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1. Introduction. In an attempt to prove a conjecture that products of
consecutive integers are never perfect powers, Pillai [16] (see also [19]), in
the early 1940’s, considered the problem of finding sets of positive integers
with the property that they have an element relatively prime to all the rest.
He showed that in any set of at most 16 consecutive integers there exists one
that is relatively prime to the others. In addition, he proved that for 17 ≤
m ≤ 430, there exist infinitely many sets of m consecutive integers which
have no element that is relatively prime to all the rest. Pillai, in fact, believed
that the latter result is true for all m ≥ 17, and this was soon confirmed
by Brauer [2] and independently by Pillai himself [17, 18] using a result of
Erdős [5, Theorem II]; for more recent proofs, one may refer to Evans [7],
Harborth [11], and Eggleton [4]. In what follows, we shall refer to the former
result as the Pillai Theorem and the latter as the Brauer–Pillai Theorem.

It is not difficult to show that the Pillai Theorem is applicable not only
to sets of at most 16 consecutive integers, but also to arithmetic progres-
sions of integers with at most 16 terms, and we will refer to this fact as
the Generalized Pillai Theorem. While we have not found in the existing
literature a proof of this fact (see, however, Remark 3.3), analogues of the
Brauer–Pillai Theorem for arithmetic progressions are readily found, and
we cite, in particular, the works of Evans [8], Ohtomo and Tamari [14], and
of Hajdu and Saradha [10]. Moreover, numerous extensions, analogues and
generalizations of the Brauer–Pillai Theorem have been considered in the
recent past; see, for example, Caro [3], Gassko [9], Saradha and Thangadu-
rai [20], and also the works cited above. It may be remarked that all these
extensions are in the setting of integers and use techniques from elementary
or analytic number theory.
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In this paper we consider an extension of the Generalized Pillai Theorem
in a wider algebraic context. Thus, we ask if a similar result holds for Gaus-
sian integers, or more generally, for rings of integers of algebraic number
fields of class number one, or even more generally, for arbitrary integral do-
mains where the notion of GCD (and hence of two elements being relatively
prime) makes sense. Our main result is an analogue of the Generalized Pil-
lai Theorem for the so-called σ-atomic GCD domains of characteristic zero,
and in particular, for arbitrary unique factorization domains of character-
istic zero. This is achieved partly by introducing an invariant associated to
an integral domain, called its decomposition number. It is then proved that
if R is a UFD of characteristic zero with decomposition number δR and if
N := min{16, 1 + δR}, then any arithmetic progression of at most N terms
with the first term coprime to the common difference contains a term that
is relatively prime to all the rest. It is also shown that the above N is the
maximum possible number with this property. As a special case, one sees
that the Generalized Pillai Theorem holds for the Gaussian integers with 16
replaced by 6. Our proof of the general result makes use of the correspond-
ing result for integers. With this in view, and in a bid to make this paper
self-contained, we include in Section 2 below a fairly short proof of the Gen-
eralized Pillai Theorem for arithmetic progressions of integers, which gives,
in particular, a new proof of the Pillai Theorem. Some ring-theoretic prelim-
inaries and the notion of decomposition number are discussed in Section 3.
The main result is proved in Section 4.

2. Arithmetic progressions of integers. Let us begin with some
notations and terminology, which will be used in the remainder of this paper.
Let R be an integral domain. For r ∈ R and S ⊆ R, we denote by M(r, S)
the set {s ∈ S : r | s} of all multiples of r in S. For a, d ∈ R and a positive
integer n, we denote by AP(a, d, n) the set {a, a + d, . . . , a + (n − 1)d} of
elements of the arithmetic progression with n terms having a as its first term
and d the common difference. Further, if R is a GCD domain (i.e. an integral
domain in which any two elements have a greatest common divisor) and
m,n are positive integers, then we shall write {a1, . . . , am} ⊥ {b1, . . . , bn}
to mean that gcd(ai, bj) = 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Here, as
usual, gcd(a, b) denotes a greatest common divisor of a, b ∈ R, and although
it is determined only up to multiplication by a unit, statements such as
“gcd(a, b) = 1” or “gcd(a, b) divides c” have an unambiguous and obvious
meaning, and we shall continue to use them. Of course if R = Z is the ring of
integers, then gcd(a, b) is unique since we require it to be positive if a, b ∈ Z
are not both zero and set gcd(0, 0) := 0. Also if R = Z and n is a positive
integer, then ≤ will denote the componentwise partial order on Zn so that
for any a1, . . . , an, b1, . . . , bn ∈ Z, (a1, . . . , an) ≤ (b1, . . . , bn) ⇔ ai ≤ bi for
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all i = 1, . . . , n. Finally, for a finite set A, we denote by |A| the cardinality
of A.

Theorem 2.1 (Generalized Pillai Theorem). Let a, d be coprime integers
and let n be a positive integer ≤ 16. Then the arithmetic progression a, a+d,
. . . , a+ (n− 1)d contains a term that is relatively prime to all the others.

We first make an elementary observation and record a useful consequence
thereof.

Lemma 2.2. If R is a GCD domain, a, d ∈ R are coprime and r, s are
nonnegative integers, then

gcd(a+ rd, a+ sd) | (r − s).
Proof. Any common divisor of a+ rd and a+ sd divides both (a+ rd)−

(a+ sd) and s(a+ rd)− r(a+ sd). Since gcd(a, d) = 1, the lemma follows.

Corollary 2.3. If a, d are coprime integers and m is a positive integer,
then

|M(m,AP(a, d, n))| ≤ dn/me
where dxe denotes the least integer ≥ x.

We now proceed to prove Theorem 2.1. For n = 1, the theorem is vacu-
ously true. Let us first consider the case in which all terms of AP(a, d, n) are
odd. The case where n = 2 is trivial. If n = 3, 4 or 5, then the term a+ 2d is
relatively prime to all the others. If n = 6, then one of a+ 2d, a+ 3d is not
divisible by 3 and is relatively prime to all the other terms. If n = 7, 8, 9, 10
or 11, one of a+4d, a+5d, a+6d is coprime to both 3 and 5 and consequently
is relatively prime to all the other terms. If 12 ≤ n ≤ 16, some element in
the set {a+ id : 6 ≤ i ≤ 10} is coprime to 3, 5 and 7 and is relatively prime
to all the others in AP(a, d, n). Thus the conclusion of Theorem 2.1 holds
whenever all terms of AP(a, d, n) are odd, or equivalently, when d is even.

It remains to consider the case when the terms in the progression are
alternately even and odd. The case where n = 2 is trivial. If n = 3, the term
a + d is relatively prime to the others. If n = 4 or 5, at least two terms in
the progression are odd and one of those is not divisible by 3. This number
is relatively prime to the others. To settle the remaining cases, the following
two lemmas will be useful:

Lemma 2.4. Let k be an integer with 3 ≤ k ≤ 8. Suppose the conclusion
of Theorem 2.1 holds for any coprime integers a, d with d odd and for n =
2k − 1. Then it also holds for any coprime integers a, d with d odd and for
n = 2k.

Proof. Let a, d be coprime integers with d odd. Write ai := a+(i−1)d for
i = 1, . . . , 2k and A := AP(a, d, 2k) = {a1, . . . , a2k}. Assume first that a1 is



164 S. R. Ghorpade and S. Ram

odd. Now A\{a1} = AP(a2, d, 2k−1) and hence there exists m ∈ Z with 2 ≤
m ≤ 2k such that am ⊥ A\{a1, am}. This implies that am ⊥ {1, . . . ,m−2}.
Moreover, m is odd since both a1 and d are odd and k ≥ 3. Consequently,
gcd(a1, am) | (m − 1)/2. On the other hand, 1 ≤ (m − 1)/2 ≤ m − 2, since
m ≥ 3. It follows that gcd(am, (m− 1)/2) = 1 and therefore gcd(a1, am) = 1.
As a result, am ⊥ A \ {am}. In case a1 is even, a2k is odd and we use the
same argument for AP(a2k,−d, 2k).

Lemma 2.5. Let k be an integer with 3 ≤ k ≤ 7. Suppose the conclusion
of Theorem 2.1 holds for any odd coprime integers a, d and for n = 2k. Then
it holds for any odd coprime integers a, d and for n = 2k + 1.

Proof. The proof is similar to that of Lemma 2.4. Let a, d be odd coprime
integers. Write ai = a+(i−1)d for i = 1, . . . , 2k+1 and A = AP(a, d, 2k+1).
By the hypothesis, there exists m ∈ Z with 2 ≤ m ≤ 2k + 1 such that
am ⊥ A \ {a1, am}. This implies that am ⊥ {1, . . . ,m − 2}. Moreover, m is
odd, gcd(a1, am) | (m − 1)/2, and (m − 1)/2 ≤ m − 2, since m ≥ 3. Thus
gcd(am, a1) = 1 and am ⊥ A \ {am}.

In view of the two lemmas above and the discussion preceding them, it
suffices to prove the theorem for coprime integers a, d with a even, d odd, and
for odd integers n with 7 ≤ n < 16. Fix such a, d, n and let ai := a+(i−1)d
for i = 1, . . . , n and A := AP(a, d, n) = {a1, . . . , an}. We now proceed by a
case-by-case argument.

First, suppose n = 7. Let B := {a2, a4, a6} = AP(a2, 2d, 3). By Corol-
lary 2.3, |M(3, B) ∪M(5, B)| ≤ 2 < |B|. Hence there exists x ∈ B such that
x ⊥ {2, 3, 5}. Consequently, x ⊥ A \ {x}.

Next, suppose n = 9. Let B := A \M(2, A) = AP(a2, 2d, 4). By Corol-
lary 2.3,

(|M(3, B)|, |M(5, B)|, |M(7, B)|) ≤ (2, 1, 1).

Since |B| = 4, if there is a strict inequality in one of the coordinates, then
there is x ∈ B such that x ⊥ {2, 3, 5, 7} and consequently x ⊥ A \ {x}.
If equality holds in all the coordinates, then |M(3, B)| = 2 and we must
necessarily have M(3, B) = {a2, a8}. But then {a4, a6} ⊥ {2, 3} and the one
among a4 and a6 that is coprime to 5 is relatively prime to all other elements
in A.

For n = 11, let B := A \M(2, A) = AP(a2, 2d, 5). By Corollary 2.3,

(|M(3, B)|, |M(5, B)|, |M(7, B)|) ≤ (2, 1, 1).

Since 2 + 1 + 1 < 5 = |B|, there exists x ∈ B with x ⊥ {2, 3, 5, 7} and so
x ⊥ A \ {x}.
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We now consider the case n = 13. Let B := A \M(2, A) = AP(a2, 2d, 6).
Then |B| = 6, and by Corollary 2.3,

(|M(3, B)|, |M(5, B)|, |M(7, B)|, |M(11, B)|) ≤ (2, 2, 1, 1).

If there is a strict inequality in one of the coordinates, we are through. So
suppose equality holds in all coordinates. This forces M(5, B) = {a2, a12}.
So if we let B1 := {a4, a6, a8}, then B1 ⊥ {2, 5}, and by Corollary 2.3,
(|M(3, B1)|, |M(7, B1)|) ≤ (1, 1). Thus there exists x ∈ B1 such that x ⊥
{2, 3, 5, 7} and hence x ⊥ A \ {x}.

Finally, suppose n=15. Let B := A\(M(2, A)∪{a2, a14})=AP(a4, 2d, 5).
Then |B| = 5, and by Corollary 2.3,

(|M(3, B)|, |M(5, B)|, |M(7, B)|, |M(11, B)|) ≤ (2, 1, 1, 1).

If there is a strict inequality in one of the coordinates or if

|M(3, B) ∪M(5, B) ∪M(7, B) ∪M(11, B)| < 5,

then we are through. So suppose equality holds in all coordinates and the
four sets M(j, B), j = 3, 5, 7, 11, are disjoint. Let B1 := {a2, a14}. Note
that M(3, B1) = ∅. If M(5, B1) = ∅, then B1 ⊥ {2, 3, 5, 7, 11} and since
|M(13, B1)| ≤ 1, some element of B1 is coprime to all the other elements
in A. If |M(5, B1)| = 1, then |M(3, {a4, a12})| = |M(5, {a4, a12})| = 1. Conse-
quently, there is x ∈ {a6, a8, a10} such that 11 |x, and hence x ⊥ {2, 3, 5, 7}.
It follows that x ⊥ A \ {x}. This completes the proof of Theorem 2.1.

Corollary 2.6 (Pillai). In any sequence of at most 16 consecutive in-
tegers, there exists an element that is relatively prime to all the others.

Proof. This is just the case d = 1 of Theorem 2.1.

Recall that an integer is said to be a perfect power if it is of the form tr

where t and r are integers > 1.

Corollary 2.7. Suppose a, d are coprime positive integers and n is a
positive integer ≤ 16 such that no term of AP(a, d, n) is a perfect power.
Then the product

∏n−1
k=0 (a+ kd) is not a perfect power.

Proof. The case n = 1 is trivial. If n ≥ 2, then by Theorem 2.1, there
is a term x in AP(a, d, n) that is coprime to the other terms. If x > 1, then
the desired result is clear since x is not a perfect power. In case x = 1, we
must have a = 1 and so one can apply Theorem 2.1 to AP(a+ d, d, n− 1).

Remark 2.8. The hypothesis above that no term of AP(a, d, n) is a per-
fect power is crucial, since one can find infinitely many arithmetic progres-
sions (with the first term coprime to the common difference) with 3 terms
each of which is a square. This follows from the fact that there are infinitely
many rational points on the curve x2 + y2 = 2. For instance, {1, 52, 72},
{72, 132, 172} and {172, 532, 732}.
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Remark 2.9. A remarkable theorem of Erdős and Selfridge [6] says that
the product of two or more consecutive positive integers is never a perfect
power.

Remark 2.10. As mentioned in the Introduction, for each n > 16 there
exist blocks of n consecutive integers such that they contain no integer
relatively prime to all the rest. We refer to Evans [7] for an elegant proof of
this result.

3. GCD domains and decomposition numbers. The notion of a
GCD domain was recalled in the Introduction. Let us also recall that an
integral domain R is said to be a Bézout domain if every finitely generated
ideal of R is principal, and atomic if every nonzero nonunit in R factors
into a product of irreducible elements. In analogy with the latter, we shall
say that an integral domain R is σ-atomic if every nonzero nonunit in R is
divisible by an irreducible element. Evidently, a unique factorization domain
(UFD) is a σ-atomic (in fact, atomic) GCD domain. The following example
shows that the converse is not true.

Example 3.1. Let R be the ring of entire functions, i.e., complex-valued
holomorphic functions on C. The units of R are precisely the entire functions
with no zeros in C, and the irreducible elements are given, up to multipli-
cation by units, by the linear polynomials. Thus it is readily seen that R
is a σ-atomic domain. Moreover, R is also a GCD domain, and in fact, a
Bézout domain, thanks to a result of Helmer [12] (which was, incidentally,
published in the same year as Pillai [16]). On the other hand, since there do
exist entire functions with infinitely many zeros (e.g., sin z), we see that R
is not a UFD. More generally, if R′ is any subring of R such that R′ strictly
contains the subring of R consisting of the polynomial functions, then R′ is
a σ-atomic GCD domain that is not a UFD. To generate more examples, it
suffices to observe that if S is a σ-atomic GCD domain that is not a UFD,
then the polynomial ring S[X] is also a σ-atomic GCD domain that is not
a UFD; moreover, it is not difficult to see that S[X] is neither Noetherian
nor Bézout.

Below, the following version of Chinese Remainder Theorem will turn
out to be useful. A proof when R = Z can be found in the book of Ore [15,
§10–3] and it extends easily to the case when R is any Bézout domain, or
more generally, a GCD domain where the moduli satisfy a Bézout hypothesis
such as (3.1) below.

Lemma 3.2 (Generalized Chinese Remainder Theorem). Let R be a
GCD domain, m be a positive integer, and let ui, vi ∈ R with vi 6= 0 for
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i = 1, . . . ,m. Assume that

(3.1) gcd(vi, vj) ∈ Rvi +Rvj for 1 ≤ i, j ≤ m.

Then the system z ≡ ui (mod vi), i = 1, . . . ,m, of m congruences has a
solution in R if and only if gcd(vi, vj) | (ui − uj) for 1 ≤ i, j ≤ m.

Remark 3.3. As an application of Lemma 3.2, let us show that the Pillai
Theorem (Corollary 2.6) and the Generalized Pillai Theorem (Theorem 2.1)
can be deduced from each other. To prove the nontrivial implication, let a, d
be coprime integers and n be a positive integer ≤ 16. Write ai = a+(i−1)d
for i = 1, . . . , n. By Lemma 2.2, gcd(ai, aj) | (i − j) for 1 ≤ i, j ≤ n. Hence
by Lemma 3.2, there is z ∈ Z such that ai | (z − i) for i = 1, . . . , n. Now by
Corollary 2.6, there is k ∈ {1, . . . , n} such that z − k is relatively prime to
z − j for all j = 1, . . . , n with j 6= k. Consequently, ak is relatively prime to
aj for all j 6= k.

It is not difficult to show that in a GCD domain, irreducible elements
are always prime. In what follows, prime elements of an arbitrary integral
domain may simply be referred to as primes, and this terminology should
not be confused with prime ideals. Also, following the standard conventions
of number theory, we will use the term rational prime to mean a (positive)
prime number in Z. Here is a definition that will play a crucial role in the
proof of our main theorem.

Definition 3.4. Let R be an integral domain with multiplicative iden-
tity 1R. The decomposition number of R, denoted by δR, is the smallest
rational prime p such that p · 1R is divisible by at least two distinct (i.e., up
to multiplication by units) prime elements in R. If no prime in Z is divisible
by two distinct primes in R, then we define δR to be ∞.

It seems worthwhile to illustrate this notion with several examples.

Examples 3.5. (i) Clearly, δZ =∞. Also, if K is a field, then δK =∞.

(ii) If A is an integral domain, then δA[[X]] = δA[X] = δA.

(iii) If R is the ring of entire functions, then δR =∞.

(iv) Suppose R = Z[α] is a UFD for some complex number α satisfying a
monic irreducible polynomial f(X) ∈ Z[X]. Then using a well-known result
of Kummer–Dedekind, we see that δR is the smallest rational prime p such
that the image of f(X) in Z/pZ[X] is divisible by two distinct irreducible
polynomials in Z/pZ[X]. The next two examples are special cases of this.

(v) Let K = Q(
√
m) for some squarefree m ∈ Z such that R = OK is

a UFD. If m ≡ 1 (mod 8), then δR = 2, and for other values of m, δR is
the smallest odd rational prime p such that

(
m
p

)
= 1. (Here ( ··) denotes the

Legendre symbol). In particular, δZ[i] = 5.
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(vi) Suppose ζm is a primitive mth root of unity such that R = Z[ζm]
is a UFD. (The precise values of m for which Z[ζm] is a UFD are known;
cf. [13]). For any rational prime p, let pvp(m) be the highest power of p
dividing m and let `(m, p) := m/pvp(m). Then from [1, Theorem 2], we see
that δR is the smallest rational prime p for which `(m, p) > 1 and p is not
a primitive root modulo `(m, p).

4. Arithmetic progressions in GCD domains. For an integral do-
main R, we shall denote by ZR the prime subring of R. In case R is of
characteristic zero, ZR can be identified with Z.

Theorem 4.1. Let R be a σ-atomic GCD domain of characteristic 0.

(i) If n is a positive integer ≤ min {16, 1 + δR}, then for any coprime
a, d ∈ R, the arithmetic progression AP(a, d, n) contains a term that
is relatively prime to all the others.

(ii) Assume that no prime of ZR is a unit in R. Then for each in-
teger n > min {16, 1 + δR}, there exists an arithmetic progression
AP(a, d, n) in R, where a, d ∈ R are coprime, such that none of its
terms is relatively prime to all the others.

Proof. (i) Assume, on the contrary, that n ≤ min {16, 1 + δR} and that
there exists an arithmetic progression a1, . . . , an in R with gcd(a1, a2) = 1
such that no term is relatively prime to the rest. Let d = a2 − a1. For each
i ∈ {1, . . . , n}, there exists a ji ∈ {1, . . . , n} such that ai is not coprime to aji .
Then there exists a prime Pi dividing gcd(ai, aji). Let π be the product of
the distinct primes in {P1, . . . , Pn}, say

π = Pi1 · · ·Pik .

Let ri = gcd(π, ai). Note that no ri is relatively prime to all the rj (j 6= i).
For any prime P ∈ R let IP = {i : P | ri}. Suppose

k⋃
j=1

{IPij
} = {IQ1 , . . . , IQl

},

where each Qm is one of the Pij . Now define

si = gcd(ri, Q1 · · ·Ql) (1 ≤ i ≤ n).

Again note that no si is relatively prime to all the sj (j 6= i). By the choice
of the si, it follows that if Qs 6= Qt, then

|{i : Qs | si}| ≥ 2 and {i : Qs | si} 6= {i : Qt | si}.
Note that ai ≡ 0 (mod si). If P is a prime dividing some sl, then P

also divides some sm (l 6= m). Hence P | (l −m)1R. If p ∈ Z is the positive
prime such that PR ∩ ZR = pZR, then it follows that p | (l − m). Thus
p ≤ n− 1 ≤ δR. This implies that each si (1 ≤ i ≤ n) is a product of primes
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each of which lies over p ·1R for some positive prime p ∈ Z not exceeding δR.
Also, any prime P lying over δR · 1R can appear in the factorization of some
sm only if n = δR + 1, and in this case P necessarily divides both s1 and sn
and no other si. Also, in this case no other prime Q ∈ R lying over δR · 1R
can divide s1 or sn (since {i : P | si} 6= {i : Q | si}). Now, the system

z ≡ −(i− 1)d (mod si), 1 ≤ i ≤ n,

has a solution, namely z = a1 in R. This implies that

gcd(si, sj) | (i− j)d · 1R for 1 ≤ i, j ≤ n.

Also note that gcd(si, d) = 1 for all i (otherwise the fact that the first term
is coprime to the common difference is contradicted). Thus we have

(4.1) gcd(si, sj) | (i− j) · 1R for 1 ≤ i, j ≤ n.

For each i ∈ {1, . . . , n} let ti ∈ Z denote the unique positive integer such
that siR ∩ ZR = tiZR. Further, for j ∈ {1, . . . , n}, let tij = gcd(ti, tj) and
sij = gcd(si, sj). Then tij ∈ tiZR + tjZR and consequently

(4.2) sij ∈ Rsi + Rsj .

From (4.1) and (4.2) together with Lemma 3.2, it follows that the system

z ≡ (1− i)1R (mod si), i = 1, . . . , n,

has a solution in R. By the choice of si and ti it is easily seen that

sijR ∩ ZR = tijZR.

Consequently

gcd(ti, tj) | (i− j) for 1 ≤ i, j ≤ n

and so by Lemma 3.2, the system

z ≡ 1− i (mod ti), i = 1, . . . , n,

has a solution, say x, in Z. Note that no ti is relatively prime to all the others.
Now x, x+ 1, . . . , x+n− 1 is a sequence of n consecutive integers such that
none of them is relatively prime to all the rest. Hence by Corollary 2.6 we
have n > 16, which is a contradiction. This finishes the proof of (i).

(ii) If n > 16, then by Remark 2.10 there exists an arithmetic progression
AP(a, d, n) in Z (and hence in ZR) such that none of its terms is relatively
prime to all the others. Since no prime in ZR is a unit in R we are through.
So we only need to consider progressions where 1+δR < n < 17. For δR < 17
let P,Q be distinct primes in R dividing δR1R. Let z ∈ R be a solution of
the system

z ≡ 0

(
mod 2 · 3 · 5 · 7 · 11 · 13 · P

δR

)
, z + 1R ≡ 0 (mod Q).
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Then for 1 + δR < n < 17, we claim that the progression z, z + 1R, . . . ,
z + (n − 1)1R contains no term relatively prime to all the others. Indeed,
z and z + 1R share a common factor with z + δR1R and z + (δR + 1)1R
respectively, whereas all other terms in the progression share a common
factor with either z or z + 1R. This completes the proof of Theorem 4.1.

Remark 4.2. In part (i) of Theorem 4.1, the hypothesis that R is σ-
atomic is crucial. For example, if R is the ring A of all algebraic integers (all
complex numbers integral over Z), then δA = ∞ since there are no prime
elements in A. However, the progression

√
17 + 3

2
,

√
17 + 5

2
,

√
17 + 7

2
,

√
17 + 9

2
contains no element coprime to the others. Also, in part (ii) of Theorem 4.1,
the assumption that no prime in Z is a unit in R is necessary. For example, if
R is a field, then every arithmetic progression in R with at least one nonzero
term contains a term that is relatively prime to all the others.

Remark 4.3. Note that only values of δR ≤ 13 can affect the permissible
values of n such that AP(a, d, n) contains a term coprime to the others. For
the purposes of the above theorem it is unnecessary to determine δR if it is
known to be greater than 13 (this of course includes the case δR =∞).

Definition 4.4. An element of an integral domain R is said to be a
perfect power if it can be expressed in the form tr where t is a nonzero
nonunit in R and r is a positive integer > 1.

Corollary 4.5. Let R be a UFD of characteristic 0 and let a, d ∈ R
be coprime. If n is a positive integer ≤ min {16, 1 + δR} and if AP(a, d, n)
contains no units and no perfect powers, then the product

∏n−1
k=0(a + kd) is

not a perfect power.

Proof. If some term of AP(a, d, n) is zero, then so is the product, and 0
is not a perfect power, by definition. Otherwise, the result follows readily
from Theorem 4.1.
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