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Euclidean quadratic forms and ADC forms: I
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Introduction. We denote by N the nonnegative integers (including 0).

Throughout, R will denote a commutative, unital integral domain and
K its fraction field. We write R• for R \ {0} and ΣR for the set of height
one primes of R.

If M and N are monoids (written multiplicatively, with identity el-
ement 1), a monoid homomorphism f : M → N is nondegenerate if
f(x) = 1⇔ x = 1.

The goal of this work is to set up the foundations and begin the sys-
tematic arithmetic study of certain classes of quadratic forms over a fairly
general class of integral domains. Our work here is concentrated around two
definitions, Euclidean form and ADC form.

These definitions have a classical flavor, and various special cases of
them can be found (most often implicitly) in the literature. Our work was
particularly motivated by the similarities between two classical theorems.

Theorem 1 (Aubry, Davenport–Cassels). Let A = (aij) be a symmetric
n × n matrix with coefficients in Z, and let q(x) =

∑
1≤i,j≤n aijxixj be a

positive definite integral quadratic form. Suppose that for all x ∈ Qn, there
exists y ∈ Zn such that q(x− y) < 1. Then if d ∈ Z is such that there exists
x ∈ Qn with q(x) = d, there exists y ∈ Zn such that q(y) = d.

Consider q(x) = x21 + x22 + x23. It satisfies the hypotheses of the theorem:
approximating a vector x ∈ Q3 by a vector y ∈ Z3 of nearest integer entries,
we get

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 ≤
3

4
< 1.

Thus Theorem 1 shows that every integer which is the sum of three rational
squares is also the sum of three integral squares. The Hasse–Minkowski
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theory makes the rational representation problem routine: d ∈ Q• is Q-
represented by q iff it is R-represented by q and Qp-represented by q for all
primes p. The form q R-represents the nonnegative rational numbers. For
odd p, q is smooth over Zp and hence isotropic: it Qp-represents all rational
numbers. Finally, for a ∈ N there are no primitive Z2-adic representations
of 4a · 7, so q does not Q2-adically represent 7, whereas the other 7 classes
in Q×2 /Q

×2
2 are all Q2-represented by q. We conclude:

Corollary 2 (Gauss–Legendre Three Squares Theorem). An integer n
is a sum of three integer squares iff n ≥ 0 and n is not of the form 4a(8k+7).

One may similarly derive Fermat’s Theorem on sums of two integer
squares. The argument does not directly apply to sums of four or more
squares since the hypothesis is not satisfied: if qn(x) = x21 + · · · + x2n and
we take x = (1/2, . . . , 1/2), the best we can do is to take y to have all
coordinates either 0 or 1, which gives q(x− y) = n/4 (1).

This proof of Corollary 2 is essentially due to L. Aubry [1], but was long
forgotten until it was rediscovered by Davenport and Cassels in the 1960s.
They did not publish their result, but J.-P. Serre included it in his influential
text [25], and it is by now quite widely known.

On the other hand there are the following results.

Theorem 3 (Pfister [23]). Let F be a field, char(F ) 6= 2, let q(x) be a
quadratic form over F , and view it by base extension as a quadratic form
over the polynomial ring F [t]. Suppose that for d ∈ F [t], there exists x =
(x1, . . . , xn) ∈ F (t)n such that q(x) = d. Then there exists y = (y1, . . . , yn)
∈ F [t]n such that q(y) = d.

Corollary 4 (Cassels [7]). Fix n ∈ Z>0. A polynomial d ∈ F [t] is
a sum of squares of n rational functions iff it is a sum of squares of n
polynomials.

Theorems 1 and 3 each concern certain quadratic forms q over a domain
R with fraction field K, and the common conclusion is that for all d ∈ R,
q R-represents d iff it K-represents d. This is a natural and useful property
for a quadratic form R over an integral domain to have, and we call such a
form an ADC form.

The relationship between the hypotheses of the Aubry–Davenport–
Cassels and Cassels–Pfister theorems is not as immediate. In the former
theorem, the hypothesis on q is reminiscent of the Euclidean algorithm. To
generalize this to quadratic forms over an arbitrary domain we need some
notion of the size of q(x − y). We tackle this by introducing the notion of
a norm function | · | : R → N on an integral domain. Then we define an

(1) On the other hand, one can easily deduce Lagrange’s Four Squares Theorem from
the Three Squares Theorem and Euler’s Four Squares Identity.
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anisotropic quadratic form q(x) = q(x1, . . . , xn) over (R, | · |) to be Euclidean
with respect to the norm if for all x ∈ Kn, there exists y ∈ Rn such that
|q(x − y)| < 1. We justify this notion by carrying over the proof of the
Aubry–Davenport–Cassels theorem to this context: we show that for any
normed ring (R, | · |), a Euclidean quadratic form q/R is an ADC form. This
suggests a strategy of proof of the Cassels–Pfister theorem: first, find a nat-
ural norm on the domain R = F [t], and second show that any “constant”
quadratic form over R is Euclidean with respect to this norm. This strategy
is carried out in Section 2.5; in fact we get a somewhat more general (but
still known) result.

After establishing that every Euclidean form is an ADC form, a natural
followup is to identify all Euclidean forms and ADC forms over normed rings
of arithmetic interest, especially complete discrete valuation rings (CDVRs)
and Hasse domains, i.e., S-integer rings in global fields. This is a substantial
project that is begun but not completed here. In fact much of this paper
is foundational: we do enough work to convince the reader (or so I hope)
that Euclidean and ADC forms lead not just to a generalization of parts of
the arithmetic theory of quadratic forms to a larger class of rings, but that
these notions are interesting and useful even (especially?) when applied to
the most classical cases.

The structure of the paper is as follows: §1 lays some groundwork re-
garding normed domains. This is a topic lying at the border of commutative
algebra and number theory, and it is not really novel: it occurs for instance
in [19] (a work with profound connections to the present subject—so much
so that we have chosen to leave them to a future paper), not to mention the
expository work [11] in which the theory of factorization in integral domains
is “remade” with norm functions playing an appropiately large role. But to
the best of my knowledge this theory has never been given a systematic
exposition. This includes the present work: we began with a significantly
longer treatment and pared it down to include only those results which ac-
tually get applied to the arithmetic of quadratic forms. (In particular, in
an effort to convince the reader that we are doing number theory and not
just commutative algebra, we have excised all references to Krull domains,
which in fact provide a natural interpolation between UFDs and Dedekind
domains.)

§2 introduces Euclidean quadratic forms and ADC forms and proves the
main theorem advertised above: that Euclidean implies ADC. In §3 we prove
some results on the effect of localization and completion on Euclideanness
and the ADC property. These results may not seem very exciting, but the
relative straightforwardness of the proofs is a dividend paid by our foun-
dational results on normed domains. Moreover, they are absolutely crucial
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in §4 of the paper, where we completely dispose of Euclidean forms over
a CDVR and then move to an analysis of Euclidean and ADC forms over
Hasse domains and in particular over Z and F[t]. The reader who skips
lightly through the rest to get to this material will be forgiven in advance.

1. Normed rings

1.1. Elementwise norms. A norm on a ring R is a function |·| : R→ N
such that

(N0) |x| = 0⇔ x = 0,
(N1) ∀x, y ∈ R, |xy| = |x| |y|, and
(N2) ∀x ∈ R, |x| = 1⇔ x ∈ R×.

A normed ring is a pair (R, |·|) where |·| is a norm on R. A ring admitting
a norm is necessarily an integral domain. We denote the fraction field by K.

A norm | · | is non-Archimedean if for all x, y ∈ R, |x+y| ≤ max{|x|, |y|}.
Let R be a domain with fraction field K. We say that two norms |·|1, |·|2

on R are equivalent, and write |·|1 ∼ |·|2, if for all x ∈ K, |x|1 < 1⇔ |x|2 < 1.

Remark. Let (R, |·|) be a normed domain with fraction field K. By (N1)
and (N2), |·| : (R•, ·)→ (Z+, ·) is a homomorphism of commutative monoids.
It therefore extends uniquely to a homomorphism on the group completions,
i.e., | · | : K× → Q>0 via |x/y| = |x|/|y|. This map factors through the group
of divisibility G(R) = K×/R× to give a map K×/R× → Q>0, which need
not be injective.

Example 1.1. The usual absolute value | · |∞ on Z (inherited from R)
is a norm.

Example 1.2. Let k be a field, R = k[t], and let a ≥ 2 be an integer.
Then the map f ∈ k[t]• 7→ adeg f is a non-Archimedean norm | · |a on R and
the norms obtained for various choices of a are equivalent. As we shall see,
when k is finite, the most natural normalization is a = #k. Otherwise, we
may as well take a = 2.

Example 1.3. Let R be a discrete valuation ring (DVR) with valuation
v : K× → Z and residue field k. For any integer a ≥ 2, we may define a norm
on R, | · |a : R• → Z>0, by x 7→ av(x). (Note that these are the reciprocals
of the norms x 7→ a−v(x) attached to R in valuation theory.) Using the fact
that G(R) = K×/R× ∼= (Z,+) one sees that these are all the norms on R.
That is, a DVR admits a unique norm up to equivalence.

Example 1.4. Let R be a UFD. Then Prin(R) is a free commutative
monoid on the set ΣR of height one primes of R [4, VII.3.2]. Thus, to give
a norm map on R it is necessary and sufficient to map each prime element
π to an integer nπ ≥ 2 in such a way that if (π) = (π′) then nπ = nπ′ .
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1.2. Ideal norms. For a domain R, let I+(R) be the monoid of nonzero
ideals of R under multiplication and I(R) be the monoid of nonzero frac-
tional R-ideals under multiplication.

An ideal norm on R is a nondegenerate homomorphism of monoids | · | :
I+(R)→ (Z>0, ·). We extend the norm to the zero ideal by putting |(0)| = 0.
In plainer language, to each nonzero ideal I we assign a positive integer |I|
such that |I| = 1⇔ I = R and |IJ | = |I| |J | for all ideals I and J .

1.3. Finite quotient domains. A commutative ring R has the prop-
erty of finite quotients (FQ) if for all nonzero ideals I of R, the ring R/I is
finite [6], [9], [20].

Obviously any finite ring satisfies (FQ). On the other hand, it can be
shown that any infinite ring satisfying (FQ) is necessarily a domain. We
define a finite quotient domain to be an infinite integral domain satisfying
(FQ) which is not a field. A finite quotient domain is a Noetherian domain
of Krull dimension one, hence it is a Dedekind domain iff it is integrally
closed.

Example 1.5. The rings Z and Fp[t] are finite quotient domains. From
these many other examples may be derived using the following result.

Proposition 5. Let R be a finite quotient domain with fraction field K.

(a) Let L/K be a finite extension, and let S be a ring with R ⊂ S ⊂ L.
Then, if not a field, S is a finite quotient domain.

(b) The integral closure R̃ of R in K is a finite quotient domain.
(c) The completion of R at a maximal ideal is a finite quotient domain.

Proof. Part (a) is [20, Thm. 2.3]. In particular, it follows from (a) that R̃

is a finite quotient domain. That R̃ is a Dedekind ring is part of the Krull–
Akizuki Theorem. Part (c) follows immediately from (a) and [9, Cor. 5.3].

Let R be a finite quotient domain. For a nonzero ideal I of R, we define
|I| = #R/I. It is natural to ask whether I 7→ |I| gives an ideal norm on R.

Proposition 6. Let I and J be nonzero ideals of the finite quotient
domain R.

(a) If I and J are comaximal, i.e., I + J = R, then |IJ | = |I| |J |.
(b) If I is invertible, then |IJ | = |I| |J |.
(c) The map I 7→ |I| is an ideal norm on R iff R is integrally closed.

Proof. Part (a) follows immediately from the Chinese Remainder The-
orem. As for (b), we claim that the norm can be computed locally: For
each p ∈ ΣR, let |I|p be the norm of the ideal IRp in the local finite norm
domain Rp. Then

|I| =
∏
p

|I|p.
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To see this, let I =
⋂n
i=1 qi be a primary decomposition of I, with pi =

rad(qi). It follows that {q1, . . . , qn} is a finite set of pairwise comaximal
ideals, so the Chinese Remainder Theorem applies to give

R/I ∼=
n∏
i=1

R/qi.

Since R/qi is a local ring with maximal ideal corresponding to pi, it follows
that |qi| = |qiRpi |, establishing the claim.

Using the claim reduces us to the local case, so that we may assume
the ideal I = (xR) is principal. In this case the short exact sequence of
R-modules

0→ xR

xJ
→ R

xJ
→ R

(x)J
→ 0

together with the isomorphism

R

J

·x−→ xR

xJ

does the job.

For (c), notice that if R is integrally closed (hence Dedekind), every ideal
is invertible, so this is an ideal norm. The converse is [6, Thm. 2].

In all of our applications, R is either an S-integer ring in a global field
or a completion of such at a height one prime. By the results of this section,
the map I 7→ |I| = #R/I is an ideal norm on these rings. We will call this
norm canonical. We ask the reader to verify that the norm of Example 1.1 is
canonical, as are the norms | · |#k of Examples 1.2 and 1.3 when the field k
is finite.

1.4. Euclidean norms. A norm | · | on R is Euclidean if for all x ∈ K,
there is y ∈ R such that |x−y| < 1. Whether R is Euclidean for | · | depends
only on the equivalence class of the norm.

Example 1.6. The norm | · |∞ on Z is Euclidean. The norms | · |a on k[t]
are Euclidean. For a DVR, the norms | · |a (cf. Example 1.3) are Euclidean:
indeed, for x ∈ K•, x ∈ K \ R ⇔ v(x) < 0 ⇔ |x|a = av(x) < 1, so we
may take y = 0. In a similar way, to any semilocal PID R one can attach a
natural family of Euclidean norms (including the canonical norm if R is a
finite quotient domain).

Example 1.7. S = ZK is the ring of integers in a number field K. It is
a classical problem to determine whether R is Euclidean for the canonical
norm, or norm-Euclidean. Note that a Euclidean number field has class num-
ber one. Conditional on the Generalized Riemann Hypothesis, it is known
that every number field of class number one except Q = K(

√
−D) for
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D = 19, 43, 67, 163 is Euclidean for some noncanonical norm (2). This is
to be contrasted with the standard conjecture that there are infinitely many
class number one real quadratic fields and the fact that there are only finitely
many norm-Euclidean real quadratic fields [2].

2. Euclidean quadratic forms and ADC forms

2.1. Euclidean quadratic forms. Let (R, | · |) be a normed ring of
characteristic not 2. A quadratic form over R is a polynomial q ∈ R[x] =
R[x1, . . . , xn] which is homogeneous of degree 2. Throughout this note we
only consider quadratic forms which are nondegenerate over the fraction
field K of R. A nondegenerate quadratic form q/R is isotropic if there exists
a = (a1, . . . , an) ∈ Rn \ {(0, . . . , 0)} such that q(a) = 0; otherwise q is
anisotropic. A form q is anisotropic over R iff it is anisotropic over K.
A quadratic form q/R is universal if for all d ∈ R, there exists x ∈ Rn such
that q(x) = d.

A quadratic form q on a normed ring (R, | · |) is Euclidean if for all
x ∈ Kn \Rn, there exists y ∈ Rn such that 0 < |q(x− y)| < 1. (Again, this
definition depends only on the equivalence class of the norm.)

Remark. An anisotropic quadratic form q is Euclidean iff for all x ∈ Kn

there exists y ∈ Rn such that |q(x− y)| < 1.

Proposition 7. The norm |·| on R is a Euclidean norm iff the quadratic
form q(x) = x2 is a Euclidean quadratic form.

Proof. Noting that q is anisotropic, this comes down to:

∀x, y ∈ K, |x− y| < 1 ⇔ |q(x− y)| = |(x− y)2| = |x− y|2 < 1.

Example 2.1. Let n, a1, . . . , an ∈ Z+. Then the integral quadratic form
q(x) = a1x

2
1 + · · ·+ anx

2
n is Euclidean iff

∑
i ai < 4.

2.2. Euclideanity. For a quadratic form q over a normed ring (R, | · |)
with fraction field K, define for x ∈ Kn,

E(q, x) = inf
y∈Rn

|q(x− y)| and E(q) = sup
x∈Kn

E(q, x).

Let us call E(q) the Euclideanity of q. Thus an anisotropic form q is Eu-
clidean if E(q) < 1 and is not Euclidean when E(q) > 1. The case E(q) = 1
is ambiguous: the form q is not Euclidean iff the supremum in the defini-
tion of E(q) is attained, i.e., iff there exists x ∈ Kn such that E(q, x) = 1.
A non-Euclidean form with E(q) = 1 will be said to be boundary-Euclidean.

(2) In fact the definition of a norm function that one finds in the literature is a little
weaker than ours, in that multiplicativity is replaced by the condition |x| ≤ |xy| for all
x, y ∈ R•.
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We define the Euclideanity E(R) of R itself to be the Euclideanity of
q(x) = x2.

Example 2.2. Take R = Z with its canonical norm and n, a1, . . . , an
∈ Z+, as in Example 2.1 above. Then

E(a1x
2
1 + · · ·+ anx

2
n) =

a1 + · · ·+ an
4

.

The forms with E(q) = 1 are boundary-Euclidean.

2.3. ADC forms. A quadratic form q(x) = q(x1, . . . , xn) over R is an
ADC form if for all d ∈ R, if there exists x ∈ Kn such that q(x) = d, then
there exists y ∈ Rn such that q(y) = d.

Example 2.3. Any universal quadratic form is an ADC form. If R = Z
and q is positive definite and positive universal—i.e., represents all positive
integers—then q is an ADC form. Thus for each n ≥ 5 there are infinitely
many positive definite ADC forms, e.g. x21 + · · ·+ x2n−1 + dx2n for d ∈ Z+.

Example 2.4. Let R̃ be the integral closure of R in K. Then q(x) = x2

is not an ADC form iff there exists a ∈ R̃\R such that a2 ∈ R. In particular
x2 is an ADC form if R is integrally closed.

Example 2.5. Let R be a UFD and a ∈ R•. Then q(x) = ax2 is ADC
iff a is squarefree.

Example 2.6. Suppose R is an algebra over a field k, and let q/k be
isotropic. Then the base extension of q to R is universal. Indeed, since q is
isotropic over k, it contains the hyperbolic plane as a subform. That is, after
a k-linear change of variables, we may assume q = x1x2+q′(x3, . . . , xn), and
the conclusion is now clear.

Example 2.7. The isotropic form q(x, y) = x2− y2 is not an ADC form
over Z: it is universal over Q but not over Z.

Theorem 8. Let (R, | · |) be a normed ring not of characteristic 2 and
let q/R be a Euclidean quadratic form. Then q is an ADC form.

Proof. For x, y ∈ Kn, put x · y := 1
2(q(x + y) − q(x) − q(x)). Then

(x, y) 7→ x · y is bilinear and x · x = q(x). Note that for x, y ∈ Rn, we need
not have x · y ∈ R, but certainly we have 2(x · y) ∈ R.

Let d ∈ R, and suppose there exists x ∈ Kn such that q(x) = d. Equiva-
lently, there exists t ∈ R and x′ ∈ Rn such that t2d = x′ · x′. Choose x′ and
t such that |t| is minimal. It is enough to show that |t| = 1, for then t ∈ R×
by (N1).

Apply the Euclidean hypothesis with x = x′/t: there is y ∈ R such that
if z = x− y, then

0 < |q(z)| < 1.
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Now put

a = y · y − d, b = 2dt− 2(x′ · y), T = at+ b, X = ax′ + by.

Then a, b, T ∈ R and X ∈ Rn.

Claim. X ·X = T 2d.

Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y)

= a2t2d+ ab(2dt− b) + b2(d+ a) = d(a2t2 + 2abt+ b2) = T 2d.

Claim. T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)−dt2 + 2dt2− t(2x′ ·y) = t2(y · y)− t(2x′ · y)+x′ · x′

= (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).
Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality

of |t|.
Remark. This proof is modeled on that of [25, pp. 46–47].

Example 2.8. Let R = Z with its canonical norm, and consider q1(x, y)
= x2 + 3y2 and q2(x, y) = 2x2 + 2y2. Both of these forms are non-Euclidean
forms with Euclideanity 1, i.e., boundary-Euclidean forms. It happens that
q1 is nevertheless an ADC form, a fact whose essential content was well
known to the great number theorists of the 18th century. For instance, one
can realize q1 as an index 2 sublattice of the maximal lattice (see §2.5)
q′(x, y) = x2 + xy + y2 which is Euclidean (this corresponds to the fact
that the ring of integers of Q(

√
−3) is a Euclidean domain) and then reduce

the problem of integer representations of q1 to that of integer representa-
tions of q′ with certain parity conditions. But in fact Weil [29, pp. 292–295]
modifies the proof of Aubry’s theorem (i.e., essentially the same argument
used to prove Theorem 8) to show directly that the boundary-Euclidean
form q1 is ADC. His argument also works for the boundary-Euclidean forms
x21+x22+2x23 and x21+x22+x23+x24. However, it does not work for q2: indeed,
q2(1/2, 1/2) = 1 but q2 evidently does not Z-represent 1, so q2 is not ADC.

Is there a supplement to Theorem 8 giving necessary and sufficient con-
ditions for a boundary-Euclidean form to be ADC? We leave this as an open
problem.

2.4. The generalized Cassels–Pfister Theorem

Lemma 9. Let q be an anisotropic quadratic form over a field k. Then
q remains anisotropic over the rational function field k(t).

Proof. If there exists a nonzero vector x ∈ k(t)n such that q(x) = 0,
then (since k[t] is a UFD) there exists y = (y1, . . . , yn) such that y ∈ Rn,
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gcd(y1, . . . , yn) = 1 and q(y) = 0. The polynomials y1, . . . , yn do not all van-
ish at 0, so (y1(0), . . . , yn(0)) ∈ kn\(0, . . . , 0) is such that q(y1(0), . . . , yn(0))
= 0, i.e., q is isotropic over k.

Theorem 10 (Generalized Cassels–Pfister Theorem). Let F be a field
of characteristic not 2, let R = F [t], and K = F (t). Let q =

∑
i,j aij(t)xixj

be a quadratic form over R. Suppose that either

(i) q is anisotropic and each aij has degree 0 or 1, or
(ii) each aij has degree 0, i.e., q is the extension of a quadratic form

over k.

Then q is an ADC form.

Proof. Suppose first that q is isotropic over K and extended from a
quadratic form q over k. By Lemma 9, q/k is isotropic. Then by Example 2.6,
q/R is universal.

Now suppose that q is anisotropic over K and that each aij has degree
0 or 1. By Theorem 8, it suffices to show that as a quadratic form over
R = k[t] endowed with the norm | · | = | · |2 of Example 1.2, q is Euclidean.

Given an element

x =

(
f1(t)

g1(t)
, . . . ,

fn(t)

gn(t)

)
∈ Kn,

by polynomial division we may write fi/gi = yi + ri/gi with yi, ri ∈ k[t] and
deg(ri) < deg(gi). Putting y = (y1, . . . , yn) and using the non-Archimedean
property of | · |, we find

(1) |q(x− y)| =
∣∣∣∣∑
i,j

ai,j

(
ri
gi

)(
rj
gj

)∣∣∣∣ ≤ (max
i,j
|ai,j |

)(
max
i

∣∣∣∣rigi
∣∣∣∣)2

< 1.

Remark. Example 2.5 shows that the conclusion Theorem 10 does not
extend to all forms with maxi,j deg(aij) ≤ 2.

2.5. Maximal lattices. When studying quadratic forms over integral
domains it is often convenient to use the terminology of lattices in quadratic
spaces. Let R be a domain with fraction field K, let V be a finite-dimensional
vector space, and let q : V → K be a quadratic form. An R-lattice Λ in V is
a finitely generated R-submodule of V such that Λ⊗R K = V . A R-lattice
is an R-lattice Λ in the quadratic space (V, q) such that q(Λ) ⊂ R.

In particular, if q : Rn → R is a quadratic form, then tensoring from R
to K gives a quadratic form q : Kn → K and taking V = Kn, Λ = Rn gives
a quadratic R-lattice. Conversely, a quadratic lattice Λ in Rn which is free
as an R-module may be identified with a quadratic form over R.
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A quadraticR-lattice Λ is said to be maximal if it is not strictly contained
in another quadratic R-lattice (3). If R is Noetherian, then discriminant
considerations show that every quadratic R-lattice is contained in a maximal
quadratic R-lattice.

Proposition 11. Let (R, | · |) be a normed ring and q/R a Euclidean
quadratic form. Then the associated quadratic R-lattice Λ = Rn is maximal.

Proof. For if not, there exists a strictly larger quadratic R-lattice Λ′.
Choose x ∈ Λ′ \ Λ, so x ∈ Kn \Rn. For all y ∈ Λ = Rn we have x− y ∈ Λ′,
so |q(x− y)| ∈ |R| = N.

Example 2.9. Let (R, | · |) = (Z, | · |∞), and let a ∈ Z•. Then:

(a) The form ax2 is maximal iff it is ADC iff a is squarefree.
(b) The form x2+ay2 is maximal iff a is squarefree and a ≡ 1, 2 (mod 4).

Example 2.10. The form x21 + · · ·+ x2n is maximal iff it is Euclidean iff
n ≤ 3.

3. Localization and completion. In this section we show that Eu-
clidean forms and ADC forms behave nicely under localization and comple-
tion, at least if we restrict to domains R for which norm functions (resp. ideal
norm functions) have the simplest structure, namely UFDs (resp. Dedekind
domains).

3.1. Localization and Euclideanity. Suppose first that (R, | · |) is a
normed UFD, and S is a saturated multiplicatively closed subset. We shall
define a localized norm | · |S on the localization S−1R. To do so, recall that
S−1R is again a UFD and its principal prime ideals (π) are precisely those
for which (π) ∩ S = ∅. Therefore we may view the monoid Prin(S−1R)
as a submonoid of Prin(R) by taking it to be the direct sum over all the
height one prime ideals (π) of R with (π) ∩ S = ∅. Let ι be this embedding
of monoids. We define the localized norm | · |S : Prin(S−1R) → Z+ by
|x|S := |ι(x)|.

Remark. Here are two easy and useful properties of the localized norm:

• Any x ∈ R• may be written as sxx
′ with sx ∈ S and x′ prime to S,

and we have
|x|S = |sxx′|S = |x′|S = |x′|.

• For any x ∈ R•, |x|S ≤ |x|.
Theorem 12. Let (R, | · |) be a UFD with fraction field K, let S ⊂ R•

be a saturated multiplicatively closed subset, and let RS be the localiza-

(3) For the sake of brevity, we will sometimes simply say that the quadratic form q is
maximal if its associated free quadratic lattice is maximal.
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tion of R at S. Let q(x) ∈ R[x] be a quadratic form, and suppose that
E ∈ R>0 is a constant such that for all x ∈ Kn, there exists y ∈ Rn such
that |q(x− y)| ≤ E. Then for all x ∈ Kn, there exists yS ∈ RnS such that
|q(x− yS)|S ≤ E.

Proof. Let x ∈ Kn. We must find Y ∈ RnS such that |q(x − Y )|S ≤ E.
Writing x = a/b with a ∈ Rn and b ∈ R• and clearing denominators, it
suffices to find yS ∈ RnS such that

|q(a− byS)|S ≤ E|b|2S .

As above, we may factor b as sbb
′ with sb ∈ S and b′ prime to S, so |b′|S = |b′|.

Applying our hypothesis to the element a/b′ of Kn we may choose y ∈ Rn
such that |q(a− b′y)| ≤ E|b′|2. Now put yS = y/sb, so

|q(a− byS)|S = |q(a− b′y)|S ≤ |q(a− b′y)| ≤ E|b′|2 = E|b′|2S = E|b|2S .

Corollary 13. Retain the notation of Theorem 12 and write qS for q
viewed as a quadratic form on the normed ring (RS , | · |S). Then:

(a) E(qS) ≤ E(q).
(b) If q is Euclidean, so is qS.

Proof. (a) By the definition of Euclideanity, for all ε > 0 and all x ∈ Kn,
there exists y ∈ Rn such that |q(x− y)| ≤ E(q) + ε. Therefore Theorem 12
applies with E = E(q) + ε to show that for all x ∈ K, there exists yS ∈ RS
with |q(x− yS)|S ≤ E(q) + ε, i.e., E(qS) ≤ E(q) + ε. Since ε was arbitrary,
we conclude E(qS) ≤ E(q).

(b) If in the statement of Theorem 12 we take E = 1 and replace all the
inequalities with strict inequalities, the proof goes through verbatim.

The rings of most interest to us are Hasse domains, which of course need
not be UFDs but are always Dedekind domains. Thus it will be useful to
have Dedekind domain analogues of the previous discussion.

Let R be a Dedekind domain endowed with an ideal norm | · |. Let R′

be an overring of R, i.e., a ring intermediate between R and its fraction
field K. Let ι : R ↪→ S be the inclusion map. Then the induced map on
spectra ι∗ : SpecR′ → SpecR is also an injection, and S is completely
determined by the image W := ι∗(SpecR′). Namely [18, Cor. 6.12],

R′ = RW :=
⋂
p∈W

Rp.

This allows us to identify the monoid I(RW ) of ideals of RW as the free
submonoid of the free monoid I(R) on the subset W of SpecR and thus
define an overring ideal norm | · |W on RW as the composite map I(RW )→
I(R)

|·|−→ Z+.
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Remark. As above, we single out the following properties of | · |W :

• Every ideal I ∈ R may be uniquely decomposed as WII
′ where WI is

divisible by the primes of W and I ′ is prime to W , and we have

|I|W = |WII
′|S = |I ′|S = |I ′|.

• For all ideals I, |I|W ≤ |I|.

Theorem 14. Let R be a Dedekind domain with fraction field K, | · | an
ideal norm on R, W ⊂ ΣR and RW =

⋂
p∈W Rp the corresponding overring.

Let q(x) ∈ R[x] be a quadratic form, and suppose that E ∈ R>0 is a constant
such that for all x ∈ Kn, there exists y ∈ Rn such that |q(x− y)| ≤ E. Then
for all x ∈ Kn, there exists yW ∈ RnW such that |q(x− yW )|W ≤ E.

Proof. The argument is similar to that of Theorem 12. The only point
which requires additional attention is the existence of a decomposition of
b ∈ R• as b = wbb

′ with wb divisible only by prime ideals in W and b′ prime
to W . But this follows by weak approximation (or the Chinese Remainder
Theorem) applied to the finite set of prime ideals p ∈ W which appear in
the prime factorization of (b).

Also as before, we deduce the following result.

Corollary 15. Retain the notation of Theorem 14 and write qW for q
viewed as a quadratic form on the ideal normed ring (RW , | · |W ). Then:

(a) E(qW ) ≤ E(q).
(b) If q is Euclidean, so is qW .

3.2. Localization and completion of ADC forms

Theorem 16. Let R be a domain, S ⊂ R• a saturated multiplicatively
closed subset and RS = S−1R the localized domain. If a quadratic form
q(x) ∈ R[x] is ADC, then q viewed as a quadratic form over RS is ADC.

Proof. Let d ∈ R•S be K-represented by qS , i.e., there exists x ∈ Kn such
that q(x) = d. We may write d = a/s with s ∈ S. If x = (x1, . . . , xn), then
by sx we mean (sx1, . . . , sxn). Thus q(sx) = s2q(x) = sa ∈ R. Since q is
ADC over R, there exists y ∈ Rn such that q(y) = sa. But then s−1y ∈ RnS
and q(s−1y) = a/s.

Corollary 17. Let R be a Dedekind domain with fraction field K, let
v : K• → Z be a nontrivial discrete valuation which is “R-regular” in the
sense that R is contained in the valuation ring v−1(N) ∪ {0}. Let Kv be
the completion of K with respect to v and Rv its valuation ring. Suppose
q ∈ R[x] is an ADC form. Then the base extension of q to Rv is an ADC
form.
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Proof. Under the hypotheses of Theorem 16, v = vp for a nonzero prime
ideal p of R. Let S = R \ p, and put RS = S−1R. By Theorem 14, the
extension of q to RS is an ADC form. Now suppose D ∈ R•v is such that
there exists X ∈ Kn

v with q(X) = D. We may choose x ∈ Kn which is
sufficiently v-adically close to X so that q(x) = d ∈ RS and D/d = u2d for
some ud ∈ R×v . (This is possible because: RnS is dense in Rnv ; q, being a
polynomial function, is continuous for the v-adic topology; and R×2v is an
open subgroup of R•v; see [14, Thm. 3.39].) Since q is ADC over RS , there
exists y ∈ RnS such that q(y) = d. Thus q(udy) = u2dd = D, showing that D
is Rv-represented by q.

4. CDVRs and Hasse domains

4.1. Basic definitions. Let (R, v) be a discrete valuation ring (DVR)
with fraction field K and residue field k. As usual, we require that the char-
acteristic of K be different from 2; however, although it is invariably more
troublesome, we certainly must admit the case in which k has characteris-
tic 2: such DVRs are called dyadic. We will be especially interested in the
case in which R is complete, a CDVR.

A Hasse domain is the ring of S-integers in a number field K or the
coordinate ring of a regular, integral algebraic curve over a finite field k = Fq.
In particular, a Hasse domain is a Dedekind finite quotient domain.

Let ΣK denote the set of all places of K, including Archimedean ones in
the number field case. Let ΣR = ΣK \S denote the subset of ΣK consisting
of places which correspond to maximal ideals of R; these places will be called
finite. The completion Rv of a Hasse domain R at v ∈ ΣR is a CDVR with
finite residue field.

If R is a Hasse domain and Λ is a quadratic R-lattice in the quadratic
space (V, q), then to each v ∈ ΣR we may attach the local lattice Λv =
Λ ⊗R Rv. Being a finitely generated torsion-free module over the PID Rv,
Λv is necesssarily free. In particular, we may define δv, the valuation of the
discriminant over Rv, and then the global discriminant may be defined as
the ideal ∆(Λ) =

∏
v∈ΣR

pδvv .

Lemma 18.

(a) The R-lattice Λ is maximal iff Λv is a maximal Rv-lattice for all
v ∈ ΣR.

(b) For any nondyadic place v such that δv(Λ) ≤ 1, the lattice Λv is
Rv-maximal.

Proof. For (a), see [22, §82K]. For (b), see [22, 82:19].

4.2. Classification of Euclidean forms over CDVRs. In this sec-
tion, R is a CDVR with fraction field K of characteristic different from 2,
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endowed with the norm | · |a (for some a ≥ 2) of Example 1.3. In this setting
we can give a very clean characterization of Euclidean forms.

Theorem 19. A quadratic form over a complete discrete valuation do-
main is Euclidean for the canonical norm iff the corresponding quadratic
lattice is maximal.

For the proof we require the following preliminary results.

Theorem 20 (Eichler’s Maximal Lattice Theorem). Let q be an aniso-
tropic quadratic form over a complete discrete valuation field K with valu-
ation ring R. Then there is a unique maximal R-lattice for q, namely

Λ = {x ∈ Kn | q(x) ∈ R}.
Proof. See [13] or [14, Thm. 8.8].

Theorem 21. Let (V, q) be a finite-dimensional quadratic space over K
and Λ ⊂ V a maximal quadratic R-lattice. Then there exists a decomposition

V =
r⊕
i=1

HK ⊕ V ′

with q|V ′ anisotropic such that

Λ =
r⊕
i=1

HR ⊕ Λ′,

where Λ′ = Λ ∩ V ′.
Proof. See [27, Lemma 29.8], where the result is stated for complete

discrete valuation rings with finite residue field. However, it is easy to see
that the finiteness of the residue field is not used in the proof.

Proof of Theorem 19. By Proposition 11, it is enough to show that any
maximal q/R is Euclidean.

Suppose first that q is anisotropic over R. In this case, the Euclideanness
of q follows immediately from Eichler’s Maximal Lattice Theorem: indeed,

Rn = {x ∈ Kn | |q(x)|a ≥ 1}.
Therefore, x ∈ Kn \Rn ⇔ |q(x)|a = |q(x− 0)|a < 1.

We now deal with the general case. By Theorem 21, we may write Λ =⊕r
i=1HR ⊕ Λ′ with Λ′ anisotropic. With respect to a suitable R-basis of Λ,

q takes the form

q(X) = q(x, x′) = x1x2 + · · ·+ x2r−1x2r + q′(x′),

where x′ = (x2r+1, . . . , xn) and q′ is anisotropic. Let X = (x, x′) ∈ Kn \Rn.
We must find Y = (y, y′) ∈ Rn such that v(q(X − Y )) < 0. By symmetry,
we may assume that v(x1x2) ≥ · · · ≥ v(x2r−1x2r) and v(x2r) ≤ v(x2r−1).
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Case 1: v(x2r) ≥ 0. Then x = (x1, . . . , x2r) ∈ R2r so that we must have
x′ ∈ Kn−2r \Rn−2r. Put Y = (y, y′) = 0. Then v(x1x2 + · · ·+x2r−1x2r) ≥ 0,
whereas by Eichler’s Maximal Lattice Theorem, v(q′(x′)) < 0, so

v(q(X)) = v(x1x2 + · · ·+ x2r−1x2r + q′(x′)) < 0.

Case 2: v(x2r) < 0. We choose y′ = 0 and y1 = · · · = y2r−2 = 0. Also
define

α = q2(x
′), β = x1x2 + · · ·+ x2r−3x2r−2.

If v(α+ β + x2r−1x2r) ≤ v(x2r), then since v(x2r) < 0, we may take y = 0,
getting

v(q(X)) = v(α+ β + x2r−1x2r) < 0.

If v(α+ β + x2r−1x2r−2) > v(x2r), we may take y2r−1 = 1, y2r = 0, getting

v(q(X − Y )) = v(α+ β + x2r−1x2r − x2r) = v(x2r) < 0.

Corollary 22. Let R be a Hasse domain and q/R a quadratic form.
Then q is locally Euclidean iff the corresponding lattice Λq is maximal.

Proof. This is an immediate consequence of Theorem 19 and Lem-
ma 18.

4.3. ADC forms over Hasse domains. Let q/R be a nondegenerate
quadratic form. We define the genus g(q) as follows: it is the set of R-
isomorphism classes of quadratic forms q′ such that, for each v ∈ S, q ∼=Kv q

′,
and for each v ∈ ΣR, q ∼=Rv q

′.

Theorem 23 ([22, Thm. 103:4]). For any nondegenerate quadratic form
q over a Hasse domain R, the genus g(q) of q is finite.

This allows us to define the class number h(q) of a quadratic form q
as #g(q). Of particular interest are forms of class number one, i.e., for which
q is (up to isomorphism) the only form in its genus.

A quadratic form q/R is regular if it R-represents every element of R
which is represented by its genus. In other words, q is regular if for all
d ∈ R, if there is q′ ∈ g(q) and x ∈ Rn such that q′(x) = d, then there is
y ∈ Rn such that q(y) = d.

Theorem 24 ([22, 102:5]). Let q/R be a nondegenerate quadratic form
over a Hasse domain, and let d ∈ R. Suppose that for all v ∈ S, q Kv-
represents d and for all v ∈ ΣR, q Rv-represents d. Then there exists
q′ ∈ g(q) such that q′ R-represents d.

Theorem 25. For a form q over a Hasse domain R, the following are
equivalent:

(i) q is an ADC form.
(ii) q is regular and “locally ADC”: for all p ∈ Σ(R), q is ADC over Rp.
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Proof. (i)⇒(ii). Suppose q is ADC. By our theorems on localization, q
is locally ADC. Now let d ∈ R be represented by the genus of q; that is,
there exists q′ ∈ g(q) such that q′ R-represents d. Since for all v ∈ ΣK ,
q′ ∼=Kv q, it follows that q Kv-represents d for all v. By Hasse–Minkowski, q
K-represents d, and since q is an ADC form, q R-represents d.

(ii)⇒(i). Suppose q is regular and locally ADC, and let d ∈ R be K-
rationally represented by q. Then for all v ∈ Σ(R), d is Kv-represented by q,
hence using the local ADC hypothesis, it is Rv-represented. Moreover, for
all places v ∈ Σ(K)\Σ(R), d is Kv-represented by q. By Theorem 24, there
exists q′ ∈ g(q) which R-represents d, and then by definition of regular, q
R-represents d.

A quadratic form q over a Hasse domain R is sign-universal if for all
d ∈ R, if q Kv-represents d for all real places v ∈ ΣK , then q R-represents d.

Proposition 26. Let n ≥ 4, and let q(x1, . . . , xn) be a nondegener-
ate quadratic form over a Hasse domain R. Then q is ADC iff it is sign-
universal.

Proof. Indeed, by the Hasse–Minkowski theory of quadratic forms over
global fields, any nondegenerate quadratic form in at least four variables
over the fraction field K is sign-universal. The result follows immediately
from this.

4.4. Conjectures on Euclidean forms over Hasse domains

Conjecture 27. For any Hasse domain R, there are only finitely many
isomorphism classes of anisotropic Euclidean forms q/R.

Conjecture 28. Let q be an anisotropic Euclidean quadratic form over
a Hasse domain R. Then q has class number one.

Conjecture 28 has a striking consequence. Consider the set S1 of all class
number one totally definite quadratic forms defined over the ring of integers
of some totally real number field. Work of Siegel shows that S1 is a finite
set. Thus Conjecture 28 implies the following result, which we also state as
a conjecture.

Conjecture 29. As R ranges through all rings of integers of totally
real number fields, there are only finitely many totally definite Euclidean
quadratic forms q/R.

4.5. Definite Euclidean forms over Z. In the case of R = Z, Con-
jecture 27 is intimately related to fundamental problems in the geometry of
numbers. Especially, the classification of definite Euclidean forms q/Z can
be rephrased as the classification of all integral lattices in Euclidean space
with covering radius strictly less than 1.
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This problem has been solved by G. Nebe [21], subject to the follow-
ing proviso. Nebe’s paper contains 69 Euclidean lattices. Before becoming
aware of [21], W. C. Jagy and I had been independently searching for Eu-
clidean lattices. Our search was not exhaustive, i.e., we looked for and found
Euclidean lattices in various places but without any claim of finding all of
them. When we learned of Nebe’s work we compared our list to hers and
found that her list contained several lattices that we did not have. However,
one of our lattices does not appear on Nebe’s list:

q(x1, x2, x3, x4, x5) = x21 + x1x4 + x22 + x2x5 + x23 + x3x5 + x24 + x4x5 + 2x25.

We contacted Professor Nebe and she informed us that this lattice was not
included due to a simple oversight in her casewise analysis. So we get the
following result.

Theorem 30 (Nebe). There are precisely 70 positive definite Euclidean
quadratic forms over Z. All of these lattices have class number one.

The second sentence in Theorem 30 follows easily by explicit com-
putation, for instance using the command GenusRepresentatives in the
MAGMA software package. Thus Theorem 30 verifies Conjecture 28 for def-
inite forms over Z.

4.6. Definite ADC forms over Z. The work of this paper allows us to
classify (in a certain sense) primitive definite ADC forms over Z. Indeed, by
Theorem 25, it suffices to classify the regular primitive positive definite forms
over Z and for each such form q determine whether it is locally ADC. The
theory of quadratic forms over p-adic integer rings is completely understood,
to the extent that for a fixed quadratic form q/Z, determining for all primes p
the set of all elements of Zp (resp. Qp) which are Zp-represented (resp. Qp-
represented) by q is a finite problem. So if we could reduce ourselves to
a finite set of regular forms, the problem would be solved modulo a finite
calculation. Let us see how this procedure works out for forms in various
dimensions.

Unary forms. Let a ∈ Z•. Recall Example 2.5: a unary form qa(x) =
ax2 is ADC iff a is squarefree.

In fact we have shown that for any UFD or Dedekind domain R and
a ∈ R•, the unary form qa(x) = ax2 is ADC iff ordp(a) ≤ 1 for every height
one prime ideal p of R. But it seems premature to present such results here,
since this is an easy special case of a not so easy general problem. Let us say
a form q(x) is imprimitive if it can be written as aq′(x) with a ∈ R• \ R×.
Then we would like to know: if q′(x) is a primitive ADC form, for which
a ∈ R• is aq′(x) an ADC form? We can answer this for unary forms but not
in general. We leave the general problem of imprimitive forms for a later
work.
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So up to unit equivalence the unique primitive ADC unary form over Z
is x2.

Binary forms. The classical genus theory shows that a regular binary
form q(x, y) = ax2+bxy+cy2 has class number one in the above sense. There
is however a subtlety here in that classes and genera of binary quadratic
forms q(x, y)/Z are classically expressed in terms of proper equivalence (i.e.,
SL2(Z)-equivalence). To get from the proper genera to the genera one needs
to identify each class with its inverse in the class group: we get a quo-
tient map which has fibers of cardinality one over the order two elements
of the class group and cardinality 2 otherwise. Thus, in addition to the
binary quadratic forms which have proper (form) class number one—i.e.,
the idoneal discriminants ∆ = b2 − 4ac such that the quadratic order of
discriminant ∆ has 2-torsion class group—we need to consider bi-idoneal
forms in the sense of [15] and [28], i.e., forms of order 4 in a class group of
type Z/4Z × (Z/2Z)a for a ≥ 0. (Cf. Remarks 2.5, 2.6 and 4.6 of [28] for a
clear explanation of the relationship between binary forms of GL2(Z)-genus
one and class groups of the above form.) Voight computes a list of 425
bi-idoneal discriminants, shows that this list is complete except possibly for
seven further (very large) values, and shows that the Generalized Riemann
Hypothesis (GRH) implies the completeness of his list. These results allow
us to give a complete enumeration of primitive binary definite ADC forms
over Z, conditionally on GRH.

Again the issue of imprimitive forms requires some additional consider-
ation (4).

Example 4.1. Let q′ = x2 + y2. Then q′ is Euclidean hence ADC. The
form aq′ is squarefree iff a is odd, squarefree and not divisible by any prime
p ≡ 1 (mod 4).

Ternary forms

Theorem 31 (Jagy–Kaplansky–Schiemann [16]). There are at most 913
primitive positive definite regular forms q(x1, x2, x3)/Z.

More precisely, in [16] the authors write down an explicit list of 913
definite ternary forms such that any regular form must be equivalent to
some form in their list. Further they prove regularity of 891 of the forms in
their list, whereas the regularity of the remaining 22 forms is conjectured
but not proven.

Fortunately, all 22 of the forms whose regularity was not shown in [16]
turn out not to be ADC forms. To show this one need only supply a non-
ADC certificate, i.e., a pair (a, b) ∈ Z2 such that q Z-represents a2b but not b.

(4) Added (October 2011): we can now handle the imprimitive forms as well.
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Jagy has found non-ADC certificates for all 22 of the possibly nonregular
ternary forms above and indeed for the majority of the 913 regular forms as
well: his computations leave a list of 104 primitive definite ternary regular
forms which are probably ADC. As above, we are left with a (nontrivial)
finite local calculation to confirm or deny the ADC-ness of each of these 104
forms.

Quaternary forms. By Proposition 26, a quadratic form q/Z in at least
four variables is ADC iff it is sign-universal. Thus the following result solves
the problem for us when n = 4.

Theorem 32 (Bhargava–Hanke [3]). There are precisely 6436 positive
definite sign-universal forms q(x1, x2, x3, x4)/Z.

So there are precisely 6436 positive definite quaternary ADC forms
over Z.

Beyond quaternary forms. It seems hopeless to classify positive def-
inite sign-universal forms in 5 or more variables. In contrast to all cases
above, there are most certainly infinitely many such primitive forms, e.g.
x21+· · ·+x2n−1+Dx2n. More generally, any form with a sign-universal subform
is obviously sign-universal, and this makes the problem difficult. However,
there is the following relevant result.

Theorem 33 (Bhargava–Hanke [3]). A positive definite form q(x1, . . .
. . . , xn)/Z is sign-universal if and only if it integrally represents the first 290
positive integers.

Thus a positive definite integral form q(x1, . . . , xn), n ≥ 4, is ADC iff it
represents the integers listed in Theorem 33. This gives a kind of classifica-
tion for definite ADC forms in at least five variables, and one can probably
do no better than this.

4.7. Definite ADC forms over F[t]. Let F be a finite field of odd
order, δ ∈ F×\F×2, R = F[t] be endowed with its canonical norm, K = F(t),
and∞ be the infinite place of K (corresponding to the valuation v∞(f/g) =
deg(g)− deg(f)), so that K∞ = K((1/t)).

Recall that K has u-invariant 4, i.e., the maximum dimension of an
anisotropic quadratic form over R is 4. We call a quadratic form q/R definite
if q is anisotropic as a quadratic form over K∞: in particular, such forms
are anisotropic.

Thus we we get a problem analogous to the R = Z case: find all definite
forms over F[t] which are Euclidean and which are ADC forms. There are
however some significant differences from the R = Z case. We saw one above:
we can a priori restrict to forms of dimension at most 4. Here is another
striking difference.
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Theorem 34 (Bureau [5]). Suppose that #F > 3. Then every regular
definite form q/F[t] has class number one.

In particular, excepting F = F3, we see that Euclidean implies ADC im-
plies regular implies class number one—so Conjecture 28 holds for definite
Euclidean forms over F[t]. Moreover, there are only finitely many definite
quadratic forms over F[t] of any given class number, so this verifies Conjec-
ture 27 for definite forms over R.

We end with a few preliminary results towards the classification of Eu-
clidean and ADC forms over F[t], mostly to showcase the connection to
Theorem 10.

Theorem 35. For a definite quaternary form q/F[t], the following are
equivalent:

(i) q is ADC.
(ii) q is universal.

(iii) The discriminant of q has degree 2.

Proof. (i)⇔(ii) is a case of Proposition 26.
(ii)⇔(iii) is a result of W. K. Chan and J. Daniels [8, Cor. 4.3].

Theorem 36. For a diagonal definite quaternary form q over F[t], the
following are equivalent:

(i) q is Euclidean.
(ii) q is universal.
(iii) The discriminant of q has degree 2.

Proof. (i)⇒(ii) follows from Theorem 8 and Proposition 26.
(ii)⇒(iii) is immediate from the previous result.
(iii)⇒(i). Suppose

q = p1x
2
1 + p2x

2
2 + p3x

2
3 + p4x

2
4.

Without loss of generality, we may assume that deg(p1) ≤ deg(p2) ≤ deg(p3)
≤ deg(p4). If deg(p3) = 0, then q contains a 3-dimensional constant subform
and is thus isotropic. Since

∑
i deg(pi) = 2, the only other possibility is

deg(p1) = deg(p2) = 0, deg(p3) = deg(p4) = 1, and now the fact that q is
Euclidean follows from the Generalized Cassels–Pfister Theorem.

Theorem 37. If q is a diagonal definite ternary form over F[t] with
deg(∆(q)) ≤ 2, then q is ADC.

Proof. By [8, Thm. 3.5] any definite ternary form over F[t] with deg(∆(q))
≤ 2 has class number one, hence is regular. Therefore, by Theorem 25 it is
sufficient to show that q is locally ADC.

If deg(∆(q)) ≤ 1, then since R is nondyadic, the corresponding lattice is
maximal, hence locally ADC by Theorem 25 and Corollary 22.
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Suppose deg(∆(q)) = 2 and write q = p1(t)x
2
1 + p2(t)x

2
2 + p3(t)x

2
3 with

deg(p1) ≤ deg(p2) ≤ deg(p3). If deg(p3) = 1, then by the Generalized
Cassels–Pfister Theorem q is Euclidean. Otherwise deg(p1) = deg(p2) = 0
and deg(p3) = 2. If p3 is squarefree then so is ∆(q), hence q is maxi-
mal and thus locally ADC. Otherwise there exist a ∈ F×, b ∈ F such
that p3 = a(t − b)2, but then q is equivalent over K to the constant form
p1x

2
1 + p2x

2
2 + ax23 and is therefore isotropic, a contradiction.

Again, a complete classification—over any fixed finite field F—is reduced
to a finite calculation. We hope to give precise classification theorems in a
future work.
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