG by our assumption, and thus
KerNGK

= KerNG. Hence B(E/F )(p) = KerNG. The desired congruence
follows from this and Theorem 2.

3. Some cyclic extensions of Q. Let E/Q be a cyclic extension of
odd prime order l. As applications, in this section, we obtain some results on
the divisibility of pm-rankK2OE ; they generalize results for l = 3, 5, proved
in [Br1], [Zh1] and [Wu]. Using Proposition 4 below and results of [Br3], we
investigate the divisibility of the orders of K2OQ(ζl) for l < 2000 and l ≡ 3
(mod 4).
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Proposition 2. LetE/Q be a cyclic extension of prime degree l 6= p. If
p 6= 2 or m ≥ 2, then

o(l, p) | pm-rankK2OE .

Moreover , o(l, 2) | 2-rankK2OE−1.

Proof. It is well known that K2Z = Z/2Z. The desired results follow
from Theorem 1.

Proposition 3. Let E/Q be a cyclic extension of prime degree l 6= p.
If p is an odd prime, then vp(|K2OE |) ≡ 0 (mod o(l, p)), where vp(|K2OE |)
is the p-adic valuation of |K2OE |.

Proof. The result follows from Proposition 1 and the formula

vp(|K2OE |) =
∞∑
m=1

pm-rankK2OE .

Remark. 1. If E is a cubic cyclic number field and p ≡ 2 (mod 3), then
2 | pm-rankK2OE if p 6= 2 or m ≥ 2. Moreover, 2 | 2-rankK2OE − 1. These
results were proved in [Zh1] and [Br1].

2. If E is a quintic cyclic number field, then:

(i) 2 | 2-rankK2OE − 1 and 4 | 2m-rankK2OE ;
(ii) 4 | pm-rankK2OE for p ≡ 2, 3 (mod 5);
(iii) 2 | pm-rankK2OE for p ≡ 4 (mod 5).

This generalizes [Wu, Theorems 3.4 and 4.4].

Proposition 4. Let l be an odd prime and (p, (l − 1)/2) = 1. Let

F =

{
Q(
√
l) if l ≡ 1 (mod 4),

Q(
√
−l) if l ≡ 3 (mod 4).

Then

pm-rankK2OQ(ζl) ≡ p
m-rankK2OF (mod c((l − 1)/2, p)).

Proof. It is well known that E has a quadratic subfield Q(
√
l) if l ≡ 1

(mod 4) or Q(
√
−l) if l ≡ 3 (mod 4). The result then follows from Theorem 1.

Proposition 5. Let l 6= p be an odd prime. If o(l, p) - pm-rankK2OQ(ζl),
then pm-rankK2OQ(ζln ) ≥ 1 and

pm-rankK2OQ(ζln ) ≡ pm-rankK2OQ(ζl) (mod o(l, p))

for all integers n ≥ 2.

Proof. Since Q(ζln)/Q(ζl) is a cyclic extension of degree ln−1, the result
follows from Theorem 1.



276 H. Y. Zhou

Example. In the following, by the conjectural results of [Br3] and Propo-
sition 4, we get the divisibility of the odd parts of the tame kernels of
E = Q(ζl) for prime numbers l < 2000 and l ≡ 3 (mod 4).

(1) 3-rankK2OE ≡ 1 (mod 52) when l = 107, 3-rankK2OE ≡ 1 (mod 125)
when l = 503, 3-rankK2OE ≡ 1 (mod 43) when l = 863, 3-rankK2OE
≡ 1 (mod 329) when l = 1319, 3-rankK2OE ≡ 1 (mod 808) when
l = 1619;

(2) 27-rankK2OE ≡ 1 (mod 2) when l = 1583;
(3) 5-rankK2OE ≡ 1 (mod 442) when l = 887, 5-rankK2OE ≡ 1 (mod 64)

when l = 1283, 5-rankK2OE ≡ 1 (mod 742) when l = 1487;
(4) 7-rankK2OE ≡ 1 (mod 238) when l= 479, 7-rankK2OE ≡ 1 (mod 760)

when l = 1523, 7-rankK2OE ≡ 1 (mod 4) when l = 1571;
(5) 13-rankK2OE ≡ 1 (mod 2) when l = 491;
(6) 83-rankK2OE ≡ 1 (mod 2) when l = 1667;
(7) 23-rankK2OE ≡ 1 (mod 2) when l = 1847.
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