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1. Introduction. In the analytic theory of L-functions, it is sometimes
possible to circumvent assumption of the Riemann Hypothesis by applying
zero density arguments. Briefly, one argues that for a family of L-functions
that is sufficiently “spectrally complete”, the functions in the family have
comparatively few zeros to the right of the 1/2-line. Historically, zero density
questions were first considered with respect to the Riemann zeta function
ζ(1/2 + σ + it) as the parameter t varied, and the first result along these
lines could be said to be the Hadamard–de la Vallée-Poussin zero-free region.
Later investigations focused on the number

N(σ, T ) = #{ρ = 1/2 + β + iγ : ζ(ρ) = 0, σ < β, 0 < γ < T},

proving that this number decayed in the power of T with increasing σ > 0.
A classical result in this direction is due to Ingham [I]:

N(σ, T ) = O(T 3(1/2−σ)/(3/2−σ) log5 T ).

Selberg [S1] made a major contribution to this theory, proving the uniform
bound

N(σ, T )� T 1−σ/4 log T,

in 0 ≤ σ ≤ 1/2. The crucial feature of this estimate is that the power of
log T matches the true order in the number of zeros of ζ up to height T ,
so that the estimate is still useful even when σ is on the order of 1/log T .
This formed one of the key analytic ingredients in Selberg’s unconditional
proof that the real and imaginary parts of log ζ(1/2 + it) become normally
distributed in large intervals t ∈ [T, 2T ].

Subsequent to his work on ζ, Selberg [S2] proved an analogous zero den-
sity estimate in the family of Dirichlet L-functions to a large modulus q,
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with q rather than t thought of as the varying parameter. Using this esti-
mate, he showed that for fixed t the argument of L(1/2 + it;χ) becomes
normally distributed as χ varies modulo q, for q → ∞. More recently Luo
[L] has given an analogue of Selberg’s bound in t-aspect, replacing ζ with
the L-function of a fixed Hecke-eigen cusp form for SL2(Z):

Nf (σ, T ) := #{ρ = 1/2 + β + iγ : L(ρ; f) = 0, σ < β, 0 < γ < T}
�f T

1−σ/72 log T.

Together with earlier work of Bombieri and Hejhal [BH], this established
the asymptotic normality of logL(1/2 + it; f) for t ∈ [T, 2T ], f fixed with
T →∞.

The purpose of this article is to prove a parallel extension of Selberg’s
Dirichlet L-function estimate but now for the family of L-functions associ-
ated to modular forms of large weight k. As in Selberg’s work, an important
aspect of our estimate is that it is uniform in k and for T in the range
1/log k < T < kδ, for some small δ > 0. This plays a crucial role in the au-
thor’s related paper [H], where it is established, unconditionally, that varying
f among Hecke-eigenforms of weight k, logL(1/2; f) is bounded above by a
quantity that is asymptotically normal as k →∞. One further piece of con-
text: Kowalski and Michel [KM] have proven another extension of Selberg’s
theorem to the family of weight 2 modular forms of large prime level q,
and Conrey and Soundarajan [CS] (real Dirichlet L-functions) and Ricotta
[R] (Rankin–Selberg L-functions) have given related estimates, each with
applications to non-vanishing. Suitably modified, our estimate has similar
applications, but we do not pursue them here.

To state our density result more precisely, let Sk denote the space of
weight k holomorphic cusp forms for the modular group Γ = SL(2,Z) and
let Hk be the basis of forms in Sk that are simultaneous eigenfunctions of
all the Hecke operators. Write the Fourier expansion of f ∈ Hk as

f(z) =

∞∑
n=1

n(k−1)/2λf (n)e(nz).

We normalize f ∈ Hk so that λf (1) = 1 (1). The L-function associated to
f ∈ Hk is

(1.1) L(s; f) =

∞∑
n=1

λf (n)

ns
=
∏
p

(
1−

λf (p)

ps
+

1

p2s

)−1

, <(s) > 1.

(1) In particular, in our normalization Deligne’s bound [D] reads |λf (n)| ≤ d(n), the
number of divisors of n.
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This is a degree two L-function with completed L-function

Λ(s; f) = (2π)−sΓ

(
s+

k − 1

2

)
L(s; f)

satisfying the self-dual functional equation

Λ(s; f) = ikΛ(1− s; f).

In particular, with our normalization the Riemann Hypothesis asserts that
all zeros ρ of Λ(s; f) satisfy <(ρ) = 1/2.

For f ∈ Hk and T growing, but small compared to
√
k, the number of

zeros ρ of L(s; f) with 0 < =(ρ) < T is ∼ T
2π log k. Thus the density of zeros

of L(s; f) near the central point s = 1
2 is (log k)/2π. Our main result says

that among the family Fk of L-functions associated to forms in Hk, there
are very few L-functions with zeros with small imaginary part and real part
to the right of 1/2 + C/log k.

Main Theorem 1.1. Let 2/log k < σ < 1/2. For some sufficiently small
δ, θ > 0 we have, uniformly in 10/log k < T < kδ,

N(σ, T ) :=
1

|Hk|
∑
f∈Hk

#{L(1/2 + β + iγ) = 0 : σ < β, |γ| < T}

= O(Tk−θσ log k).

The main new analytic ingredient of our theorem is the following asymp-
totic evaluation of the harmonic twisted second moment of L(s; f), which
may be of independent interest.

Theorem 1.2. Let σ > 0, 0 6= |t| < k1/4 and l < k1/3 be square-free.
Denote by τν(n) =

∑
n1n2=n(n1/n2)ν the generalized divisor function. We

have the following formula for the harmonic twisted second moment:∑h

f∈Hk

λf (l)|L(1/2 + σ + it; f)|2

= ζ(1 + 2σ)
τit(l)

l1/2+σ
+ ζ(1− 2σ)

(
k

4π

)−4σ τit(l)

l1/2−σ

+ ikζ(1 + 2it)

(
k

4π

)−2σ+2it τσ(l)

l1/2+it
+ ikζ(1− 2it)

(
k

4π

)−2σ−2it τσ(l)

l1/2−it

+O(l3/4k−1/2−2σ+ε).

The harmonic average (
∑h) means that forms f ∈ Hk are counted with

the weight wf = (4π)1−kΓ (k − 1)/〈f, f〉, which appears in the Petersson
trace formula. Harmonic averages similar to this one have an extensive his-
tory; see for instance [Ku], [Fa], [Fo] and references therein. Our proof is most
noteworthy for the fact that the evaluation of main terms goes “beyond the
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diagonal” and yet is not too difficult. After applying the Petersson trace for-
mula and Voronoi summation to the resulting sums of Kloosterman sums,
the off-diagonal main term arises as the Fourier transform of the relevant
function at zero, and the remaining integrals against Bessel functions are
error terms. The analysis of these error terms involves integrating against
the Bessel function Jk−1(x) near its transition region, and this is bounded
in a similar way to an analysis of the twisted first moment of L(1/2, sym2f)
in [Kh].

2. Outline of proof. The method of proof of Theorem 1.1 is the same as
in Selberg’s original work on Dirichlet L-functions; in particular, we appeal
to the following version of the argument principle introduced there.

Lemma 2.1. Let ω be an entire function, non-zero in the half-plane
<(s) > W . Let B be the rectangular box |=(s)| ≤ H, W0 ≤ <(s) ≤ W1

with W < W0 < W1. Then

4H
∑

β+iγ∈B
ω(β+iγ)=0

cos

(
πγ

2H

)
sinh

(
π(β −W0)

2H

)

=

H�

−H
cos

(
πt

2H

)
log |ω(W0 + it)| dt

−<
H�

−H
cos

(
π
W1 −W0 + it

2iH

)
logω(W1 + it) dt

+

W1�

W0

sinh

(
π(α−W0)

2H

)
log |ω(α+ iH)ω(α− iH)| dα.

The fundamental proposition that we prove is the following.

Proposition 2.2. There exist Dirichlet polynomials {M(s; f)}f∈Hk
which satisfy M(s) = M(s) and are such that for sufficiently small posi-
tive δ and θ, uniformly in |t| < kδ, 1/log k ≤ σ ≤ 1,

1

|Hk|
∑
f∈Hk

|M(1/2 + σ + it; f)L(1/2 + σ + it; f)|2 ≤ 1 +O(k−θσ),

and for all t,

M(3/2 + it; f)L(3/2 + it; f) = 1 +O(k−θ).

To deduce Theorem 1.1 from this proposition, apply the lemma to M ·
L(s; f) with box bounded by 1/2 + 1/log k±2iT and 3/2±2iT . The special
feature of the lemma, which permits uniformity even for small T � 1/log k,
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is that only the real part of the logarithm appears in the part of the inte-
gral contained in the critical strip, so that this part may be bounded using
the second moment estimate of the proposition. The further details of the
deduction of Theorem 1.1 are not difficult, and may be found both in Sel-
berg’s original argument, and in the treatments in [CS] and [KM]. In the
remainder of the paper we are concerned with the proof of the proposition,
which takes place in three stages: first we calculate the harmonic twisted
moment, proving Theorem 1.2. Next we mollify the second moment with
respect to the harmonic weights. Finally we remove the harmonic weights
via the method of [KM].

3. Some lemmas

Lemma 3.1 (Hecke relations). For each Hecke eigenform f , the Fourier
coefficients of f satisfy the relation

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
.

This is equivalent to the Euler product (1.1).

The basic orthogonality relation on Hk is the Petersson trace formula.

Lemma 3.2 (Petersson trace formula). We have∑h

f∈Hk

λf (m)λf (n) = δm=n + 2πik
∞∑
c=1

S(m,n; c)

c
Jk−1

(
4π

c

√
mn

)
.

Proof. See e.g. [IK, p. 360].

Recall that we denote by

(3.1) τν(n) =
∑

n1n2=n

(
n1

n2

)ν
the generalized divisor function. We will use the following version of the
Voronoi summation formula.

Lemma 3.3. Let g : R+ → R+ be smooth with compact support. Let
c ≥ 1 and (a, c) = 1 with ad ≡ 1 mod c. We have

∞∑
m=1

τit(m)e

(
am

c

)
g(m)

= c2it−1ζ(1− 2it)

∞�

0

g(x)x−it dx+ c−2it−1ζ(1 + 2it)

∞�

0

g(x)xit dx
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+
1

c

∞∑
n=1

τit(n)e

(
−dn
c

)∞�
0

g(x)J+
2it

(
4π

c

√
nx

)
dx

+
1

c

∞∑
n=1

τit(n)e

(
dn

c

)∞�
0

g(x)K+
2it

(
4π

c

√
nx

)
dx

where

J+
ν (x) =

−π
sin πν

2

(Jν(x)− J−ν(x)), K+
ν (x) = 4 cos

πν

2
Kν(x).

Proof. This is a slight modification of [IK, Theorem 4.10].

In bounding oscillatory integrals we make use of the following simple
estimate [T, Lemma 4.5].

Lemma 3.4. Let F (x), G(x) be real-valued functions on [a, b] such that
F ′(x)/G(x) is monotonic and F ′′(x) > r > 0, |G(x)| ≤M . Then∣∣∣ b�

a

G(x)eiF (x) dx
∣∣∣ ≤ 8M√

r
.

3.1. Facts concerning Bessel functions. Bessel functions arise both
in the Petersson trace formula and as transforms in the Voronoi summation
formula; we record here the properties that we will need regarding these
functions.

The Bessel function of the first kind, Jν(x), has Taylor series about zero
given by

Jν(x) =

∞∑
m=0

(−1)m(z/2)ν+2m

m!Γ (ν + 1 +m)
.

Differentiating, one obtains the relation

(3.2) J ′ν(x) =
1

2
(Jν+1(x)− Jν−1(x)).

Specializing to ν = k − 1, the Mellin transform is given by

(3.3)

∞�

0

Jk−1(x)xs−1 dx = 2s−1Γ
(
k−1+s

2

)
Γ
(
k+1−s

2

) .
The behavior of all of the Bessel functions depends essentially on the

relationship between the size of the order ν and the variable x. When x is
large, x > |ν|2 (ν possibly complex), then Jν is oscillatory of essentially fixed
frequency, while the Bessel function of the third kind Kν is exponentially
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small. Asymptotic evaluations are given by (cf. [EMOT, p. 85])

Jν(x) =

√
2

πx
cos

(
x− πν

2
− π

4

)[
1− P (ν)

128x2

]
(3.4)

− sin

(
x− πν

2
− π

4

)
ν2 − 1/4

2x
+O

(
1 + |ν|6

x3

)
,

J+
ν (x) = −

√
2π

x
sin

(
x− π

4

)[
1− P (ν)

128x2

]
(3.5)

− π cos

(
x− π

4

)
ν2 − 1/4

2x
+O

(
1 + |ν|6

x3

)
,

where P (ν) = 16ν4 − 40ν2 + 9. Also,

(3.6) Kν(x) =

√
π

2x
e−x
[
1 +O

(
1 + |ν|2

x

)]
.

Since we regard t as small compared to k, |t| < k1/4, these are the only
evaluations we need regarding Jit, and Kit.

When x is small, x� k, then Jk−1(x) is uniformly small. Taking absolute
values in the Taylor expansion leads to the bound ([RS, p. 297])

(3.7) |Jk−1(x)| ≤ (x/2)k−1

Γ (k − 1)
ex/2, x < 2k.

In particular, if x < k/10 then Jk−1(x) < e−k.
In the transition region k � x � k2, Jk(x) increases to a global max-

imum of size k−1/3 at a point near x = k, and thereafter oscillates with
slowly increasing frequency and slowly decreasing amplitude. Langer’s for-
mulas [EMOT, p. 85, (32) and (34)] give an asymptotic evaluation:

(3.8) Jk(x) =
(tanh−1w − w)1/2

πw1/2
K1/3(z) +O(k−4/3),

x < k, w = (1− x2/k2)1/2, z = k(tanh−1w − w),

(3.9) Jk(x) =
(w − tan−1w)1/2

w1/2

[
J1/3(z) cos

π

6
− Y1/3(z) sin

π

6

]
+O(k−4/3),

x > k, w = (x2/k2 − 1)1/2, z = k(w − tan−1w).

Here Yν(x) is the Bessel function of the second kind, related to Jν by

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin νπ
.

Since Langer’s formulas depend on the functions J1/3, Y1/3 and K1/3, we
record their further asymptotic properties. For x � 1 the evaluations of
J1/3 and K1/3 are given by (3.4) and (3.6), while the evaluation of Y1/3 is
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the same as for J1/3 except that the places of cos and sin are interchanged.
When x < 1 we have the bounds

(3.10) J1/3(x)� x1/3, Y1/3(x)� x−1/3, K1/3(x)� x−1/3.

We collect together these facts in the following lemma.

Lemma 3.5. In the region |x− k| < k1/3 we have the bound

(3.11) Jk(x)� k−1/3.

For 0 < x < k − k1/3 we have

(3.12) Jk(x) =
ek(w−tanh−1 w)

√
2πkw

[1 +O(k−1w−3)] +O(k−4/3)

with w = (1− x2/k2)1/2. For x > k + k1/3 we have

(3.13) Jk(x) =

√
2

πkw
cos

(
k(w− tan−1w)− π

4

)
+O

(
k−4/3 +

1 + w−2

k3/2w3/2

)
with, now, w = (x2/k2 − 1)1/2.

Proof. Note that for x = k ± k∆ and ∆ < 1, w � k(∆−1)/2. Thus for
|x− k| < k1/3 the bound follows from Langer’s formulas and the bounds in
(3.10). For |x − k| > k1/3 we have w � k−1/3 and, therefore, z � 1. The
remaining formulas thus follow from the asymptotic evaluations of J1/3, Y1/3,
K1/3 at large argument, together with Langer’s formulas.

One further consequence is the following simple lemma.

Lemma 3.6. For any integer k > 0 and any A < k2,

A�

0

|Jk(x)| dx�
√
A.

Proof. In the range A < k − k1/2 the formula (3.12) and w � k−1/4

imply uniformly Jk(x)� k−4/3 +e−Ω(k1/4)kO(1). For k−k1/2 < x < k+k1/2

bound simply Jk(x) = O(1). In the range k + k1/2 < A < 2k use (3.13) to
bound

A�

k+k1/2

|Jk(x)| dx� A

k4/3
+

A�

k+k1/2

(
1√
kw

+
1

k3/2w7/2

)
dx.

For k < x < 2k, w �
√

(x− k)/k, so the last integral is

�
A−k�

k1/2

(
1

(ky)1/4
+
k1/4

y7/4

)
dy � A3/4

k1/4
+ k−3/8 �

√
A.

Finally, for x > 2k, w = Ω(1) and so (3.13) says that |Jk(x)| � 1√
x

+ 1
k4/3

,

which plainly suffices.
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With an eye toward applying Lemma 3.4 and with x > k and w =√
x2/k2 − 1 as above, we record

(3.14)

∂

∂x
(kw − k tan−1w) =

kw

x
,

∂2

∂x2
(kw − k tan−1w) =

k2

x2(x2 − k2)1/2
.

3.2. Approximate functional equation. Fix, once and for all, a
smooth function H : R+ → R+ satisfying

(1) H(x) ≡ 1 for x ∈ [0, 1/2],
(2) H(x) +H(1/x) = 1.

In particular, the Mellin transform Ĥ(s) has a single simple pole at 0 of
residue 1, is odd, and satisfies the bounds

Ĥ(s)�A
1

s(s+ 1) · · · (s+A− 1)
, A = 1, 2, . . . ,

and |Ĥ(s)| � 2<(s) for <(s) > 1.

We record an approximate formula for |L(1/2 + σ + it; f)|2.

Proposition 3.7 (Approximate functional equation). We have

(3.15) |L(1/2 + σ + it; f)|2 =
∞∑
d=1

1

d1+2σ

∞∑
m=1

λf (m)τit(m)

m1/2+σ

× (Wk,σ+it(md
2) + (4π2md2)2σW̃k,−σ+it(md

2))

with

Wk,σ+it(ξ) =
1

2πi

�

(3)

Ĥ(s)

(4π2ξ)s
Γ (σ + k/2 + it+ s)Γ (σ + k/2− it+ s)

Γ (σ + k/2 + it)Γ (σ + k/2− it)
ds,

W̃k,−σ+it(ξ) =
1

2πi

�

(3)

Ĥ(s)

(4π2ξ)s
Γ (−σ + k/2 + it+ s)Γ (−σ + k/2− it+ s)

Γ (σ + k/2 + it)Γ (σ + k/2− it)
ds.

Proof. See [IK, pp. 97–100] .

The functions Wk,σ+it and W̃k,−σ+it have the following properties.

Lemma 3.8. As functions of a real variable, both Wk,σ+it and W̃k,−σ+it

are real-valued. For t < k1/4 and |σ| < 2 we have

Wk,σ+it(ξ) = 1 +O

((
400ξ

k2

)k1/4)
,
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Wk,σ+it(ξ) = O

((
k2

80ξ

)k1/4)
, ξj

(
∂

∂ξ

)j
Wk,σ+it(ξ)�j 1,

W̃k,−σ+it(ξ) =
Γ (−σ + k/2 + it)Γ (−σ + k/2− it)
Γ (σ + k/2 + it)Γ (σ + k/2− it)

+O

((
400ξ

k2

)k1/4)
,

W̃k,−σ+it(ξ) = O

((
k2

80ξ

)k1/4)
, ξj

(
∂

∂ξ

)j
W̃k,σ+it(ξ)�j k

−4σ.

Proof. Pair s and s in the defining integrals to prove that W and W̃ are
real.

For the bounds on the functions, shift the contour to <(s) = ±k1/4

and estimate the ratio of Gamma factors using Stirling’s approximation. In
particular, for |∆| < <(z)1/2 we use the estimate

(3.16)
Γ (z + ∆)

Γ (z)
= exp

(
∆ log z +

∆2

2z
+O(|∆| |z|−1)

)
.

The derivatives are bounded by estimating directly on the <(s) = 0
line.

4. Twisted second moment, Proof of Theorem 1.2. From the
approximate functional equation,∑h

f∈Hk

λf (l)|L(1/2 + σ + it; f)|2

=

∞∑
m,d=1

τit(m)

m1/2+σd1+2σ
[Wk,σ+it(md

2) + (4π2md2)2σW̃k,−σ+it(md
2)]

×
∑h

f∈Hk

λf (l)λf (m).

Applying the Petersson inner product we obtain a diagonal term

(D) :=
τit(l)

l1/2+σ

∞∑
d=1

1

d1+2σ
[Wk,σ+it(ld

2) + (4π2ld2)2σW̃k,−σ+it(ld
2)]

and an off-diagonal term

(OD) := 2πik
∞∑

m,d=1

τit(m)

m1/2+σd1+2σ
[Wk,σ+it(md

2)+(4π2md2)2σW̃k,−σ+it(md
2)]

×
∞∑
c=1

S(m, l; c)

c
Jk−1

(
4π

c

√
lm

)
.



Modular form L-functions 197

Introducing the integrals defining W and W̃ , the diagonal terms are given
by

(D) =
τit(l)

l1/2+σ

{
1

2πi

�

(3)

ζ(1 + 2s)

(4π2l)s−σ
Γ (s+ k/2 + it)Γ (s+ k/2− it)
Γ (σ + k/2 + it)Γ (σ + k/2− it)

× (Ĥ(s− σ) + Ĥ(s+ σ)) ds

}
,

and this evaluates to the first two main terms, with an error that is O(1/k),
by shifting the contour to the line <(s) = −1/2 + σ (2).

The two remaining main terms come from off the diagonal, so we now
work to isolate these terms. The crucial fact in evaluating the off-diagonal
terms is that the summations over c and d are very short. Exchanging the
order of summation, we write

(OD) = 2πik
∑

cd<10000
√
l

Σc,d
cd1+2σ

+O

( ∑
cd≥10000

√
l

|Σc,d|
cd1+2σ

)
,

Σc,d =

∞∑
m=1

τit(m)S(m, l; c)

m1/2+σ
Jk−1

(
4π

c

√
lm

)
× [Wk,σ+it(md

2) + (4π2md2)2σW̃k,−σ+it(md
2)].

We show that the sum over large cd is an error that is o(1).

Lemma 4.1. When cd ≥ 10000
√
l we have the bound

Σc,d �
(cdkl)O(1)

Γ (k − 1)
e4πk

√
l1/2

cd

(
2πk

√
l1/2

cd

)k−1

+ cd4σ

(
l1/2

80cd

)k1/4
.

This suffices, since when summed over cd > 10000
√
l, the bound of the

lemma yields

Σc,d � lO(1)e−k
1/4

= o(1).

Proof of Lemma 4.1. Split the sum over m according as m ≤ k2c/l1/2d
or not. For small m, each term in the sum is bounded by applying the bound
(3.7) for the Bessel function, bounding the Kloosterman sum trivially by c
and bounding W and W̃ by O(1). This yields

� cd4σ 1

Γ (k − 1)

∑
m<k2c/dl1/2

e
4π
c

√
lm

(
2π

c

√
lm

)k−1

≤ (cdkl)O(1)

Γ (k − 1)
e4πk
√
l1/2/cd

(
2πk

√
l1/2

cd

)k−1

,

(2) The pole of ζ does not contribute since Ĥ(−σ) + Ĥ(σ) = 0.
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by bounding each term in the sum by the largest term. In the part of the sum
with m > k2c/l1/2d we bound the Bessel function by O(1), the Kloosterman

sum by c and W, W̃ by � (k2/80d2m)k
1/4

, which gives

� cd4σ
∑

m>k2c/l1/2d

1

m1/2+σ

(
k2

80md2

)k1/4
� cd4σ

(
l1/2

80cd

)k1/4
.

In order to apply the Voronoi summation formula to the sum over m we
open the Kloosterman sum and introduce a function of compact support.
Let F ∈ C∞c (R+) satisfy

(1) F (x) ≡ 1 for k/1000 < x < 1000k
√
l,

(2) supp(F ) ⊂ [k/2000, 2000k
√
l],

(3) for each j = 0, 1, . . . and all x, xj d
j

dxj
F (x)�j 1,

and consider the perturbed sum

Σ̃c,d =
∑∗

a mod c

e

(
al

c

) ∞∑
m=1

τit(m)e(amc )

m1/2+σ
Jk−1

(
4π

c

√
lm

)
F

(
4π

c

√
lm

)
× [Wk,σ+it(md

2) + (4π2md2)2σW̃k,−σ+it(md
2)].

This negligibly changes the sum, since for those c,m for which F
(

4π
c

√
lm
)

is not identically 1, either Jk or W or W̃ is extremely small: there are
O(lO(1)kO(1)) terms with 4π

c

√
lm < k/1000 and for these terms, the Bessel

function is bounded by e−k. Meanwhile, if 4π
c

√
lm > 1000kl then m >

(1000/4π)2k2c2 so that the sum is bounded by

� lO(1)kO(1)
∑

cd<1000
√
l

∑
m>(1000/4π)2k2c2

(
k2

80md2

)k1/4
� lO(1)kO(1)e−k

1/4
.

Introduce functions

gc,d(x) =
1

x1/2+σ
Wk,σ+it(d

2x)Jk−1

(
4π

c

√
lx

)
F

(
4π

c

√
lx

)
,

g̃c,d(x) =
1

x1/2−σ W̃k,−σ+it(d
2x)Jk−1

(
4π

c

√
lx

)
F

(
4π

c

√
lx

)
so that

Σ̃c,d =
∑∗

a mod c

e

(
al

c

)∑
m

τit(m)e

(
am

c

)
{gc,d(m) + (4π2d2)2σ g̃c,d(m)}.

Applying, for each c, d, Voronoi summation in the sum over m, we express
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the off-diagonal terms as (3)

(OD)

2πik
+ o(1) = ζ(1− 2it)

∑
cd<10000l1/2

S(0, l; c)

c2−2itd1+2σ

∞�

0

gc,d(x)x−it dx

+ ζ(1 + 2it)
∑

cd<10000l1/2

S(0, l; c)

c2+2itd1+2σ

∞�

0

gc,d(x)xit dx

+
∑

cd<10000l1/2

∞∑
n=1

τit(n)S(0, l − n; c)

c2d1+2σ

∞�

0

gc,d(x)J+
2it

(
4π

c

√
nx

)
dx(J)

+
∑

cd<10000l1/2

∞∑
n=1

τit(n)S(0, l + n; c)

c2d1+2σ

∞�

0

gc,d(x)K+
2it

(
4π

c

√
nx

)
dx(K)

+ analogous terms coming from g̃.

We are going to show that the first two terms combine with the correspond-
ing terms from g̃ to yield the remaining two main terms of the theorem, and
that (J) and (K) are error terms.

4.1. The off-diagonal main terms. Expanding the definition of
gc,d(x), the first two terms above are equal to

(4.1) 2ik<
{

2πζ(1− 2it)
∑

cd<10000l1/2

S(0, l; c)

c2−2itd1+2σ

×
∞�

0

Wk,σ+it(d
2x)Jk−1

(
4π

c

√
lx

)
F

(
4π

c

√
lx

)
x−1/2−σ−it dx

}
.

With negligible error the function F may be removed from the integrand,
and then the sums extended to all c and d, this justified by the continuous
analog of the arguments given above involving summations over m (4). In-
serting the definition of Wk,σ+it we obtain for the integral in (4.1) with F
removed

∞�

0

{[
1

2πi

�

(3)

Ĥ(s)

(4π2xd2)s
Γ (s+ σ + k/2 + it)Γ (s+ σ + k/2− it)

Γ (σ + k/2 + it)Γ (σ + k/2− it)
ds

]

× Jk−1

(
4π

c

√
lx

)
x1/2−σ−it

}
dx

x
.

(3) Note that summation over a mod c∗ has been replaced by Ramanujan sums.

(4) We bound only the real part of the error. Recall that W and W̃ are real, so that
the imaginary parts of cit and xit are O(t log l) and O(t log x).
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In view of the bound (3.7), both integrals are absolutely convergent. Put
w = 4π

c

√
lx and exchange the order of the integration to rewrite this as

2

(
c

4π
√
l

)1−2σ−2it 1

2πi

�

(3)

(
4l

c2d2

)sΓ (s+ σ + k/2 + it)Γ (s+ σ + k/2− it)
Γ (σ + k/2 + it)Γ (σ + k/2− it)

×
[∞�

0

Jk−1(w)w1−σ−2it−2s dw

w

]
Ĥ(s) ds.

The bracketed integral is the Mellin transform of Jk−1, given by (3.3).

We now pass the summations over c and d under the integral. Recall
that the Ramanujan sum evaluates to

S(0, a; p) = −1,

S(0, a; pe) = 0,

S(0, p; p) = p− 1, (a, p) = 1, e ≥ 1,

S(0, ap, p2) = −p,
S(0, ap, pe+1) = 0.

Thus the resulting Dirichlet series
∑

c,d S(0, l; c)/(cd)1+2σ+2s collapses to the
finite product∏

p|l

(
1− 1

p1+2σ+2s

)−1(
1 +

p− 1

p1+2σ+2s
− p

p2+4σ+4s

)

=
∏
p|l

(
1 +

1

p2σ+2s

)
= l−σ−sτs+σ(l).

Combining these steps we arrive at

(4.1) = o(1) + 2ik<
{
ζ(1− 2it)(2π)2σ+2it

l1/2−it

× 1

2πi

�

(3)

τs+σ(l)
Γ (σ + k/2− it+ s)Γ (−σ + k/2− it− s)

Γ (σ + k/2 + it)Γ (σ + k/2− it)
Ĥ(s) ds

}
.

Repeating these steps, one proves that the main terms coming from g̃c,d
are (again with error o(1))

2ik<
{
ζ(1− 2it)(2π)2σ+2it

l1/2−it

× 1

2πi

�

(3)

τ−s+σ(l)
Γ (σ + k/2− it− s)Γ (−σ + k/2− it+ s)

Γ (σ + k/2 + it)Γ (σ + k/2− it)
Ĥ(s) ds

}
.
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In this integral we change s to −s. Recall that Ĥ(−s) = −Ĥ(s), so that the
combined contribution from the gc,d and g̃c,d main terms is equal to

1

2πi

{ �

(3)

−
�

(−3)

}[
τs+σ(l)

Γ (σ + k/2− it+ s)Γ (−σ + k/2− it− s)
Γ (σ + k/2 + it)Γ (σ + k/2− it)

Ĥ(s)ds

]
.

Thus the two terms together are just equal to the residue of the integrand
at the pole at 0, that is,

2ik<
{
ζ(1− 2it)(2π)2σ+2it τσ(l)

l1/2−it
Γ (−σ + k/2− it)
Γ (σ + k/2 + it)

}
= 2<

{
ζ(1− 2it)

(
k

4π

)−2σ−2it τσ(l)

l1/2−it

}
+O((1 + t2)k−1).

4.2. The terms containing Bessel integrals. The term (K) is ex-
tremely small, since the K-Bessel function is exponentially small for large
variable and the support of F in the function gc,d localizes the variable to

be of size at least k
√
n/l. The term (J) requires some more care, and we get

cancellation from the changing rate of oscillation of the J-Bessel function in
its transition region.

The integral in the term (J) is equal to

∞�

0

Wk,σ+it(d
2x)Jk−1

(
4π

c

√
lx

)
F

(
4π

c

√
lx

)
J+

2it

(
4π

c

√
nx

)
dx

x1/2+σ
.

Substituting y = 4π
c

√
lx we obtain

2π(J) =
(4π)1+2σ

l1/2−σ

∑
cd<10000

√
l

1

(cd)1+2σ

∞∑
n=1

τit(n)S(0, l − n; c)

×
∞�

0

Wk,σ+it

(
c2d2y2

(4π)2l

)
Jk−1(y)J+

2it

(
y

√
n

l

)
F (y)y−2σ dy.

Now replace J+
2it with its asymptotic expansion

J+
2it

(
y

√
n

l

)
= −

√
2π

y

√
l

n
sin

(
y

√
n

l
− π

4

)[
1− P (2it)l

128y2n

]
− π cos

(
y

√
n

l
− π

4

)
−4t2 − 1/4

2y
+O

(
(1 + t6)l3/2

y3n3/2

)
.

By the integral bound in Lemma 3.6, the error contributes O
( l2+σ(1+t6)

k5/2+2σ−ε

)
. In

the remaining terms we can integrate by parts several times to truncate the
sum over n at n < lkε, with negligible error. We only show how to bound
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the contribution from integrating against the main term

(4.2) −

√
2π

y

√
l

n
sin

(
y

√
n

l
− π

4

)
;

the rest of the main term can be handled in exactly the same way, and it
produces an error of smaller size.

We will prove the following lemma.

Lemma 4.2. We have the bound

(B)

∞�

0

Wk,σ+it

(
c2d2y2

(4π)2l

)
Jk−1(y) sin

(
y

√
n

l
− π

4

)
F (y)y−1/2−2σ dy

� l1/4−σk−1/2−2σ+ε.

Assuming this bound for the moment we find that the contribution to (J)
from integration against (4.2) is

� 1

k1/2+2σ−ε

∑
cd<10000

√
l

1

(cd)1+2σ

∑
n�lkε

|S(0, l − n; c)|
n1/4−ε .

Here the n = l term contributes � l1/4−σk−1/2−2σ+ε while the n 6= l terms
give

� 1

k1/2+2σ−ε

∑
n�lkε
n6=l

1

n1/4−ε

∑
c1|n−l

c1c2d≤10000
√
l

1

c2σ
1 c1+2σ

2 d1+2σ
� l3/4k−1/2−2σ+ε,

and both of these bounds suffice for the theorem. The term corresponding
to (J) coming from g̃ is handled in an analogous way, so it only remains to
prove the bound (B).

Proof of Lemma 4.2. We split the integral into the ranges y < k − k1/3,
k − k1/3 < y < k + k1/3, and k + k1/3 < y < 2000k

√
l.

For y < k − k1/3 we set y = k − k∆ so that w =
√
k2/x2 − 1 satisfies

w � k(∆−1)/2. Then the bound from (3.12),

Jk−1(y)� ekw−k tanh−1 w

√
kw

+O(k−4/3),

easily suffices for the result, since for small w,

kw − k tanh−1w ∼ −kw
3

3
� −k(3∆−1)/2.

For k − k1/3 < y < k + k1/3 we bound simply Jk−1(y) � k−1/3, so that
this part also contributes � k−1/2−2σ.
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In the remaining part of the integral we have from (3.13) (set k′ =
k − 1)

Jk′(y) =

√
2

πk′w
cos

(
k′w − k′ tan−1w − π

4

)
+O

(
k−4/3 +

1 + w−2

k3/2w3/2

)
with w =

√
y2/k′2 − 1. For y > 2k we have w � 1, while for k + k1/3 < y

< 2k we have w �
(y−k

k

)1/2
. Therefore, integration of the error term pro-

duces

� l1/4−σk−5/6−2σ +

2k�

k+k1/3

k1/4

y1/2+2σ(y − k)7/4
� l1/4−σk−5/6−2σ + k−1/2−2σ.

Now consider a dyadic interval [k + A, k + 2A] with A > k1/3. On such
an interval we find that w is fixed to within a constant. Moreover,√

2

πk′w
cos

(
k′w − k′ tan−1w − π

4

)
sin

(
y

√
n

l
− π

4

)
may be written as a linear combination of exponentials of the form√

2

πk′w
ei[±(k′w−k′ tan−1 w−π/4)±(y

√
n/l−π/4)] = G(y)eiF (y).

By further subdividing [k+A, k+2A] into O(1) subintervals we may assume
that F ′(y)/G(y) is monotonic. Recalling (3.14), we have

d2

dy2
(k′w − k′ tan−1w) =

k′

y2w
,

and we deduce from Lemma 3.4 that for each B ∈ [k +A, k + 2A],

B�

k+A

√
2

πk′w
cos

(
k′w − k′ tan−1w − π

4

)
sin

(
y

√
n

l
− π

4

)
dy

� 1√
kw

√
B2w

k
� 1 +

A

k
.

Thus summing dyadically we conclude that for all z ∈ [k + k1/3, 2000k
√
l]

we have

Iz =

z�

k+k1/3

√
2

πk′w
cos

(
k′w − k′ tan−1w − π

4

)
sin

(
y

√
n

l
− π

4

)
dy
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is bounded by � z log l
k . Write

2000k
√
l�

k+k1/3

Wk,σ+it

(
c2d2y2

(4π)2l

)√
2

πk′w
cos

(
k′w − k′ tan−1w − π

4

)

× sin

(
y

√
n

l
− π

4

)
F (y)

dy

y1/2+2σ

=

2000k
√
l�

k+k1/3

Wk,σ+it

(
c2d2y2

(4π)2l

)
F (y)y−1/2−2σdIy

and integrate by parts. Substituting our absolute bound for Iy and the
bounds

∂

∂y
Wk,σ+it

(
c2d2y2

(4π)2l

)
� 1

y
, F ′(y)� 1

y

gives the result � k−1/2−2σl1/4−σ log l. This completes the proof of (B).

5. Mollification. Write the inverse of the L-function L(s; f) as

L(s; f)−1 =

∞∑
n=1

af (n)

ns
=
∏
p

(
1−

λf (p)

ps
+

1

p2s

)
, <(s) > 1.

The coefficients af (n) are supported on cube-free numbers, and for m,n
square-free, (m,n) = 1, we have af (mn2) = µ(m)λf (m). We define a molli-
fier for L(s; f) by

(5.1) M(s; f) =
∞∑
n=1

af (n)F (s(n))

ns
.

Here s(n) =
∏
p|n p denotes the square-free kernel of n and F (n) is a cut-off

function to be given explicitly later, but for which we stipulate F (n) � nε

and F (n) = 0 for n > M = kθ for some θ < 1/5. In particular, we have the
representation

(5.2) |M(1/2 + σ + it; f)|2 =

∣∣∣∣ ∑[

(m,n)=1

µ(m)λf (m)F (mn)

m1/2+σ+itn1+2σ+2it

∣∣∣∣2
=
∑[

d

1

d1+2σ

∑[

(m1,n1)=1
(m2,n2)=1

(m1n1m2n2,d)=1

µ(m1)µ(m2)λf (m1m2)F (dm1n1)F (dm2n2)

m
1/2+σ+it
1 m

1/2+σ−it
2 n1+2σ+2it

1 n1+2σ−2it
2

.
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From this representation, we find

(5.3)
∑h

f∈Hk

|ML(1/2 + σ + it; f)|2

=
∑[

d

1

d1+2σ

∑[

(m1,n1)=1
(m2,n2)=1

(m1n1m2n2,d)=1

µ(m1)µ(m2)F (m1n1d)F (m2n2d)

m
1/2+σ+it
1 m

1/2+σ−it
2 n1+2σ+2it

1 n1+2σ−2it
2

×
∑h

f∈Hk

λf (m1m2)|L(1/2 + σ + it; f)|2.

Substituting our expression for the twisted second moment, we find that

expr. (5.3) +O(k5θ/2−2σ−1/2+ε)

=
∑[

d

1

d1+2σ

∑[

(m1,n1)=1
(m2,n2)=1

(m1n1m2n2,d)=1

µ(m1)µ(m2)F (m1n1d)F (m2n2d)

m
1/2+σ+it
1 m

1/2+σ−it
2 n1+2σ+2it

1 n1+2σ−2it
2

×
{
ζ(1 + 2σ)

τit(m1m2)

(m1m2)1/2+σ
+ ζ(1− 2σ)

(
k

4π

)−4σ τit(m1m2)

(m1m2)1/2−σ

+ ik2<
[
ζ(1 + 2it)

(
k

4π

)−2σ+2it τσ(m1m2)

(m1m2)1/2+it

]}
= S1 + S2 + 2ik<S3.

We may rewrite the divisor sums:

τs(m1m2) =
∑

l1l2=m1m2

(
l1
l2

)s
=

∑
g|(m1,m2)

µ(g)τs

(
m1

g

)
τs

(
m2

g

)
.

Doing so and shifting the sum over g to the front we separate the variables
m1 and m2. Thus we find

S1 = ζ(1 + 2σ)
∑[

d

1

d1+2σ

∑
(g,d)=1

µ(g)

g2+4σ

∣∣∣∣ ∑[

(m,n)=1
(mn,gd)=1

µ(m)τit(m)F (mngd)

m1+2σ+itn1+2σ+2it

∣∣∣∣2

and similar expressions for S2, and S3, although the inner sum in S3 is not
a square. In fact, there is substantial cancellation in the inner summation
for S1 above coming from the Möbius function. The sum is in fact equal to

S1 = ζ(1 + 2σ)
∑[

d

1

d1+2σ

∑
(g,d)=1

µ(g)

g2+4σ

∣∣∣∣ ∑[

(m,gd)=1

µ(m)F (mgd)

m1+2σ

∣∣∣∣2.
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We also find

S2 = ζ(1− 2σ)

(
k

4π

)−4σ∑[

d

1

d1+2σ

∑
(g,d)=1

µ(g)

g2

×
∣∣∣∣ ∑[

(m,n)=1
(mn,gd)=1

µ(m)τit(m)F (mngd)

m1+itn1+2σ+2it

∣∣∣∣2,
S3 = ζ(1 + 2it)

(
k

4π

)−2σ+2it∑[

d

1

d1+2σ

∑
(g,d)=1

µ(g)

g2+2σ+2it

×
∑[

(m1,gd)=1

µ(m1)F (m1gd)

m1+2it
1

∑[

(m2,gd)=1
m1

2m
2
2m

3
2=m2

µ(m1
2)µ(m2

2)F (m2gd)

(m1
2)(m2

2)1+2σ(m3
2)1+2σ−2it

.

5.1. Upper bound for the harmonic mollified second moment.
We now fix the cut-off function F and prove an upper bound for the mollified
second moment. Let

(5.4) F (x) =


1, 0 ≤ x ≤

√
M ,

P

(
log(M/x)

logM

)
,
√
M ≤ x ≤M ,

0, x ≥M ,

where P (t) = 12t2−16t3 satisfies P (1/2) = 1 and P ′(1/2) = P (0) = P ′(0) =
0. The function F is continuously differentiable. Its Mellin transform is equal
to

(5.5) F̂ (s) =
24(M s +M s/2)

s3(logM)2
− 96(M s −M s/2)

s4(logM)3
.

It has a simple pole at s = 0 with residue 1. Also, expanding F̂ (s) in its
Laurent series about 0,

(5.6) F̂ (s) =
1

s
+

∞∑
n=0

cns
n,

we see that the coefficients cn satisfy the bound

cn �
(logM)n+1

(n+ 3)!
.

For this choice of cut-off function we prove

Proposition 5.1. Let M = kθ with θ < 1/5 and suppose 1/log k < σ
and |t| < k1/4. For M(1/2 + σ + it; f) defined by (5.1) and cut-off function
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F as in (5.4) we have∑h

f∈Hk

|ML(1/2 + σ + it; f)|2 ≤ 1 +O(k5θ/2−2σ−1/2+ε) +O(k−θσ).

Proof. We prove S1 = 1+O(K−θσ) and <(S3) = O(K−θσ). This suffices
because S2 ≤ 0 since ζ(1− 2σ) < 0.

By Mellin inversion,

(5.7) S1 = ζ(1 + 2σ)

(
1

2πi

)2 �

(2)

�

(2)

F̂ (α)F̂ (β)G(α, β;σ) dα dβ

where

G(α, β;σ) =
∑[

d

1

d1+2σ+α+β

∑
(g,d)=1

µ(g)

g2+4σ+α+β

∑[

(m1,gd)=1
(m2,gd)=1

µ(m1)µ(m2)

m1+2σ+α
1 m1+2σ+β

2

=
∏
p

(1− p−1−2σ−α − p−1−2σ−β + p−1−2σ−α−β)

=
ζ(1 + 2σ + α+ β)

ζ(1 + 2σ + α)ζ(1 + 2σ + β)
H(α, β;σ).

The Euler product defining H converges absolutely in the region

α+ 2σ > −1/2, β + 2σ > −1/2, α+ β + 2σ > −1/2.

To evaluate the integral, shift both contours to the line <(α) = <(β) =
1/log k and truncate the β integral at |=(β)| ≤ k with error O(k−2+ε). Then
shift the α integral to the contour C given by

C := {α : <(α) = −2σ − log3/4(2 + |=(α)|)}.

In shifting the α contour to C we encounter poles at α = 0 and α =
−2σ − β. This first pole yields a residue

(5.8)
1

ζ(1 + 2σ)

1

2πi

1/log k+ik�

1/log k−ik

F̂ (β) dβ =
1 +O(k−2)

ζ(1 + 2σ)
.

The second pole has residue

1

2πi

1+1/log k+ik�

1+1/log k−ik

F̂ (β)F̂ (−2σ − β)
H(−2σ − β, β;σ)

ζ(1− β)ζ(1 + 2σ + β)
dβ

Here we can extend the integration to the full line, and shift the contour to
<(β) = −σ. On this line, H(−σ+ is,−σ− is;σ) is uniformly bounded, and
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so the integral is bounded by

(5.9)

∞�

−∞

∣∣∣∣ F̂ (−σ + is)

ζ(1 + σ − is)

∣∣∣∣2 ds
�M−σ

[ 1�

−1

∣∣∣∣ log−2M

|σ + is|2
+

log−3M

|σ + is|3

∣∣∣∣2 d|s|+O((logM)−4)

]
.

Now using (a+ b)2 ≤ 2(a2 + b2), we find that the right hand side is bounded
by

k−θσ
[
O((log k)−4) +

1

(logM)4

∞�

−∞

ds

(s2 + σ2)2
+

1

(logM)6

∞�

−∞

ds

(s2 + σ2)3

]
.

Since σ ≥ 1/log k we deduce that the second residue is � k−θσ/log k. The
remaining integral, for α on C, is bounded in view of standard bounds for ζ
in the zero-free region and is quite small. Since ζ(1 + 2σ) � log k we have
the claimed evaluation of S1.

In bounding 2<(S3) we handle separately the cases t ≤ 1/4 log k and
t > 1/4 log k.

When t > 1/4 log k we bound S3 in magnitude as we did S1. By Mellin
inversion,

(5.10)

S3 = ζ(1 + 2it)

(
k

4π

)−2σ+2it( 1

2πi

)2 �

(2)

�

(2)

F̂ (α)F̂ (β)G(α, β;σ, t) dα dβ

where now G(α, β;σ, t) is given by

G(α, β;σ, t) =
∑[

d

1

d1+2σ+α+β

∑
(g,d)=1

µ(g)

g2+2σ+2it+α+β

∑[

(m1m2,gd)=1

µ(m1)

m1+2it+α
1

×
∑

m1
2m

2
2m

3
2=m2

µ(m1
2)µ(m2

2)

(m1
2)1+β(m2

2)1+2σ+β(m3
2)1+2σ−2it+β

=
∏
p

[
1− 1

p1+β
− 1

p1+2σ+β
+

1

p1+2σ−2it+β
− 1

p1+2it+α

+
1

p1+2σ+α+β
+

1

p2+2it+α+β
− 1

p2+2σ+α+β

]

=
ζ(1 + 2σ − 2it+ β)ζ(1 + 2σ + α+ β)

ζ(1 + β)ζ(1 + 2σ + β)ζ(1 + 2it+ α)
H(α, β;σ, t).
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Here the Euler product defining H(α, β;σ, t) converges absolutely for

min(<(α),<(β),<(α+ β)) > −1/2.

To evaluate the integral in (5.10), shift the α and β contours to the

lines <(α) = <(β) = 1/log k. We may assume that σ < 100 log log k
log k since

otherwise k−2σ < k−σ/(log k)100 and the integral may be bounded directly
using standard bounds for ζ and ζ−1 to the right of the 1-line. Now truncate
the β contour at |=(β)| < k and shift the α contour to C′ given by

C′ := {α : <(α) = − log3/4(2 + |=(α+ 2it)|)}.
In doing so we pass two poles, at α = 0 and at α = −β − 2σ. The first pole
has residue

ζ(1 + 2it)−1 1

2πi

1/log k+ik�

1/log k−ik

F̂ (β)ζ(1 + 2σ − 2it+ β)

ζ(1 + β)
H(0, β;σ, t) dβ

= ζ(1 + 2it)−1

(
F̂ (−2σ + 2it)

ζ(1− 2σ + 2it)
H(0,−2σ + 2it;σ, t) +O(1)

)
.

Expressing F̂ (−2σ + 2it) using either the Laurent expansion (5.6) for |t| <
1/log k or the direct definition (5.4) for |t| > 1/log k, together with the
bound 1/ζ(1− s)� s valid in the standard zero-free region, we deduce that
this residue is O(ζ(1 + 2it)−1).

The second residue is equal to

1

2πi

1/log k+ik�

1/log k−ik

F̂ (−β − 2σ)F̂ (β)ζ(1 + 2σ − 2it+ β)

ζ(1 + β)ζ(1 + 2σ + β)ζ(1 + 2it− 2σ − β)
H(−2σ − β, β) dβ.

Shifting this integral to the line <(β) = −2σ (the horizontal integrals are
very small), and taking absolute values, we obtain a bound

�
k�

−k

|F̂ (−2σ + is)|
|ζ(1− 2σ + is)|

|F̂ (−is)|
|ζ(1− is)|

ds.

Arguing as above we have

|F̂ (−is)|
|ζ(1− is)|

= O(1)

for all real s, while for |s| ≤ k,

|F̂ (−2σ + is)|
|ζ(1− 2σ + is)|

�M−σ
[

1

(logM)2|σ + is|2
+

1

(logM)3|σ + is|3

]
,

so that the integral is O(k−θσ/log k) as in the second residue calculation
for S1. The remaining double integral with α on the contour C −2it is again
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small. Thus for 1/4 log k < t, we have

O(ζ(1 + it)−1) +O

(
k−θσ

log k

)
for the integral in (5.10), which suffices since in this range, ζ(1 + 2it) =
O(log k).

When |t| < 1/4 log k, we bound 2<S3 to balance the fact that ζ(1 + 2it)
can be quite large (but mostly imaginary). Following the method of [CS],
let O be the circle |w| = 1/2 log k. By Cauchy’s residue theorem,

2<S3 =
1

2πi

�

O

(
k

4π

)−2σ+w

ζ(1 + w)η(w;σ)

[
1

w + 2it
+

1

w − 2it

]
dw

with

η(w;σ) =
∑[

d

1

d1+2σ

∑
(g,d)=1

µ(g)

g2+2σ+w

∑[

(m1m2,gd)=1

µ(m1)F (m1gd)F (m2gd)

m1+w
1

×
∑

m1
2m

2
2m

3
2=m2

µ(m1
2)µ(m2

2)

(m1
2)(m2

2)1+2σ(m3
2)1+2σ−w .

As before, we may assume that σ < 100 log log k
log k . The evaluation of η(w;σ) by

Mellin inversion is exactly analogous to the integral performed in calculat-
ing S3 when 1/4 log k < |t|: there is a main term equal to ζ(1 + w)−1O(1),
a secondary residue term of size M−σ/log k and a smaller error integral.
Thus η(w;σ) = O(1/log k). Thus the integrand in the integral over O
is O(k−θσ log k). Since the length of O is O(1/log k) the integral itself is
O(k−θσ).

6. Removing the harmonic weights. The starting point for the
Kowalski–Michel [KM] method for removing harmonic weights is the for-
mula ([ILS])

w−1
f =

L(1, sym2f)

ζ(2)
|Hk|+O(log3 k),

where L(s, sym2f) is the symmetric square L-function associated to f , de-
fined by

L(s, sym2f) =

∞∑
n=1

ρf (n)

ns
= ζ(2s)

∑
n

λf (n2)

ns
.

Thus the natural average is expressed as

1

|Hk|
∑
f∈Hk

|ML(1/2 + σ + it; f)|2 =
1

|Hk|
∑h

f∈Hk

w−1
f |ML(1/2 + σ + it; f)|2

=
1

ζ(2)

∑h

f∈Hk

L(1, sym2f)|ML(1/2 + σ + it; f)|2 +O(k−1+ε).
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The method replaces L(1, sym2f) with a short Dirichlet polynomial approx-
imation

wf (x) =
∑
n≤x

ρf (n)

n
, x = kκ.

A minor modification to the proof of Proposition 2 of [KM] yields the fol-
lowing result.

Proposition 6.1. Assume that the mollifier M(1/2 + σ+ it; f) is such
that

(6.1) sup
f∈Hk

wf |ML(1/2 + σ + it; f)|2 < k−δ, δ > 0,

and

(6.2)
∑h

f∈Hk

|ML(1/2 + σ + it; f)|2 < (log k)A.

Let x = kκ for some κ > 0. Then there is a γ = γ(δ, κ,A) > 0 such that

1

|Hk|
∑
f∈Hk

|ML(1/2 + σ + it; f)|2

=
∑h

f∈Hk

wf (x)|ML(1/2 + σ + it; f)|2 +O(k−γ).

The result of the previous section guarantees condition (6.2) so long as
the mollifier is a Dirichlet polynomial of length less than kθ with θ < 1/5.
Trivially |M(1/2 + σ + it)| < kθ/2+ε and the best known subconvex bound
(see [JM]) implies that L(1/2 +σ+ it)� (k+ |t|)1/3−2σ/3+ε. Thus condition
(6.1) holds uniformly in |t| < k for θ < 1/3. Therefore, we complete the
proof of Proposition 2.2 by proving the following uniform bound.

Proposition 6.2. For sufficiently small κ, δ, θ > 0 there exists γ(κ, δ, θ)
> 0 such that, uniformly in 1/log k < σ ≤ 1 and |t| < kδ,

1

ζ(2)

∑h

f∈Hk

( ∑
n≤x=kκ

ρf (n)

n

)
|ML(1/2 + σ + it; f)|2

≤ 1 +O(k−θσ + k−κ/2+ε),

where M is the mollifier from the previous section, having length M = kθ.

Proof. Combining expression (5.2) for |M(1/2 + σ + it; f)|2 with∑
n≤x ρf (n)/n =

∑
l2d<x λf (d2)/l2d and the Hecke relations, we obtain
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∑
n≤x

ρf (n)

n
|M(1/2 + σ + it; f)|2 =

∑
l2d<x

1

l2d

∑
g

[ 1

g1+2σ

×
∑[

(m1,n1)=1
(m2,n2)=1
(mini,g)=1

µ(m1)µ(m2)F (m1n1g)F (m2n2g)

m
1/2+σ+it
1 m

1/2+σ−it
2 n1+2σ+2it

1 n1+2σ−2it
2

∑
h|(d2,m1m2)

λf

(
m1m2d

2

h2

)
.

Write h = h1h
2
2 where h1 and h2 are square-free. Clearly h2 | (m1,m2) and

h2 | d. Also, h1 | (d,m1m2). Shifting the orders of summation, and then in-
troducing our expression for the twisted second moment, we obtain∑h

f∈Hk

( ∑
n≤x=kκ

ρf (n)

n

)
|ML(1/2 + σ + it; f)|2 =

∑
l

1

l2

∑[

(g,h2)=1

1

g1+2σh2+2σ
2

×
∑[

(m1,n1)=1
(m2,n2)=1

(m1m2n1n2,gh2)=1

µ(m1)µ(m2)F (m1n1gh2)F (m2n2gh2)

m
1/2+σ+it
1 m

1/2+σ−it
2 n1+2σ+2it

1 n1+2σ−2it
2

∑[

h1|m1m2

1

h1

×
∑

d<x/l2h1h2

{
ζ(1 + 2σ)τit(m1m2d

2)

d(m1m2d2)1/2+σ
+

(
k

4π

)−4σ ζ(1− 2σ)τit(m1m2d
2)

d(m1m2d2)1/2−σ

+ 2ik<
((

k

4π

)−2σ+2it ζ(1 + 2it)τσ(m1m2d
2)

d(m1m2d2)1/2+it

)
+O

(
d3/2(m1m2)3/4

k1/2+σ−ε

)}
.

The error term contributes � k−1/2+5θ/2−2σ+εx2+2σ � k−1/2+5θ/2+εx2.

For σ > 1/4, the terms involving ζ(1− 2σ) and ζ(1 + 2it) are negligibly
small and so we are left to consider only the ζ(1 + 2σ) term; otherwise, for
1/log k < σ < 1/4 we consider all three terms. In either case, we may remove
the restriction on the sum over d with error � x−1/2+ε. Thus

1

ζ(2)

∑h

f∈Hk

( ∑
n≤x=kκ

ρf (n)

n

)
|ML(1/2 + σ + it; f)|2 = S1 + S2 + 2<S3

with the stipulation that S2 = S3 = 0 if σ > 1/4.

We use the following lemma.

Lemma 6.3. Let m1 and m2 be square-free. For <(s± γ) > 1 we have∑
d

τγ(m1m2d
2)

ds
=

ζ(s)

ζ(2s)
ζ(s+ 2γ)ζ(s− 2γ)

×
∏

p| m1m2
(m1,m2)

2

pγ + p−γ

1 + p−s

∏
p|(m1,m2)

1 + p2γ + p−2γ − p−s

1 + p−s
.
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We first prove that for σ < 1/4, S2 < 0, so that it may be completely
discarded. Since we assume σ < 1/4, we have

S2 = ζ(1− 2σ)
ζ(2− 2σ)

ζ(4− 4σ)
|ζ(2− 2σ + 2it)|2

∑[

k=gh

1

g1−2σh2−2σ

×
∑[

(m1,n1)=1
(m2,n2)=1

(m1n1m2n2,k)=1

µ(m1)µ(m2)F (m1n1k)F (m2n2k)

m1+it
1 m1−it

2 n1+2σ+2it
1 n1+2σ−2it

2

×
∏
p|m1

(
p+ 1

p

pit + p−it

1 + p−2+2σ

) ∏
p|m2

(
p+ 1

p

pit + p−it

1 + p−2+2σ

)

×
∏

p|(m1,m2)

(
p

p+ 1

(1 + p2it + p−2it − p−2+2σ)(1 + p−2+2σ)

(pit + p−it)2

)
.

This may be rearranged as

ζ(1− 2σ)
ζ(2− 2σ)

ζ(4− 4σ)
|ζ(2− 2σ + 2it)|2

∑[

k=ghr

a(r)

g1−2σh2−2σr2

×
∣∣∣∣ ∑[

(m1,n1)=1
(m1n1,k)=1

µ(m1)F (m1n1k)

m1+it
1 n1+2σ+2it

1

∏
p|m1

(
p+ 1

p

pit + p−it

1 + p−2+2σ

)∣∣∣∣2,
where a(r) is the multiplicative function, supported on square-free integers,
and given on primes by

a(p) =
p+ 1

p

1 + p2it + p−2it − p−2+2σ

1 + p−2+2σ
−
(
p+ 1

p

pit + p−it

1 + p−2+2σ

)2

= −p+ 1

p
− (pit + p−it)2

[(
p+ 1

p+ p−1+2σ

)2

− p+ 1

p+ p−1+2σ

]
.

Now observe∑
ghr=k

a(r)

g1−2σh1−2σr2
=
∏
p|k

b(p), b(p) =
1

p1−2σ
+

1

p2−2σ
+
a(p)

p2
.

We have b(p) ≥ 0; indeed, it suffices to check this under the conditions
|pit + p−it| = 2, σ = 0 and p = 2, and in this case we find a value of 0.135.
In particular, since ζ(1− 2σ) < 0 this proves that S2 ≤ 0.
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Next we turn to S1. We have

S1 = ζ(1 + 2σ)
ζ(2 + 2σ)

ζ(4 + 4σ)
|ζ(2 + 2σ + 2it)|2

∑[

k=gh

1

g1+2σh2+2σ

×
∑[

(m1,n1)=1
(m2,n2)=1

(m1n1m2n2,k)=1

µ(m1)µ(m2)F (m1n1k)F (m2n2k)

m1+2σ+it
1 m1+2σ−it

2 n1+2σ+2it
1 n1+2σ−2it

2

×
∏
p|m1

(
p+ 1

p

pit + p−it

1 + p−2−2σ

) ∏
p|m2

(
p+ 1

p

pit + p−it

1 + p−2−2σ

)

×
∏

p|(m1,m2)

(
p

p+ 1

(1 + p2it + p−2it − p−2−2σ)(1 + p−2−2σ)

(pit + p−it)2

)

= ζ(1 + 2σ)
ζ(2 + 2σ)

ζ(4 + 4σ)
|ζ(2 + 2σ + 2it)|2

×
(

1

2πi

)2 �

(2)

�

(2)

F̂ (α)F̂ (β)G(α, β;σ, t) dα dβ

where G is given by

G(α, β;σ, t)

=
ζ(4 + 4σ)

ζ(2 + 2σ)

∏
p

[
1 +

1

p2+2σ
+

1

p1+2σ+α+β
+

1

p2+2σ+α+β
+

1

p4+4σ+α+β

− 1

p5+6σ+α+β
− 1

p1+2σ+α
− 1

p2+2σ+α
− 1

p2+2σ+2it+α

+
1

p3+4σ+2it+α
− 1

p1+2σ+β
− 1

p2+σ+β
− 1

p2+2σ−2it+β
+

1

p3+4σ−2it+β

]
.

Here

G(α, β;σ, t) =
ζ(1 + 2σ + α+ β)

ζ(1 + 2σ + α)ζ(1 + 2σ + β)
H̃(α, β;σ, t),

where H̃ is given by an absolutely convergent Euler product for

min(<(α),<(β),<(α+ β)) > −2σ − c

for some c > 0. This is to say that the contour giving S1 under the natural
average is the same as for the harmonic average up to a change in the abso-
lutely convergent Euler product. Thus the analysis of S1 from the previous
section goes through without change to give
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S1 = ζ(1 + 2σ)
ζ(2 + 2σ)

ζ(4 + 4σ)
|ζ(2 + 2σ + 2it)|2G(0, 0;σ, t) +O(k−θσ)

= 1 +O(k−θσ).

The reader may check that the contour integral giving S3 is the same
for the natural average as for the harmonic average, up to an absolutely
convergent Euler product. Thus the analysis of the previous section yields
the bound <(S3) = O(k−θσ), which completes the proof of Proposition 6.2.
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