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On R. Chapman’s “evil determinant”: case p = 1 (mod 4)
by

MAXIM VSEMIRNOV (St. Petersburg)

1. Introduction. Let p be a prime and (E) denote the Legendre symbol.
Let us set n = (p — 1)/2 and consider the following (n+1) x (n+1) matrix C:

Cij = <‘7;Z>, 0<4,j7<n

Here and in what follows it is more natural to enumerate rows and columns
starting from zero. R. Chapman [8] raised the problem of evaluating det C;
for motivation and related determinants see also [6], [7]. In particular, Chap-
man conjectured (see also [4, Problem 10 (918)]) that det C'is always 1 when
p = 3 (mod 4) and had a conjectural expression for det C in terms of the
fundamental unit and class number of Q(,/p) for p = 1 (mod 4). The se-
quence det C' for primes p = 1 (mod 4) also appears as sequence A179073 in
the On-line Encyclopedia of Integer Sequences [I].

Chapman’s conjecture for p = 3 (mod 4) was settled affirmatively in [12].
The aim of this paper is to apply the methods developed in [12] to evaluate
det C for p =1 (mod 4).

Let O be the ring of integers of Q(,/p). Let € be the fundamental unit
in O and h = h(p) be the class number.

THEOREM 1. Let
ho g
e ifp=1 (mod 8),
1.1 a+b =
(L1) vp {53h if p=5 (mod 8),
Then det C' = —a.

Our proof is divided into three steps. First, we decompose C' into a prod-
uct of several matrices; see Theorem [2] below. This part resembles a similar
step in the evaluation of det C' for p = 3 (mod 4); see [12] for details. Second,
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we find general expressions for certain parametric Cauchy-type determinants
and reduce our problem to a particular case of that calculation. Finally, we
relate the determinants obtained to Dirichlet’s class number formula for real
quadratic fields [3, Ch. 5, §4], which involves both the class number and the
fundamental unit.

Looking at the numerical data, W. Zudilin and J. Sondow conjectured [T,
entry A179073] that det C' is always negative and even. This easily follows
from our Theorem 1.

COROLLARY 1. For p =1 (mod 4), det C is negative and even.

2. Matrix decomposition. Set n = (p —1)/2. Let ¢ be the primitive
pth root of unity with arg( = 27 /p. We also fix its square root ¢1/2 such
that arg (/2 = 7/p.

Let us consider the following three matrices U, V, and D:

e+ (e

(2.1) Uij = i , 0<4,5<n,
HC I+ ;) @)
Vij=¢*, 0<i,j<n,
1 .
0<k<n
ki
(23) D=0, i#j.

In particular, V' is a Vandermonde-type matrix and D is diagonal. If we set
g@)= [[ @-¢™),
0<k<n
then the diagonal entries of D can be represented in an alternative way as
1

(2.4) Dii = ooy

Finally, let 7,(r) be the Gauss sum
p—1 ke P
(1) = Z <p> ¢h =
k=1
THEOREM 2. For any prime p such that p =1 (mod 4), we have

(2.5) C =1,(2) P~ V4. vDUDV = <2> VpCP VA v DUDV.
p

REMARK 1. For p =3 (mod 4) we have (see [12]) a similar expression

C = —7,(2)¢"PtV/* vy DU DY,
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where
() - e
CI-R6
Both for p=1 (mod 4) and (2.6)) for p = 3 (mod 4) can be unified as
()= + (G
CHHEE)

The unified formula for the decomposition becomes C' = (%)TP(Q)C (P*~1)/4.
VDUDV.

(2.6) Ui; =

Uij =

Proof of Theorem[3. Let B =V DUDV. We have

_ 2ki+2r) 1 . 1 . (%)C_T_Qk‘F (%)C—Qr—k
N GE

k=0 r=0

The term corresponding to £ = r = 0 in the above sum vanishes. The
remaining terms can be arranged into three groups depending on whether
k=0,orr=0, or k# 0, r # 0. More precisely,

B;j = so + s1 + s2,

where
B 1 n T\ C(Qj—l)'r B 1 n (k) . C(Qi—l)k
Ty rzl <p> g Ty ; p) g(¢*)’
n on k\ —r—2k r\ —2r—k
_ okivorj L 1 ()< +(5)¢
22 e e T e 0

Notice that ¢~2¥=2" £ 1 and ((%) (%))2 =1 for 1 < k,r < n. Applying the
identity

(- B CR)--

which is valid for k, r such that p{ k, p{r, we have

42’““” =GN+ )™
ZZ g'(C%R) g/ (C27) ' (—2h—2r ]

C2k2+2r] (E) (C—Q'I‘—?)k _ C—Qr—k) + (ﬂ) (C—Sr—Qk _ C—T’—2k‘)
- ZZ q'(C2F)g'(C2r) - (—2k—2r Zi 1

k=1r= 1
= 53 + 84,

klrl
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where
B n.on E CZki+2rj ' <72r73k _ CfZT'fk
w=22 () e e
B n n ﬁ Cgkl.;_zrj ' <—3k _ C_k
- kZl; <p> g(CH)g'(¢r) (72—

n.n r C2k1+2rj C73r72k _ <7r72k
54 = Z Z () g (C%R) g/ (C27) ’ (2k=2r _ 1

k=1r=1 p
B non r C2kz+2rj ' C—Sr _ C—r
23 (e

By the Lagrange interpolation formula, for any polynomial f of degree
less than n + 1, we have

T n 1 2r
o) - Z IGcan xf(gcz)r‘

9(x)
Therefore, for any x different from the roots of g,

n

27 T
2 S (1 FE _f@) 1 fQ)

— g/ C2r) -T_CQT - g(:U) g/(l) r—1

If k runs through 1,...,n, then —2k (mod p) runs through the odd integers
p—2,p—4,...,3,1. In particular, (" 2* is not a root of g. To evaluate s3 we
first sum with respect to r and use |D for f(z) = 27 substituting x = ¢ 2

B n ﬁ <2kzi 3k ok <” 1 ‘ <2Tj >
53_2(10)9'@%)“ N g

k=1
_Z@ cl:’f « %_C_k)( fcfl;; o —1>
SO S

B Sl (e c)_s
Z() g (¢)g(¢2F) .

To evaluate s4 we argue in the same way but now we first sum with respect
to k and substitute z = (72" into (2.7) for f(z) = 2’. As a result,

B n r <2r(j—i)(<——3r _ C—r) B
o Zl <p> gy T
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Therefore,
B n k <~2k(i—j) (C—Sk’ _ C_k) n r C2r(j—i)(<—3r _ C_T)
v <p> g & <p) g'(¢¥)g(¢%)

k (C2k(i_j) 4 C—2k(i—j))(c—3k _ C_k)
(p> g'(¢%)g(¢=2) '

ol
- TM
I

k=1

Now we evaluate the denominator of each term. Recall that n = (p — 1)/2,
so (=1)"*! = (=1)P+1)/2 = _1if p = 1 (mod 4). We have

g = T «* - I 2 -¢*

otg;in 0<t<n
— (_1)n+1(C—Qk)n+1(<2)0+1+m+n (CQk _ (275) (C2k _ C_Qt)
Ogtlln Oglln
t#£k
_ C—k(p+1)c(p2—l)/4(g2k —1) H (<2k . C2t)
0<t<p—1
t+k

_ kac(pfl)/él(CQk - 1)((1_;0 - 1)/)|x:§2k _ _pcf?)ké-(pfl)/ll(c?k _ 1)

Using this together with the fact that (5) is an even character for p = 1
(mod 4), we continue as follows:

~(p-1)/1 . »
Bij _ C Z () (CQk(z—]) + C—Zk(z—]))
p 1 \P

_gmon Zn: ((k‘) (2H9) 4 <—’€> C%(M))
P W\ b
_ o pi (’f) (i)

p i1 \P

(i— i\ DA <T> or _ (j—i) ¢~ =D/A7,(2)
_< p > p 2 p)¢ =\ p ’

r=1

Since 7,(2) = (%)\/ﬁ for p =1 (mod 4) (see e.g. [10, Ch. 6]), we conclude
that

¢y (2) By = <2> VB = <] p ) =G
p p

which completes the proof. =
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3. Determinants of Cauchy-like matrices. The following identity
is due to Cauchy [5]:

€ ! = Wi —u; ) (V;—; wi4v:) L
‘ t<ui+vj)i,j:0,...,m1 H (( i— ;) (vi ])) H (u;+vj)

0<i<j<m—1 0<i,j<m—1

An alternative form of this identity can be obtained by replacing v; with
vj_l and multiplying each column by vj_lz

1
(3.1) det()
1+ U; V5

2,j=0,....m—1
= H ((Ul — uj)(vj — Uz)) H (1 + uivj)_l
0<i<ij<m—1 0<7,57<m—1

For further connections of (3.1)) with representation theory and symmetric
functions, see [11, Ch. 7].

In this section we evaluate the determinants of several parametric matri-
ces related to the second form of the Cauchy identity. Let @ = (uq, ..., um—1),
U = (vo,...,Um—1). Assume further that 1+ w;v; # 0, 4,5 =0...,m — 1.
Let M,,(i,v) be the m x m matrix with

U + Uy

M, (@0, 7))g5 = ———-.
(M) = 7

THEOREM 3. We h(we@
det M,, (i, 7)
m—1

m—1 m—1 m—1
(H 1+ u) [T (1 +0y) (—1)MH(1—ui)H(1—vj))
0 i=0 j:O

=0 ]:

X H (u; — uy) H (vj — v;) H H 14+ uvy)”

0<i<j<m—1 0<i<j<m—1
Proof. Let J be the m x m matrix with all entries equal to 1. Consider
f(t) = det(tJ + M, (d, v)).

Since J has rank 1, there are two invertible matrices H; and Hs with coef-

(*) When the paper was ready, T. Amdeberhan informed the author that an equivalent
statement was proved in [2] by a different method.
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ficients independent of the variable ¢t and such that

10 ... 0

00 ... 0
H,JHy =

00 ... 0

Since f(t) = det H; ! det(tHyJHy + Hy M, (i, V) Hy) det Hy™ 1 the function
f is linear with respect to ¢. In particular, det M,,(@,7) = f(O) = (f(1) +
f(—1))/2. On the other hand,

f(l)zdet(l ui—H}j) —det<(1+ui)(1+vj))
4,j=0,...m—1 i,j=0,...,m—1

1 + uiv; 1+ v
m—1 m—1 1
= (1 + ) (1+v-)-det(> .
g Z 11;[0 ’ L4 uivi /i jmo,...;m-1

In a similar way

f(—l)zdet<—1+ui+vj :det<_(1_u")(1_vj)>
0,....m—1 3,j=0,..;m—1

1 + uivj i,jz 1 + Ui'Uj
m—1 m—1 1
—(—" [T = w) (1—v-)-det(> .
H) Z 7=0 ’ 1 + Ui’l}j 1,j=0,...,m—1

Combining this with (3.1) we complete the proof. =

Now let & = (z1,...,Zm), ¥ = (Y1, .., Ym) and assume that 14+xz;y; # 0,
142 #0, 14+y; #0,4,5 =1,...,m. Let W,,(&,%) be the following
(m+1) x (m + 1) matrix:

—_
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Proof. Since

1 \ 1 1
1
M1 ((1,2), (1,9) = | . L ;
: M (Z, 9)
1
we find that
(3.2)  det Win(Z,7)
1 \ 0 0

= det Myyr (1, 2), (1, 7)) — det

= det Merl((l?f)? (17:’7)) — det Mm(fa 37)
By Theorem [3]

det (1,2, (1,7) = S5 D T TT 4 )
=1 J=

X H(lij) H (@i x])H( -1) (Yj — ¥i)
J=1 1<i<j<m J=1 1<i<j<m

< [T +y) ' [IA+=) [T+ iy +0
j=1 i=1 i=1j=1

=0r[a-e [[a-w) T] @i-=z) I Gi-w
=1 7j=1 1<i<j<m 1<i<j<m

X HH(1+$1y]) !

i=1j=1

Applying Theorem 3| to the evaluation of det M,,(Z,y) and using (3.2]) we
complete the proof. =

4. Evaluation of the determinant. Recall that n = (p—1)/2. Let G
be the diagonal matrix with

(4.1) Go=1, Gy= <;>g i=1,...,n.
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Set

(4.2) W = GUG.

By a direct computation, Wyy = 0,

e+ Q¢
1+ BB
In particular, W = W, (Z,v), where x; = y; = ( )(Z i =1,...,n. Now
we apply Theorem [4] The last product in the expression for det W can be
transformed in the following way: first we extract terms with ¢ = j and
then we combine the two factors corresponding to (i, j) and (j,4) for i # j.

Taking into account that (—1)" = (=1)?=1/2 = 1 for p = 1 (mod 4), we
conclude that

a9 a0 (D)) T (0)e))

L0 I () e

Woj =Wio=1, W= ,7=1,...,n.

7j=1
The following auxiliary result is an easy consequence of standard meth-
ods of evaluating Gauss sums. We present its proof for completeness.

LEMMA 1. Ifptr, then

(1.4 [ - = (L) vp
j=1
Proof. By [10), Proposition 6.4.3],
\/* H <2k 1 — ¢ (2k— 1 nf[ Cp—(Qk—l) _C—p—l-(?k—l))
k=1 k=1

ﬁ CQ] 2]

Apply the automorphlsm v of Q(¢) induced by v(¢) = ¢". It follows from
the standard properties of Gauss sums that v(,/p) = (2%) VD =

COROLLARY 2. We have

n

(4.5) [[@"?-¢77?) = (23)\/13:(—1)”/2\/11

Jj=1

(4.6) ﬁ 1+ %) C"(er)/? <2)
7=1

p
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Proof. Notice that ¢%/2 = —¢(®+1)/2, Hence,

n n

H(Cj/2 _ g*j/2 H g(erl /2 — (- C(p+1)/2)*j)

j=1 7j=1

1)"/?2 H (p+1)/2y7 _ (¢ +1)/2)=3),

(Here we extract —1 from each term that corresponds to an odd j.) The first
desired identity now follows from Lemma applied tor = (1 —p)/4 and
from the fact that, for p = 1 (mod 4), (—1)"/? = (=1)P~D/4 = (%) To prove
the second identity we use the equality 1+ (% = ¢J(¢¥ — ¢~2)(¢J —¢7)~!
and Lemma [I] applied to r =1 and r = (p+1)/2.

LEMMA 2. We have

(0 () (- Q) -

=1 7j=1
where a is defined in (|1.1]).
Proof. Let

e ()

Notice that (1+ (2)¢7)* = (¢7 + (2))”. We have

e () <o Q)

=2 L (@R = I @iy

1<j<n 1<j<n
(4/p)=-1 (4/p)=1
=z I @ = I @R -
1<j<n 1<j<n
(4/p)=-1 (4/p)=1
% H HC]/Q J/2 ]._[gj/2 J/2
1§j<n 7=1 Jj=1

(4/p)=

Since (17) is an even character for p = 1 (mod 4), the number of quadratic
residues modulo p on the interval [1,n] equals the number of quadratic
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non-residues on the same interval. Therefore, we can continue as follows:

-\ —2
s=Cn<n+l)/2 H (sm 7;]) H (sin 7;7> H (sm 2;‘])

1<j<n 1<j<n 1<j<n
(4/p)=-1 (4/p)=1 (4/p)=1
n N —1 n
« H(Sm 7;9) T2 - 7).
j=1 j=1

Let us consider the third and the fourth products more carefully. We have
sin(27j/p) = sin(w(p—235)/p). Moreover, the map j — p—2j gives a bijection
between the sets
2
()}

{j n/2 <j<mn, (Q)—l} and {k 1<k<n, klsodd()
while the map j — 2j is the bijection between

{7:1<j<n/2,({) =1} and {k:1<k<n,kiseven, (£
Therefore,

2 n N —1 —1

H (sm 7r> H <sin 7T]> = H sin ﬂ—k H <sin 7Tk> .
1<j<n p j=1 p 1<k<n P ik p
(3/p)=1 (k/p)=(2/p) (k/p)=—(2/p)
By Dirichlet’s class number formula for real quadratic fields (see e.g. [3,

Ch. 5, §4]), )
eh = H sin —] (sin M) .
] p 1<j<n p

1<5<n

(G/p=-1 (@/p)=1
Combining this with the above equalities, we conclude that

n . 2
J\ri) — n(n+1)/2(2=(2/p))h 3/2 j/2
(4.7) H(l + (p)c ) ¢ H ¢ )-

j=1 7=1

>
SN—
I
—~
A1)
SN—
——

In a similar way,

n . 2 n
J i _
4.8 || 1 (L)) = nnt1)/2.-(2=(2/p)h H 3/2 ]/2
(148) ( (p>g> ‘ iy ¢

Jj=1

It is well known that " is a quadratic unit of norm —1 (which is equiv-
alent to the fact that the norm of € is —1 and h is odd); see e.g. [9, Ch. 4,
§18.4] or [3 Ch. 5, Sec. 4, Ex. 5]. It follows that

(4.9) S(2-2/p)h _ o~(2~(2/p)h

where a is defined in ((1.1)).
Applying Corollary 2[to the evaluation of [[}_; (¢7/2—¢=3/2) we complete
the proof. m
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Proof of Theorem[1 It follows from Theorem [2 Lemma [2] and equations

" ) " ) " that
2 n+2
(4.10) det C = g(n+1)(p—1>/4<(> \/ﬁ)

p
x (det V)?(det D)?(det G) 2 f2 £, 2a,

where

29 RORODEES NECIOR

and a is defined by (L.1). Clearly, det G € (Z[¢])* by (4.1).

Let us recall some well-known facts about the arithmetic of the ring
Z[¢]. The reader may find further details in [10, Ch. 13]. The ideal (1 —() is
prime in Z[¢] and p = a(1 — ¢)P~!, where « is a unit in Z[¢]. In particular,

VP = 1p(1) = a1(1 = )", where a; € (Z[¢])*. Finally, (1 —¢¢)/(1 - () and
1+ (€ are in (Z[¢])* provided p 1 c.
Notice that

detV="J] (¢¥-¢%)

0<i<j<n

by the well-known evaluation of the Vandermonde determinant. Using this

together with the definition of D (see (12.2)), (2.3])) and the above observations
we find that

(vp)" ! (det V)*(det D)* € (Z[C))".

Since (5) is an even character and n = (p—1)/2, there are n/2 quadratic

residues and n/2 quadratic non-residues modulo p on the interval [1,n].
Thus,

#{(0,5): 1<d,5<n, (L) = (£)} =n?/2,
#{(,5) 1 <i,j<m, (£) =—(L)} =n?/2.

Since the pairs (7,7) are in the first set and the pairs (4, j) and (j,4) are in
one and the same set,

#{(5)1<i<j<n, (5) = ()} =n(n-2)/4,
#{(i,j):1<i<j<n, (i) =—(L)}=n’/4

In addition,

p

()¢ — (1)¢d € { (Z(<) it (5) # (3).
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@y if (
1+ i J CH—]
BB (g@ay i

Therefore, \/p f2f5 2 € (Z[¢])*.

Finally, notice that ( is of odd multiplicative order and therefore any
power of ( is a square in Z[(]. Using (]ﬁ we conclude that det C' = —aé?,
where § € (Z[(])*. Since det C' is an integer and a is a non-zero integer or
half-integer, we see that 62 € Q. Hence, §2 € Z*, i.e., 62 = £1. On the other
hand, Q(¢) does not contain primitive fourth roots of 1, since

Q¢ V1) : QI =[Q(¢-V1):Q =2(p—1)

and
Q) : Q=p—-1.
Therefore, 62 =1. =

Proof of Corollary[ll. Since e > 1, we see immediately that a > 0. Hence,
det C' < 0. Notice that the sum of the rows of C' is zero modulo 2. Therefore,
det C' is even. m
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