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Tame kernels of cyclic extensions of number fields
by

HA1vAN ZHOU (Nanjing)

1. Introduction. Let F' be an algebraic number field, O the ring of
integers in F' and K5 the Milnor K-functor. For an odd prime p, results on
the p-primary part of tame kernels of number fields can be found in [Brl],
[Br2], [Gu], [Ke], [Ko], [Qi], [Wu], [Zh1] and [Zh2]. For m > 1, it is of interest
to find the value of p™-rank KoOp. However, even for m = 1, we do not know
this value in general. In this paper we investigate the p™-rank of the tame
kernel KoQOp for a cyclic extension E/F of number fields of degree n with
p 1 n. As applications, for E/Q being a cyclic extension of odd prime order [,
we obtain some results on the divisibility of p-rank KoOp that generalize
results for [ = 3,5 proved in [Brl], [Zhl] and [Wu]. For a cyclotomic field
Q(¢1), we investigate the divisibility of the orders of K2Og((,) for I < 2000
and | = 3 (mod 4).

We use the following notation, terminology and general facts. F), denotes
the completion of F' with respect to the valuation v, and u, is the group
of roots of unity in F,. It is well-known that KoOp is the kernel of the
homomorphism 7 : KoF — | |F¥, v running through discrete valuations
of F', where 7 satisfies 7({c, 5}) = ((«, 8)v)v- Here (, ), is the tame symbol,
as defined in [Mi]. Let E//F be a number field extension. Denote by trg,/p the
transfer homomorphism trg/p : Kao(E) — Ka(F'), and by jg/p the natural
homomorphism jg,p : K2(F) — K2(E) induced by the inclusion I C E.

Let G be a finite group and A a finite abelian group which is a G-module.
Let x € A. The stabilizer of x is denoted by GG, and the G-orbit of x by Gz,
that is,

Gy={oceG|ox=12}, Gr={oxecAl|loecG}

For H a subgroup of G we set N = >, . h € Z[G]. Let E/F be a Galois
extension with Galois group G' = Gal(E/F'). Then we write Ng = Ng/p.
Therefore, we have jg/p trg/r = Ng (see [Ke, (4.5)]). Since jg/p : Ko(F) —
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K3(E) and trgp : Ko(E) — Ka(F) can be restricted to the groups K2Og
and KOp, the equality jg/p trg/p = Ng holds for these groups as well.

Let p be a prime and (A), the p-primary part of A. Suppose that A
is a p-group and m is a positive integer. Then p™-rank A is defined to be
dimZ/pZ(Apmfl/Apm). Set A(p™) = {a € A | p™a = 0}. Obviously, also
p"-rank A = p-rank A(p™)/A(p™1). In this paper, we define

Mg = KQOE(pm)/KQOE(pm_l) and Mp = KQOF(pm)/KQOF(pm_l).

For an integer n > 1 prime to p, denote by o(n,p) the order of p in the
multiplicative group (Z/nZ)*, and by c(n,p) the greatest common divisor
of o(l, p) for all prime factors [ of n.

2. p"-Rank of the tame kernel

LEMMA 1. Let G be a finite cyclic group, and A and B be finite G-
modules with (|A],|G|) = 1. If 0 — A — B is an exact sequence of G-
modules, then (BJA)® = B /AC.

Proof. Clearly, 0 - A — B — B/A — 0 is an exact sequence of G-
modules. Then by [Ne, Chapter I, Proposition 3.1] we have the exact se-
quence

0— AY - B¢ — (B/A)G — Hl(G, A).
From [Ne, Chapter I, Propositions 4.3 and 4.4], it is easy to obtain |[H(G, A)|
= |H°(G, A)|. We have |[H°(G, A)| = 1 since (JA|,|G]) = 1. So
0— AY - BY - (B/A)° -0
is an exact sequence. Obviously, BY /A% C (B/A)®. This proves the result.

LEMMA 2 ([Zh2, Lemma 4]). Let E/F be a Galois extension with Galois
group G of order n and p t n. For any intermediate field K, the homomor-
phism j : (K2Ok)p — (K20E)p is injective. We identify (K2Ok ), with its
image in (Ko2OFg),. Let H C G be a subgroup. Then (KQOE)II;—I = (K2O0gH)p.

PROPOSITION 1. Let E/F be a cyclic extension of degree n prime to p
and G = Gal(E/F). Then NoMg = jg/pMr and Mg = jgp/p Mp®Ker Ng.

Proof. Note the inclusion map 0 — KyOp(p™ ') — K2Op(p™) and
N¢g: Mg — Mg. Since (n,p) = 1, we have No Mg = Mg The first equality
follows from Lemmas 1 and 2. It follows from the assumption that there
exists an a € Z such that an =1 (mod |Mp|). Let x € jp/pMp N Ker Ng.
Then x = anzr = aNgz = 0. This shows that jp,pMp N Ker Ng = 0.
Comparing the orders, we obtain Mg = jg,pMp & Ker Ng.

THEOREM 1. Let E/F be a cyclic extension of degree n prime to p. Then
p"-rank KoOp = p™-rank KoOp (mod ¢(n,p)).
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Proof. Since G is cyclic, G has the composition series
G=GyDG1D---DG=1
such that every factor group H; = G;_1/G; has prime order. Note that Mgl
is an H;-module and further (MSZ)HZ = Mg"’_l. Therefore, by Proposition 1,
we have p-rank Mgl — p-rank Mgi’l = p-rank Ker Ny, since H; is cyclic,
where Ny, : MG — M§'.

Suppose l; is the order of |H;|. Then (l;,p) = 1. Let z (3 0) € Ker Np,. If
(Hi)z = H;, then 0 = Ny,z = l;x, which yields = = 0 since (I;,p) = 1. This
is a contradiction. Thus (H;), = 1 since [; is a prime. So # Ker Ny, = 1
(mod ;). It is easy to obtain p-rank Ker Ny, = 0 (mod o(l;, p)).

In view of the sequence

Mp=M§ =Mg°> C Mg' C--- C Mg = Mg,

we have
t

p-rank Mg — p-rank Mp = Z(p—rank Mgl — p-rank Mgi‘l)
i=1

t
= Z p-rank Ker Ng;,.
i=1
Therefore p-rank Mg = p-rank Mg (mod ¢(n,p)). This proves our assertion.

COROLLARY 1. Let E/F be a cyclic extension of prime degree I # p.
Then
p™-rank KoOp = p™-rank KoOp (mod o(l, p)).

COROLLARY 2. Let E/F be a cyclic extension of degree n. If (n,p) =1
and c¢(n,p) 1 p™-rank KoOp, then p™-rank KoOp > 1 and
pM-rank KoOp = p™-rank KoOp (mod c(n,p)).
Next, for a finite Galois extension E/F, we define a subgroup B(E/F)
of KQOE by

B(E/F) = Ker(trg i : K205 — K20k),
K
where K runs through all the fields such that F' C K C F and E/K is cyclic
of prime degree. Then we have

THEOREM 2. Let E/F be a cyclic extension of degree n prime to p. Then
p"-rank B(E/F) =0 (mod o(n,p)).

Proof. Note jgptrg/p = Ng. By Lemma 2, jg /i is injective. So B(E/F)
= (x Ker Ng,., where G = Gal(E/K).
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Let C = B(E/F)(p™)/B(E/F)(p™~!) and x (# 0) € C. Suppose that
there exists o (# 1) € G5. Let s be the order of o. It follows from z €
C C Ker Ny, that sz = Nz = 0. Thus 2 = 0 by assumption. This is a
contradiction. Therefore, G, = 1. Furthermore, it is obvious that |C| = 1
(mod n). Hence p-rank C' = 0 (mod o(n,p)), that is, p™-rank B(E/F) = 0
(mod o(n,p)). This completes the proof.

COROLLARY 3. Let E/F be a cyclic extension of prime degree | # p.
Assume that there is a subfield k of F such that E/k is cyclic of degree I°.
Then

pM-rank KoOp = p™-rank KoOp (mod o(I%, p)).

Proof. From the assumption we have the identity B(FE/k) = Ker Ng.
Consider the norm map Ng : (K20E), — (K20F),. By the proof of Propo-
sition 1, we have (K2OFg), = (K20F),®Ker N¢g. Therefore, p™-rank Ker N¢
= p™-rank KoOp — p™-rank KoOp. The result now follows from Theorem 2.

REMARK. Corollary 3 generalizes Corollary 1.

COROLLARY 4. Let Fs,/F be a Zy extension for a prime number | # p,
and F,, its nth layer, that is, [F,, : F] =1". Then

p™-rank KsOF, = p™-rank K2Op, , (mod o(l",p))
forn > 1.

COROLLARY 5. Let E/F be a cyclic extension of degree n prime to p.
Assume that p-rank KoOg = p-rank KoOp for any intermediate fields F C
K C E such that E/K is cyclic of prime degree. Then

p-rank KoOp = p-rank KO (mod o(n, p)).

Proof. For an intermediate field K of F/F, we consider the norm map
Ngy + K2Ogp(p) — K2Ok(p), where Gx = Gal(E/K). By the proof
of Proposition 1, we have K2Og(p) = K20k (p) @ Ker Ng, . Therefore,
p-rank Ker Ng,, = p-rank KoOp — prank KoOk. If E/K is cyclic of prime
degree, then p-rank Ker Ng,, = p-rank Ker Ng by our assumption, and thus
Ker Ng,, = Ker Ng. Hence B(E/F)(p) = Ker Ng. The desired congruence
follows from this and Theorem 2.

3. Some cyclic extensions of Q. Let E/Q be a cyclic extension of
odd prime order [. As applications, in this section, we obtain some results on
the divisibility of p”*-rank KoOpg; they generalize results for [ = 3,5, proved
in [Brl], [Zh1] and [Wu]. Using Proposition 4 below and results of [Br3|, we
investigate the divisibility of the orders of K2Ogqc,) for [ < 2000 and [ = 3
(mod 4).
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PROPOSITION 2. Let E/Q be a cyclic extension of prime degree | # p. If
p#2 orm > 2, then
o(l,p)| p™-rank K2Op.
Moreover, o(l,2) | 2-rank KoOp—1.

Proof. 1t is well known that K9Z = 7/27. The desired results follow
from Theorem 1.

PROPOSITION 3. Let E/Q be a cyclic extension of prime degree | # p.
If p is an odd prime, then v,(|K20g|) =0 (mod o(l,p)), where vy(|K20E|)
is the p-adic valuation of |K2Og|.

Proof. The result follows from Proposition 1 and the formula

up(|K20E|) = Z p"-rank KoOp.

m=1

REMARK. 1. If F is a cubic cyclic number field and p = 2 (mod 3), then
2| p™-rank KoOp if p # 2 or m > 2. Moreover, 2| 2-rank KoOp — 1. These
results were proved in [Zh1] and [Brl].

2. If E is a quintic cyclic number field, then:

(i) 2| 2-rank K5Op — 1 and 4| 2™-rank K2Og;
(ii) 4| p™-rank K2Op for p = 2,3 (mod 5);
(iii) 2| p™-rank K2OF for p =4 (mod 5).

This generalizes [Wu, Theorems 3.4 and 4.4].
PROPOSITION 4. Let 1 be an odd prime and (p, (I —1)/2) = 1. Let
B {@m if 1=1 (mod 4),
Q(V=1) if 1 =3 (mod 4).
Then
p"-rank KoOq(¢,) = p™-rank KoOp (mod c((I —1)/2,p)).

Proof. Tt is well known that E has a quadratic subfield Q(v/1) if I = 1
(mod 4) or Q(v/—1) if I = 3 (mod 4). The result then follows from Theorem 1.

PROPOSITION 5. Let [ # p be an odd prime. If o(l,p) { p™ -rank K2Oq(¢,),
then p™-rank KaOgq(¢n) > 1 and

prank K20q(¢,.) = p™-rank K2Ogq(¢,) (mod o(l,p))
for all integers n > 2.

Proof. Since Q((»)/Q(¢;) is a cyclic extension of degree ("1, the result
follows from Theorem 1.
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EXAMPLE. In the following, by the conjectural results of [Br3] and Propo-
sition 4, we get the divisibility of the odd parts of the tame kernels of
E = Q(¢;) for prime numbers [ < 2000 and | = 3 (mod 4).

(1) 3-rank KoOp =1 (mod 52) when | = 107, 3-rank KoOp = 1 (mod 125)
when | = 503, 3-rank KoOp = 1 (mod 43) when | = 863, 3-rank K2Op
= 1 (mod 329) when [ = 1319, 3-rank KoOp = 1 (mod 808) when
I = 1619:

(2) 27-rank KoOp =1 (mod 2) when [ = 1583,;

(3) 5-rank KoOp =1 (mod 442) when [ = 887, 5-rank KoOp = 1 (mod 64)
when [ = 1283, 5-rank KoOp =1 (mod 742) when [ = 1487;

(4) 7-rank KoOp = 1 (mod 238) when [ =479, 7-rank KoOg =1 (mod 760)
when | = 1523, 7-rank KoOg = 1 (mod 4) when | = 1571;

(5) 13-rank KoOp =1 (mod 2) when [ = 491;

(6) 83-rank KoOp =1 (mod 2) when [ = 1667;

(7) 23-rank KoOp = 1 (mod 2) when [ = 1847.
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