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Quadratic forms with polynomial coefficients
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Introduction. If x is a strictly positive real number let H(x) denote
the number of pairs (a, b), a, b ∈ Z, such that |a| ≤ x, |b| ≤ x and such
that the ternary quadratic form X2 + aY 2 + bZ2 represents 0 over the field
Q of rational numbers. Similarly, let N(x) denote the number of 3-tuples
(a, b, c) ∈ Z3 such that |a| ≤ x, |b| ≤ x, |c| ≤ x, and such that the ternary
quadratic form aX2 + bY 2 + cZ2 represents 0 over the field Q. In [6] Serre
proved that

H(x)� x2

log x
and N(x)� x3

(log x)3/2
,

and asked if

H(x)� x2

log x
and N(x)� x3

(log x)3/2
.

Using Burgess’s estimate for character sums and sieve methods, C. Hooley [4]
proved that

N(x)� x3

(log x)3/2
.

Guo [1] improved Hooley’s result, giving an asymptotic estimate for the
number N1(x) of ternary quadratic forms aX2 + bY 2 + cZ2 which represent
zero over Q and whose coefficients a, b, c are square-free rational integers,
pairwise coprime and such that |a| ≤ x, |b| ≤ x, |c| ≤ x, and mentioned that
the expected lower bound for H(x) is an immediate corollary. He proved
that for x tending to ∞,

N1(x) =
9/7

Γ (3/2)2

{∏

p

(
1− 1

p

)3/2(
1 +

3
2p

)}
x3

(log x)3/2
+O

(
x3

(log x)2

)
,

the product being over the rational primes.
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In what follows, we prove analogous results, with Z replaced by the
ring Fq[T ], where Fq is a finite field with q elements and odd characteristic.
J.-P. Serre suggested this problem to the author who wants to thank him for
that and for all his useful remarks. For the precise statement of the results,
see Section 1. For example, a simple one is the following.

Theorem. For n > 0, let Q(n) denote the number of pairs (A,B) of
polynomials A ∈ Fq[T ], B ∈ Fq[T ] such that degA = degB = n and such
that the ternary quadratic form X2−AY 2−BZ2 represents 0 over the field
Fq(T ). Then, for any even integer n > 0,

Q(n) =
2q(q − 1)

π
C(q)

q2n

n
+O

(
q2n

n2

)
,

and for any odd integer n > 0,

Q(n) =
q(q − 1)

π
C(q)

q2n

n
+O

(
q2n

n2

)
,

with

C(q) =
∏

P

(
1 +

1
2qdegP (qdegP + 1)

)
,

the product being over the monic irreducible polynomials, with the constants
involved in the O symbol depending only on q.

Thus, qn acts as x in the rational case, and n acts as log x in the rational
case.

1. Notations and statement of the results. Let us fix some nota-
tion. Let q be a power of an odd prime number and let Fq denote the finite
field with q elements. Let A = Fq[T ], resp. K = Fq(T ). Let M, resp. I de-
note the set of monic polynomials of A, resp. the set of monic irreducible
polynomials of A.

For any non-zero H ∈ A, let degH denote the degree of H, let ω(H)
denote the number of distinct monic irreducible divisors of H and let |H| =
qdegH . As usual, if A1, . . . , Ar are non-zero polynomials, (A1, . . . , Ar) de-
notes their greatest monic common divisor and for a real number x, [x]
denotes the integral part of x.

Let (α, β, γ) be a triple of non-zero elements of the field K = Fq(T ) and
let L be any field containing K. If the equation αx2 +βy2 +γz2 = 0 admits a
non-trivial solution (x, y, z) ∈ L3, then the quadratic form αX2 +βY 2 +γZ2

is said to represent zero over the field L. We say that a quadratic form
represents zero if it represents zero over the field K.

For positive integers m and n, let H1(m,n) denote the number of pairs
(A,B) of square-free, coprime polynomials such that degA = m, degB = n
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and such that the quadratic form

(f) X2 − AY 2 −BZ2

represents zero. We first give an asymptotic estimate for the numbers
H1(m,n) when max(m,n)log 2/log q < min(m,n).

Theorem A. Let θ be a real number such that log 2/log q < θ ≤ 1. For
strictly positive integers m and n satisfying θmax(m,n) ≤ min(m,n), we
have

H1(m,n) =
2
π

(q − 1)3 qm+n−1

m1/2n1/2
+O

(
qm+n

mn

)

if m and n are even, and in all other cases,

H1(m,n) =
1
π

(q − 1)3 qm+n−1

m1/2n1/2
+O

(
qm+n

mn

)
,

with the O-constants depending only on q and θ. In particular , for even
strictly positive integer n,

H1(n, n) =
2
π

(q − 1)3 q
2n−1

n
+O

(
q2n

n2

)
,

and for odd strictly positive integer n,

H1(n, n) =
1
π

(q − 1)3 q
2n−1

n
+O

(
q2n

n2

)
,

with the O-constants depending only on q.

The proof of Theorem A contains all the tools for proving the following
theorem which is the polynomial analogous of Guo’s theorem.

Theorem B. Let N1(n), resp. M1(n), denote the number of quadratic
forms AX2 +BY 2 +CZ2 that represent zero and whose coefficients A, B , C
are square-free and pairwise coprime polynomials of A such that degA ≤ n,
degB ≤ n, degC ≤ n, ABC 6= 0, resp. whose coefficients A, B , C are
monic, square-free and pairwise coprime polynomials such that degA = n,
degB = n, degC = n. Then, for any integer n > 0,

M1(n) = 2
{∏

P∈I

(
1 +

3
2|P |

)(
1− 1
|P |

)3/2}
q3n

π3/2n3/2
+O

(
q3n

n5/2

)
,

N1(n) =
{
q3(2q2 + q + 2)

(q + 1)2

}{∏

P∈I

(
1 +

3
2|P |

)(
1− 1
|P |

)3/2}
q3n

π3/2n3/2

+O

(
q3n

n5/2

)
,

with the O-constants depending only on q.
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In this case, there are three poles in the sense of [6] and the term

q2n

n
=

qn

n1/2
· q

n

n1/2

occurring in Theorem A is replaced by the term

q3n

n3/2
=

qn

n1/2
· q

n

n1/2
· q

n

n1/2
.

Thanks to Weil’s theorem on L-functions, the error term in Theorem B
is better than that in Guo’s theorem. Crucial to the proof is the formula
(2.9) below. In order to avoid useless complications, we detail only the proof
of Theorem A.

Let D be a square-free monic polynomial. Let HD(m,n) denote the num-
ber of pairs (A,B) ∈ A2 with A and B square-free, (A,B) = (A,D) =
(B,D) = 1, degA = m, degB = n and such that the quadratic form

(fD) X2 − ADY 2 −BDZ2

represents zero. Section 3 is devoted to the computation of HD(m,n). An es-
timate for this number is given in Theorem 3.9 below. From this estimate, we
deduce an estimate for the number H ′(m,n) of pairs (A,B) ∈ A2 with A and
B square-free, degA = m, degB = n and such that the quadratic form (f)
represents zero. Finally, we get an estimate for the number H(m,n) of pairs
(A,B) ∈ A2 with degA = m, degB = n and such that the quadratic form (f)
represents zero. Note that the polynomials A and B counted in H ′(m,n)
are not supposed to be relatively prime and that there is no restriction for
the pairs counted in H(m,n).

Precise results are given in Theorems C and D below.

Theorem C. Let θ be a real number such that log 2/log q < θ ≤ 1. Then,
for strictly positive integers m and n satisfying θmax(m,n) ≤ min(m,n),
we have:

(i) if m and n are both even,

H ′(m,n) =
2
π

(q − 1)3C(q)
qm+n−1

m1/2n1/2
+O

(
qm+n

mn

)
,

(ii) otherwise,

H ′(m,n) =
1
π

(q − 1)3C(q)
qm+n−1

m1/2n1/2
+O

(
qm+n

mn

)
,

with

C(q) =
∏

P∈I

(
1 +

1
2|P |(|P |+ 1)

)
,

where the O-constants depend only on q and θ.
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Theorem D. Let % be a real number such that 3 log 2/2 log q < % ≤ 1.
Let m and n be strictly positive integers such that %max(m,n) ≤ min(m,n).
Then:

(i) if m and n are both even,

H(m,n) =
2q(q − 1)

π
C(q)

qm+n

m1/2n1/2
+O

(
qm+n

mn

)
,

(ii) otherwise,

H(m,n) =
q(q − 1)

π
C(q)

qm+n

m1/2n1/2
+O

(
qm+n

mn

)
,

with the O-constants depending only on q and %.

In the second section we study the distribution of the values of some
multiplicative functions defined on the set M of monic polynomials of Fq[T ].
Our proofs make use of Weil’s theorem on L-functions. In the third section,
making use of Hooley’s idea, we prove an asymptotic estimate for the num-
bers HD(m,n), from which we deduce Theorem A. Theorem C is proved in
the fourth section, and Theorem D in the fifth section.

Although we do not give explicit values of all constants occurring in
this work, these constants are actually computable. Moreover, in general,
they depend on q and other parameters. We agree that a constant denoted
α(x1, . . . , xk) depends only on q, x1, . . . , xk, or possibly only on x1, . . . , xk,
and that a constant denoted by β depends only on q, or possibly is an
absolute constant.

In order to simplify notation, in the following, we agree that unless oth-
erwise stated, the polynomials occurring in the sums are monic and square-
free.

2. Multiplicative functions on M. We denote by Dr the open disk
formed by the complex numbers z such that |z| < r and we denote by z1/2

the determination of the complex function z 7→ z1/2 for which 11/2 = 1. We
note that the function z 7→ (1− z)−1/2 is holomorphic on D1.

Lemma 2.1. Let z 7→ h(z) be a holomorphic complex-valued function
defined over the open disk DR with R > 1. For z ∈ D1, let the sequence (an)
be defined by

(2.1) h(z)(1− z)−1/2 =
∞∑

n=0

anz
n.

Let r ∈ ]0, R[. Then there exists a constant α1(r) such that for any integer
n ≥ 1,

(2.2) |an − h(1)π−1/2n−1/2| ≤ α1(r)M(h, r)n−3/2,



136 M. Car

with

(2.3) M(h, r) = max{|h(z)| ; |z| = r}.
Proof. Apply the Cauchy and Stirling formulae.

Let H be a monic polynomial of positive degree and let χ be a character
of the group GH formed by the invertible elements of the quotient ring
A/AH. The character modulo H associated with χ is the multiplicative map
ψχ defined on the ring A by

ψχ(R) =
{
χ(s(R)) if (R,H) = 1,

0 if (R,H) 6= 1,

s denoting the canonical morphism A → A/AH. In the following, we shall
denote by the same symbol χ the character χ of the group GH and the map
ψχ associated with it. The arithmetic L-function associated with χ is the
series

(2.4) L(χ, z) =
∑

Y ∈M
χ(Y )zdeg Y .

Obviously, this series has radius of convergence 1/q. By [3] we know that if
χ is different from the unit character, then L(χ, z) is a polynomial of degree
< degH. We need the results provided by the second part of the following
proposition only in the case where χ is quadratic. Since the general case
poses no more difficulty, we prove the proposition in the general setting.

Proposition 2.2. (i) Let % ∈ ]0, 1/2[. Then there exists a constant α2(%)
such that for any polynomial K and for any integer n > 0,

(2.5)
∣∣∣
∑

deg Y=n
(Y,K)=1

2−ω(Y ) − Aπ−1/2Θ(K)qnn−1/2
∣∣∣ ≤ α2(%)λ%(K)qnn−3/2,

where

A =
∏

P∈I

(
1 +

1
2|P |

)(
1− 1
|P |

)1/2

,(2.6)

Θ(K) =
∏

P∈I
P |K

(
1 +

1
2|P |

)−1

,(2.7)

λ%(K) =
∏

P∈I
P |K

(
1− |P |

%−1

2

)−1

.(2.8)

(ii) There exists a constant α3 such that for any monic, non-constant
polynomial H, any non-unit character χ of the group GH , any polynomial
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K coprime with H and any integer n > 0,

(2.9)
∣∣∣
∑

(Y,K)=1
deg Y=n

2−ω(Y )χ(Y )
∣∣∣ ≤ α32ω(K)n1/2qn/22deg(H)/2.

Proof. Let H be a monic polynomial, and let χ be a character of GH .
If H = 1, the character modulo H associated with χ is assumed to be the
constant map equal to 1. Let

(1) an =
∑

(M,K)=1
degM=n

2−ω(M)χ(M).

The series

(2) f(z) =
∞∑

n=0

an

(
z

q

)n

is absolutely convergent in the open disk D1. If z ∈ D1, f(z) may be ex-
panded as an eulerian product:

f(z) =
∑

(M,K)=1

2−ω(M)χ(M)
(
z

q

)degM

=
∏

P∈I
P -K

(
1 +

1
2
χ(P )

(
z

q

)degP)
.

Hence,

(3)
(
f(z)
U(z)

)2

=
∏

P∈I

(
1 + χ(P )

(
z

q

)deg P

+
1
4
χ(P )2

(
z

q

)2 degP)
,

with

(4) U(z) =
∏

P∈I
P |K

(
1 +

1
2
χ(P )

(
z

q

)degP)−1

.

(i) Assume that H = 1 and χ = 1. Then, for z ∈ D1,

(5)
∏

P∈I

(
1−

(
z

q

)degP)−1

=
∑

Y ∈M

(
z

q

)deg Y

=
1

1− z ,

the product on the left-hand side of (5) being absolutely convergent in D1.
Hence, by (3), for z ∈ D1,

(6) f(z) = U(z)G(z)1/2(1− z)−1/2,

where

(7) G(z) =
∏

P∈I

(
1− 3

4

(
z

q

)2 degP

− 1
4

(
z

q

)3 degP)
.
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Let % ∈ ]0, 1/2[. According to Lemma 2.1, since U is holomorphic on Dq and
G1/2 is holomorphic on D

√
q,

(8)
∣∣∣∣anq−n − U(1)

√
G(1)
π

n−1/2

∣∣∣∣

≤ β(%) max{|U(z)| |G(z)|1/2; |z| = q%}n−3/2,

with β(%) a constant.
For |z| = q%,

|U(z)|1/2 ≤
∏

P∈I
P |K

(
1− |P |

%−1

2

)−1

,

|G(z)| ≤
∏

P∈I
(1 + |P |2%−2),

and by (5),

|G(z)| ≤ 1− q4%−3

1− q2%−1 ≤
1

1− q2%−1 .

The first part of the proposition is then given by (8).
(ii) Assume that H 6= 1 and that χ is different from the unit character.

By (2.4),

L

(
χ,
z

q

)
=
∏

P∈I

(
1− χ(P )

(
z

q

)degP)−1

and

(9) f(z)2 = U(z)2L

(
χ,
z

q

)
G(z),

where

(10) G(z) =
∏

P∈I

(
1− 3

4
χ(P )2

(
z

q

)2 degP

− 1
4
χ(P )3

(
z

q

)3 degP)
.

Then G1/2 is holomorphic on D
√
q.

According to [5, Chapter 2], we associate with χ a non-principal quasi-
character θ of the idele group J(K) of the field K = Fq(T ). Let Lθ denote the
L-function associated with the quasi-character θ. Let S be the union of the
infinite place and the places associated with the irreducible divisors of H.
According to [5, Theorem 3], for any v ∈ S, there exists a complex number
ε(v), with |ε(v)| ∈ {0, 1}, such that

(11) L(χ, z) = Lθ(z)
∏

v∈S
(1− ε(v)zdeg v).
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According to Weil’s theorem, Lθ is a polynomial and if Lθ is not equal
to 1, its roots are algebraic integers of modulus q−1/2 (cf. [7, Appendix 5]).
By (11),

(12) L

(
χ,
z

q

)
=

d∏

i=1

(1− αiz),

with

|αi| ∈ {q−1, q−1/2},(13)

d < degH.(14)

Let δ ∈ ]1/2, 1[. Let z be a complex number such that |z| = q1−δ. Then, by
(9), (4), (10), (12) and (13),

(15) |f(z)| ≤ m(δ),

with

(16) m(δ)2 = (1 + q1/2−δ)d
{∏

P∈I

(
1 +

1
|P |2δ

)}{∏

P∈I
P |K

(
1− 1

2|P |δ
)−2}

.

Now, by (5),
∏

P∈I

(
1 +

1
|P |2δ

)
=

1− q1−4δ

1− q1−2δ ,

hence,
m(δ)2 ≤ 2d+2ω(K)(1− q1−2δ)−1.

By (2), (15) and the Cauchy formula, we get

(17) |an| ≤ 2d/22ω(K)(1− q1−2δ)−1/2qδn

for any δ ∈ ]1/2, 1[.
Now, we suppose that n ≥ 3 and we choose δ = 1/2 + 1/n. By (17),

(18) |an| ≤
q√

3(1− q−2/3)
2d/22ω(K)n1/2qn/2.

We remark that (18) remains true for n = 1 or 2, proving the second part
of the proposition.

Proposition 2.3. Let % ∈ ]0, 1/2[. Then there exists a constant α4(%)
such that for any polynomial K and any positive integer n,

(2.10)
∣∣∣∣
∑

deg Y=n
(Y,K)=1

2−ω(Y )Θ(Y )− B

π1/2
Ψ(K)

qn

n1/2

∣∣∣∣ ≤ α4(%)λ%(K)
qn

n3/2
,
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with

B =
∏

P∈I

(
1 +

1
2|P |+ 1

)(
1− 1
|P |

)1/2

,(2.11)

Ψ(K) =
∏

P∈I
P |K

(
1 +

1
2|P |+ 1

)−1

.(2.12)

Proof. As for the above proposition.

Proposition 2.4. Let M1 denote the set of square-free monic polyno-
mials. Then

∑

Y ∈M1

(deg Y )|Y |−2 =
q2 + q − 1
q2(q − 1)

,(2.13)

∑

Y ∈M1

2−ω(Y )Θ(Y )Ψ(Y )|Y |−2 =
∏

P∈I

(
1 +

1
2|P |(|P |+ 1)

)
.(2.14)

Proof. Let an denote the number of square-free monic polynomials of
degree n. Then a0 = a1 = 1 and an = (1− 1/q)qn. Hence,

∑

Y ∈M1

(deg Y )|Y |−2 =
1
q

+
∞∑

n=2

n

(
1− 1

q

)
q−n = q−2 + (q− 1)q−2

∞∑

n=1

nq−n+1,

whence (2.13). Let P be a monic irreducible polynomial. In view of (2.7)
and (2.12),

Θ(P )Ψ(P )|P |−2 =
(

1 +
1

2|P |

)−1(
1 +

1
2|P |+ 1

)−1

|P |−2 =
1

|P |(|P |+ 1)

and (2.14) follows.

Proposition 2.5. Let % ∈ ]0, 1/2[. Then there exists a constant α5(%)
such that for any integer n > 0,

(2.15)
∣∣∣
∑

deg Y=n

2−ω(Y )λ%(Y )
∣∣∣ ≤ α5(%)

qn

n1/2
.

Proof. By a proof which mimics that of Proposition 2.2 one may get an
asymptotic estimate for the sum occurring on the left hand side of (2.15)
from which one may deduce the announced result.

3. Estimations for HD(m,n) and QD(m,n). Let us recall some facts
about the polynomial Jacobi symbol. Let P ∈ I. The Legendre quadratic
character modulo P is defined as follows. For A ∈ A coprime with P , let

(3.1)
(
A

P

)
=
{

1 if A is a square mod P ,

−1 if A is not a square mod P .
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The Jacobi symbol is defined as follows. For any monic polynomial D and
A ∈ A coprime with D, let

(3.2)
(
A

D

)
=
∏

P∈I
P |D

(
A

P

)vP (D)

,

vP (D) denoting the P -adic valuation of D.
We extend the map

( ·
D

)
to all polynomials by setting

(
A
D

)
= 0 for

polynomials A such that (A,D) 6= 1. We shall make use of some properties
of this symbol collected in the following proposition.

Proposition 3.1. (i) Let X,Y ∈M. Then
(−1
X

)
= εdegX ,(3.3)

(
X

Y

)(
Y

X

)
= εdegX deg Y ,(3.4)

with

(3.5) ε = ε(q) = (−1)(q−1)/2.

(ii) Let a be a non-zero element in the field Fq. Let D be a monic, square-
free polynomial. Then

(
a
D

)
= −1 if and only if a is not a square in Fq and

degD is odd.

Proof. The first part is proved in [2] for irreducible X and Y . The mul-
tiplicativity of the symbol gives (3.3) and (3.4) in the general case. Let a be
a non-zero element in Fq. If a is a square in Fq, then

(
a
P

)
= 1 for any P ∈ I,

and
(
a
D

)
= 1 for any monic square-free D. Suppose that a is not a square

in Fq. Let α be a root of T 2 − a in an algebraic closure of Fq. Then

Fq2 = Fq(α).

Let P ∈ I. Then the field F|P | = FqdegP is the splitting field of P . Hence,
α ∈ F|P | if and only if degP is even. But α ∈ F|P | if and only if a is a
square mod P . Hence,

(
a
P

)
= 1 if and only if degP is even. Now, by (3.2),(

a
D

)
= −1 if and only if the number of irreducible divisors of odd degree

of D is odd.

Let D be a monic square-free polynomial. We observe that HD(m,n) =
HD(n,m). Using this symmetry, we may suppose m ≤ n. Moreover, in the
following we shall suppose that

(3.6) 1 ≤ m ≤ n,
and that

(3.7) m+ degD ≤ n log q
log 2

.
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Let X = XD(m,n), resp. Y = YD(m,n), denote the set of (A,B) ∈ M2,
resp. (A,B) ∈ A2, such that

(1) A and B are square-free,
(2) (A,D) = 1, (AD,B) = 1,
(3) degA = m, degB = n.

Then HD(m,n) is the number of (A,B) ∈ Y such that the equation

(fD) X2 − ADY 2 −BDZ2 = 0

admits a non-trivial solution (x, y, z) ∈ K3.
Let Ξ = ΞD(m), resp. Ξ′ = Ξ′D(m), denote the set of A ∈ M, resp.

A ∈ A, such that

(1) A is square-free, coprime with D,
(2) degA = m.

If A ∈ Ξ, resp. if A ∈ Ξ′, we denote by XA, resp. YA, the set of polynomials
B such that (A,B) ∈ X, resp. (A,B) ∈ Y.

We recall our convention. Unless otherwise stated, the polynomials oc-
curring in the sums below are monic and square-free.

Proposition 3.2. We have

(3.8) 2ω(D)HD(m,n)

=
∑

D′D′′=D

(−1
D′

) ∑

(A,B)∈Y
2−ω(AB)

∑

A′|A

∑

B′|B

(
AB

D′

)(
BD

A′

)(
AD

B′

)
.

Proof. Let A and B be square-free non-zero elements of the ring A such
that (A,B) = (A,D) = (B,D) = 1. For P ∈ I, let KP denote the P -adic
completion of the field K. By the Hasse principle, the quadratic form (fD)
represents zero over K if and only if it represents zero over KP , for any
P ∈ I. If P ∈ I does not divide ABD, then AD and BD are P -adic units
and (fD) represents zero over KP . If P ∈ I divides A, then (fD) represents
zero over KP if and only if BD is a square modulo P . If P ∈ I divides D,
then (fD) represents zero over KP if and only if −AB is a square modulo
P . Hence, the quadratic form (fD) represents zero over K if and only if
{∏

P∈I
P |A

{
1 +

(
BD

P

)}}{∏

P∈I
P |B

{
1 +

(
AD

P

)}}{∏

P∈I
P |D

{
1 +

(−AB
P

)}}

= 2ω(ABD).

It follows that

2ω(D)HD(m,n) =
∑

(A,B)∈Y
2−ω(AB)

∑

D′|D

(−AB
D′

)∑

A′|A

(
BD

A′

) ∑

B′|B

(
AD

B′

)
.
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We get (3.8) by interchanging the order of summation.

Following Hooley’s idea, we split the sum HD(m,n) into subsums corre-
sponding to different types of divisors. We need a new notation. For non-zero
polynomials U , V and W we set

(3.9) δ(U, V,W ) = εdegU+degU deg V+deg V degW+degW degU .

Proposition 3.3. We have

(3.10) HD(m,n) = S1(m,n) + S2(m,n) + S3(m,n),

where

(3.11) 2ω(D)S1(m,n) = κ(m,n,degD)(q − 1)2
∑

(A,B)∈X
2−ω(AB),

with

(3.12) κ(m,n,degD) =
{

2 if m+ degD and n+ degD are even,

1 otherwise,

(3.13) 2ω(D)S2(m,n) = (q − 1)2
∑

(A,B)∈X
2−ω(AB)T (A,B),

(3.14) T (A,B)

=





2
∑

B′|B
B′ 6=1

degB′≡0 mod 2

(
AD

B′

)
if m+ degD and n+ degD are even,

∑

B′|B
B′ 6=1

degB′≡0 mod 2

(
AD

B′

)
if m+ degD is odd ,

∑

B′|B
B′ 6=1

(
AD

B′

)
if m+ degD is even and n+ degD is odd ,

(3.15) 2ω(D)S3(m,n)

=
∑

D′D′′=D
16=D′ 6=D

∑

A′A′′∈Ξ′
A′′∈A
D′A′ 6=1

deg(D′′A′′)6=0

2−ω(A′A′′)
(
A′′

D′

)(
D′′

A′

)
τ(D′, A′, A′′),

(3.16) τ(D′, A′, A′′)

=
∑

B∈YA′A′′
2−ω(B)

∑

B′′∈A
B′B′′=B

δ(D′, A′, B′)
(
B′′

D′A′

)(
A′′D′′

B′

)
.
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Proof. If X is a non-zero element of the ring A, we denote by X∗ the
monic polynomial such that X and X∗ generate the same ideal. We split
the right hand side of (3.8) into three subsums 2ω(D)Si(m,n) = 2ω(D)Si,
1 ≤ i ≤ 3, corresponding to different 3-tuples (D′, A′, B′) of divisors. The
sum 2ω(D)S1 which will be the main term contains only for each (A,B) ∈ Y
the triple (1, 1, 1) and the triple (D,A∗, B∗), that is to say,

2ω(D)S1 =
∑

(A,B)∈Y
2−ω(AB)

{
1 +

(−1
D

)(
AB

D

)(
BD

A∗

)(
AD

B∗

)}
.

Writing A and B as the product of a monic polynomial by a non-zero con-
stant, we get

2ω(D)S1 =
∑

(U,V )∈X
2−ω(UV )

×
∑

a∈F∗q

∑

b∈F∗q

{
1 +

(−1
D

)(
ab

D

)(
b

U

)(
a

V

)(
UV

D

)(
V D

U

)(
UD

V

)}
.

Making use of (3.3) and (3.4), we get

2ω(D)S1 =
∑

(U,V )∈X
2−ω(UV )

∑

a∈F∗q

∑

b∈F∗q

{1+ε(m+n+1) degD+mn}
(

a

DV

)(
b

DU

)
.

Suppose that m+ degD and n+ degD are both even. Then

{1 + ε(m+n+1) degD+mn} = 2

and making use of Proposition 3.1(ii) we get

2ω(D)−1S1 = (q − 1)2
∑

(U,V )∈X
2−ω(UV ).

Suppose that m+ degD is odd. Then, by Proposition 3.1(ii), for any U ∈ Ξ
and any b ∈ F∗q ,

(
b

DU

)
=
{

1 if b is a square,

−1 if b is not a square.

Hence, for any U ∈ Ξ,
∑

b∈F∗q

(
b

DU

)
= 0

and
2ω(D)S1 = (q − 1)2

∑

(U,V )∈X
2−ω(UV ).

The case where n+ degD is odd is similar.
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The sum 2ω(D)S2 contains for each (A,B) ∈ Y the triples (1, 1, B′) with
B′ 6= 1 and the triples (D,A∗, B′) with B′ 6= B∗. Then, writing A, resp. B,
as the product of a monic polynomial by a non-zero constant, we get

2ω(D)S2 =
∑

(U,V )∈X
2−ω(UV )

{ ∑

V ′V ′′=V
V ′ 6=1

(
UD

V ′

) ∑

a∈F∗q

∑

b∈F∗q

(
a

V ′

)

+
(−1
D

) ∑

V ′V ′′=V
V ′′ 6=1

(
UV

D

)(
V D

U

)(
UD

V ′

)

×
∑

a∈F∗q

∑

b∈F∗q

(
ab

D

)(
a

V ′

)(
b

U

)}
.

Since (
UD

V ′

)
=
(
UD

V ′

)(
UD

V ′′

)2

=
(
UD

V

)(
UD

V ′′

)
,

and similarly, (
a

V ′

)
=
(
a

V

)(
a

V ′′

)
,

we obtain

2ω(D)S2 =
∑

(U,V )∈X
2−ω(UV )

{ ∑

V ′V ′′=V
V ′ 6=1

(
UD

V ′

) ∑

a∈F∗q

∑

b∈F∗q

(
a

V ′

)

+
(−1
D

) ∑

V ′V ′′=V
V ′′ 6=1

(
UV

D

)(
V D

U

)(
UD

V

)(
UD

V ′′

)

×
∑

a∈F∗q

∑

b∈F∗q

(
ab

D

)(
a

V

)(
a

V ′′

)(
b

U

)}
.

Making use of (3.3) and (3.4), we get

2ω(D)S2 =
∑

(U,V )∈X
2−ω(UV )

∑

V ′V ′′=V
V ′ 6=1

(
UD

V ′

)

×
∑

a∈F∗q

∑

b∈F∗q

(
a

V ′

){
1 + ε(m+n+1) degD+mn

(
a

DV

)(
b

DU

)}
.

Assume that m+ degD and n+ degD are both even. Then, as above,

2ω(D)−1S2 =
∑

(U,V )∈X
2−ω(UV )

∑

V ′V ′′=V
V ′ 6=1

(
UD

V ′

) ∑

a∈F∗q

∑

b∈F∗q

(
a

V ′

)
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and

2ω(D)−1S2 = (q − 1)2
∑

(U,V )∈X
2−ω(UV )

∑

V ′|V
V ′ 6=1

deg V ′≡0 mod 2

(
UD

V ′

)
.

Assume that m+ degD is odd. Then, as above,

2ω(D)S2 = (q − 1)
∑

(U,V )∈X
2−ω(UV )

∑

V ′|V
V ′ 6=1

(
UD

V ′

) ∑

a∈F∗q

(
a

V ′

)

and

2ω(D)S2 = (q − 1)2
∑

(U,V )∈X
2−ω(UV )

∑

V ′|V
V ′ 6=1

deg V ′≡0 mod 2

(
UD

V ′

)
.

Assume that n+ degD is odd and that m+ degD is even. Then, as above,

2ω(D)S2 = (q− 1)
∑

(U,V )∈X
2−ω(UV )

∑

V ′|V
V ′ 6=1

(
UD

V ′

) ∑

a∈F∗q

{(
a

V ′

)
+
(

a

DV V ′

)}
,

2ω(D)S2 = (q − 1)2
∑

(U,V )∈X
2−ω(UV )

∑

V ′|V
V ′ 6=1

(
UD

V ′

)
.

This completes the proof of (3.13).
The sum 2ω(D)S3 contains the remaining terms, that is to say, all the

3-tuples (D′, A′, B′) of monic divisors such that D′A′ 6= 1, D′A′ 6= DA∗.
Then, writing D = D′D′′, A = A′A′′, B = B′B′′, and making use once more
of (3.3) and (3.4), we get

2ω(D)S3 =
∑

D′D′′=D
16=D′ 6=D

∑

(A,B)∈Y
2−ω(AB)

∑

A′A′′=A
A′′∈A
D′A′ 6=1

D′A′ 6=DA∗

(
A′′

D′

)(
D′′

A′

)

×
∑

B′B′′=B
B′′∈A

δ(D′, A′, B′)
(
B′′

A′D′

)(
A′′D′′

B′

)
,

proving (3.15).

Proposition 3.4. There exists a constant β1 such that

(3.17) |S2(m,n)| ≤ β1m
1/2qn+m/22n/2.
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Proof. In view of (3.13) and (3.14), we have

2ω(D)−1|S2(m,n)|

≤ (q−1)2
∑

degW≤n
W 6=1

(W,D)=1

2−ω(W )
∑

deg Y=n−degW
(WD,Y )=1

2−ω(Y )

∣∣∣∣
∑

degA=m
(A,WYD)=1

2−ω(A)
(
A

W

)∣∣∣∣.

By (2.9), if W 6= 1,
∣∣∣∣

∑

degA=m
(A,WYD)=1

2−ω(A)
(
A

W

)∣∣∣∣ ≤ α32ω(YD)m1/2qm/22deg(W )/2,

hence

|S2(m,n)| ≤ 2(q − 1)2α3
21/2

21/2 − 1
m1/2qn+m/22n/2,

whence (3.17) follows with

β1 = α3
23/2

21/2 − 1
(q − 1)2.

Proposition 3.5. There exists a constant β2 such that for monic D′ |D,
A ∈ Ξ, a ∈ F∗q and monic A′ |A such that deg(D′A′) 6= 0, deg(D′A′) 6=
deg(DA), we have

(3.18) |τ(D′, A′, aA/A′)| ≤ β2n
1/2q3n/42ω(AD)+deg(AD)/4,

moreover , if deg(D′A′) is odd , then τ(D′, A′, aA/A′) = 0.

Proof. We set D = D′D′′, A = A′A′′. We note that D′ and D′′ are
square-free and coprime polynomials of positive degree. By (3.16),

τ(D′, A′, aA′′)

=
∑

B∈XA
2−ω(B)

∑

B′B′′=B

δ(D′, A′, B′)
(
B′′

D′A′

)(
aA′′D′′

B′

)∑

b∈F∗q

(
b

D′A′

)
.

In view of Proposition 3.1(ii), if deg(D′A′) is odd, then the last sum is 0
and τ(D′, A′, aA′′) = 0. We suppose deg(D′A′) even. Then

τ(D′, A′, aA′′)

= (q − 1)
∑

B∈XA
2−ω(B)

∑

B′B′′=B

δ(D′, A′, B′)
(
B′′

D′A′

)(
aA′′D′′

B′

)
.

Let h be a non-negative integer such that

(1) h < n.
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We divide τ(D′, A′, aA′′) into two parts according as degB′≤h or degB′>h.
Making use of (3.4), we get

(2) τ(D′, A′, aA′′) = (q − 1)(τ1(D′, A′, A′′) + τ2(D′, A′, a, A′′)),

with

(3) τ1(D′, A′, A′′)

=
∑

degB′≤h
(B′,AD)=1

δ(D′, A′, B′)2−ω(B′)
(
aA′′D′′

B′

) ∑

degB′′=n−degB′

(B′′,DAB′)=1

2−ω(B′′)
(
B′′

D′A′

)
,

(4) εdegD′(1+degA′)+n(m+degD)τ2(D′, A′, a, A′′)

=
∑

degB′′<n−h
(B′′AD)=1

2−ω(B′′)ε(m+degD) deg(B′′)
(
B′′

D′A′

)

×
∑

degB′=n−degB′′

(B′,DAB′′)=1

2−ω(B′)
(
a

B′

)(
B′

D′′A′′

)
.

(I) Let W ∈M be such that degW ≤ h. In view of (2.9),
∣∣∣∣

∑

deg Y=n−degW
(Y,DAW )=1

2−ω(Y )
(

Y

D′A′

)∣∣∣∣ ≤ α3n
1/2qn/22ω(D′′A′′W )+deg(D′A′)/2|W |−1/2;

hence, by (3) and (3.9),

(5) |τ1(D′, A′, A′′)| ≤ α3
q1/2

q1/2 − 1
n1/2qn/2+h/22ω(AD)+deg(D′A′)/2.

(II) Let W ∈M be such that degW < n− h. According to (2.9),
∣∣∣∣

∑

deg Y=n−degW
(Y,DAW )=1

2−ω(Y )
(

Y

A′′D′′

)∣∣∣∣≤α3n
1/2qn/22ω(A′D′W )+deg(A′′D′′)/2|W |−1/2.

Since the sign of
(
a
B′
)

depends at most on the degree of B′, by (4) we have

(6) |τ2(D′, A′, a, A′′)| ≤ α3
1

q1/2 − 1
n1/2qn−h/22ω(AD)+deg(A′′D′′)/2.

Let η be defined by

(7) qη = qn/22(degA′′D′′−degA′D′)/2.

In view of (3.6) and (3.7), we have η < n and we may choose h = [η]. With
this choice, by (2), (5) and (6),

|τ(D′, A′, aA′′)| ≤ β2n
1/2q3n/42ω(AD)+deg(AD)/4
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with

β2 = 2α3(q − 1)
q1/2

q1/2 − 1
.

This gives (3.18).

Proposition 3.6. We have

(3.19) |S3(m,n)| ≤ β2(q − 1)(m+ 1)2ω(D)+deg(D)/4n1/2qm+3n/42m/4.

Proof. By (3.15) and the definition of the sets Ξ and Ξ′,

2ω(D)S3(m,n)

=
∑

D′D′′=D
16=D′ 6=D

∑

A′A′′∈Ξ
D′A′ 6=1
D′′A′′ 6=1

2−ω(A′A′′)
∑

a∈F∗q

(
aA′′

D′

)(
D′′

A′

)
τ(D′, A′, aA′′).

We conclude by applying (3.18).

Let

(3.20) S(m,n) =
∑

(X,Y )∈X(m,n)

2−ω(XY ).

Proposition 3.7. Let % ∈ ]0, 1/2[. Then there exists a constant β3(%)
such that

(3.21)
∣∣∣∣S(m,n)−

(
1− 1

q

)
qm+n

πm1/2n1/2
Θ(D)Ψ(D)

∣∣∣∣

≤ β3(%)λ%(D)
qm+n

m1/2n1/2

(
1
m

+
1
n

)

with Θ(D), Ψ(D) and λ%(D) defined respectively by (2.7), (2.12) and (2.8).

Proof. In view of (3.20) and the definition of the set X(m,n),

S(m,n) =
∑

degX=m
(X,D)=1

2−ω(X)
∑

deg Y=n
(XD,Y )=1

2−ω(Y ).

Let % ∈ ]0, 1/2[. In view of (2.5), (2.10) and (2.15),
∣∣∣∣S(m,n)− AB

π
Θ(D)Ψ(D)

qm+n

m1/2n1/2

∣∣∣∣

≤ qm+n

m1/2n1/2
λ%(D)

(
α4(%)
π1/2

AΘ(D)
1
m

+
α2(%)α5(%)

n

)
,

with A and B defined by (2.6) and (2.11), and Θ and Ψ defined by (2.7)
and (2.12). An easy computation leads to

AB = 1− 1
q
.
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In view of (2.7), we have 0 < Θ(D) ≤ 1, whence (3.21) follows with

β3(%) = max(α4(%)Aπ−1/2, α2(%)α5(%)).

We summarize what has been proved in this section in the following
theorem.

Theorem 3.9. Let D be a square-free monic polynomial and let m and
n be integers such that 1 ≤ m ≤ n and

m+ degD ≤ n log q
log 2

.

Then, if m+ degD and n+ degD are even,
∣∣∣∣HD(m,n)− (q − 1)321−ω(D) qm+n−1

πm1/2n1/2
Θ(D)Ψ(D)

∣∣∣∣

≤ β1m
1/2qn+m/22n/2 + 2(q − 1)β22ω(D)+deg(D)/4mn1/2qm+3n/42m/4

+ (q − 1)221−ω(D)β3

(
1
4

)
λ1/4(D)

qm+n

m1/2n1/2

(
1
m

+
1
n

)
,

otherwise,
∣∣∣∣HD(m,n)− (q − 1)32−ω(D) qm+n−1

πm1/2n1/2
Θ(D)Ψ(D)

∣∣∣∣

≤ β1m
1/2qn+m/22n/2 + 2(q − 1)β22ω(D)+deg(D)/4mn1/2qm+3n/42m/4

+ (q − 1)22−ω(D)β3

(
1
4

)
λ1/4(D)

qm+n

m1/2n1/2

(
1
m

+
1
n

)
.

For D = 1, this theorem gives a more precise version of Theorem A.

4. Estimations for H ′(m,n). First, we recall that H ′(m,n) is the
number of pairs (A,B) of square-free elements of the ring A = Fq[T ] such
that degA = m, degB = n and such that the quadratic form

(f) X2 − AY 2 −BZ2

represents zero.

Theorem 4.1. Let θ be a real number with log 2/log q < θ ≤ 1. Let m
and n be strictly positive integers such that θmax(m,n) ≤ min(m,n). Then,
if m and n are both even,

∣∣∣∣H ′(m,n)− 2
π

(q − 1)3C
qm+n−1

m1/2n1/2

∣∣∣∣ ≤ β6(θ)
qm+n

n2 ,

otherwise,
∣∣∣∣H ′(m,n)− 1

π
(q − 1)3C

qm+n−1

m1/2n1/2

∣∣∣∣ ≤ β6(θ)
qm+n

n2 ,
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with

C =
∏

P∈I

(
1 +

1
2|P |(|P |+ 1)

)

and β6(θ) a constant.

Proof. Let m and n be strictly positive integers such that θn ≤ m ≤ n.
Let (A,B) be a pair of square-free elements of the ring A and let D =
gcd(A,B). Then (A,B) is counted in H ′(m,n) if and only if (A/D,B/D) is
counted in HD(m− degD,n− degD). Hence,

(1) H ′(m,n) =
∑

degD≤m
HD(m− degD,n− degD).

Let

(2) µ = min
([

m

2

]
,

[
n−m log 2

log q

])
.

Obviously, for any monic D,

HD(m− degD,n− degD) ≤ (q − 1)2qm+n−2 degD,

and by (1),

(3) 0 ≤ H ′(m,n)−H(m,n) ≤ (q − 1)qm+n−µ,

where

(4) H(m,n) =
∑

degD≤µ
HD(m− degD,n− degD).

If degD ≤ µ, then m ≤ (n− degD) log q
log 2 and we may apply Theorem 3.9 to

HD(m− degD,n− degD). Taking (2) into account we get

(5)
∣∣∣∣H(m,n)− χ

π
(q − 1)3qm+n−1H∗(m,n)

∣∣∣∣ ≤ ∆(m,n),

where

χ = χ(m,n) =
{

2 if m and n are both even,

1 if not,
(6)

H∗(m,n) =
∑

degD≤µ

2−ω(D)|D|−2Θ(D)Ψ(D)
(m− degD)1/2(n− degD)1/2

,(7)

∆(m,n) = β1m
1/2qn+m/22n/2

∑

degD≤µ
|D|−3/22− deg(D)/2(8)

+ β4n
3/2qm+3n/42m/4

∑

degD≤µ
2ω(D)|D|−7/4

+ β5
qm+n

m1/2n1/2

(
1
m

+
1
n

) ∑

degD≤µ
λ1/4(D)2−ω(D)|D|−2,
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with
β4 = 2(q − 1)β2, β5 = 8(q − 1)2β3(1/4).

We have
∑

degD≤µ
2ω(D)|D|−7/4 ≤

∏

P∈I

(
1 +

2
|P |7/4

)
= p1,

∑

degD≤µ
λ1/4(D)2−ω(D)|D|−2 ≤

∏

P∈I

(
1 +

λ1/4(P )
2|P |2

)
= p2,

these products being convergent since 1 ≤ λ1/4(P ) ≤ 2/(2− q−3/4). Hence,

(9) ∆(m,n) ≤ β1
(2q)1/2

(2q)1/2 − 1
m1/2qn+m/22n/2

+ β4p1n
3/2qm+3n/42m/4 + β5p2

qm+n

m1/2n1/2

(
1
m

+
1
n

)
.

Now,
∣∣∣∣H∗(m,n)− 1

m1/2n1/2

∑

degD≤µ
2−ω(D)|D|−2Θ(D)Ψ(D)

∣∣∣∣

≤ 2
1 + 21/2

(
1

m3/2n1/2
+

21/2

m1/2n3/2

) ∑

degD≤µ
degD 2−ω(D)|D|−2Θ(D)Ψ(D).

In view of (2.7) and (2.12), we bound Θ(D) and Ψ(D) by 1. Hence, by (2.13)
and (2.14),

∣∣∣∣H∗(m,n)− C

m1/2n1/2

∣∣∣∣ ≤
1

q − 1
q−µm−1/2n−1/2

+
23/2(q2 + q − 1)

(1 + 21/2)q2(q − 1)
m−3/2n−1/2,

with

C =
∏

P∈I

(
1 +

1
2|P |(|P |+ 1)

)
.

We get the expected result with (3), (6) and (9).

5. Estimations for H(m,n). We recall that H(m,n) is the number
of pairs (A,B) of elements of the ring A = Fq[T ] such that degA = m,
degB = n and such that the quadratic form

(f) X2 − AY 2 −BZ2

represents zero.
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Theorem 5.1. Let % be a real number such that 3 log 2/2 log q < % ≤ 1.
Let m and n be strictly positive integers such that %max(m,n) ≤ min(m,n).
Then, if m and n are both even,

∣∣∣∣H(m,n)− 2Cq(q − 1)qm+n

πm1/2n1/2

∣∣∣∣ ≤ β7(%)
qm+n

n2 ,

otherwise, ∣∣∣∣H(m,n)− Cq(q − 1)qm+n

πm1/2n1/2

∣∣∣∣ ≤ β7(%)
qm+n

n2 ,

with β7(%) a constant. In particular , for any even integer n > 0,
∣∣∣∣H(n, n)− 2Cq(q − 1)q2n

πn

∣∣∣∣ ≤ β7(1)
q2n

n2 ,

and for any odd integer n > 0,
∣∣∣∣H(n, n)− Cq(q − 1)q2n

πn

∣∣∣∣ ≤ β7(1)
q2n

n2 .

Proof. Let m and n be integers such that %n ≤ m ≤ n. Let (A,B)
be a pair of non-zero elements of A. Then A and B are uniquely written
as A = A′U2, B = B′V 2 with A′ and B′ square-free, U and V monic.
Moreover, (A,B) is counted in H(m,n) if and only if (A′, B′) is counted in
H ′(m− 2 degU, n− 2 deg V ). Hence,

(1) H(m,n) =
∑

2 degU≤m

∑

2 deg V≤n
H ′(m− 2 degU, n− 2 deg V ).

Obviously, for any pair occurring in H(m,n),

H ′(m− 2 degU, n− 2 deg V ) ≤ (q − 1)2qm+n−2 degU−2 deg V .

Let E ′ denote the set of pairs (U, V ) of monic polynomials U and V such
that 2 degU ≤ m/3 and 2 deg V ≤ n/3. We note that for (U, V ) ∈ E ′,
min(m− 2 degU, n− 2 deg V ) > 0. Moreover,

(2)
∑

2 degU≤m
2 deg V≤n
(U,V )6∈E′

H ′(m− 2 degU, n− 2 deg V ) ≤ qm+n+2(q−m/6 + q−n/6).

Let θ = 2
3%. We note that log 2/log q < θ ≤ 1. Let E denote the set of pairs

(U, V ) ∈ E ′ such that

(3) min(m− 2 degU, n− 2 deg V ) ≥ θmax(m− 2 degU, n− 2 deg V ).

If a pair (U, V ) ∈M×M does not satisfy (3), then either 2 deg V ≥ n−m+
2 degU and in this case 2 deg V > n−θm+2θ degU ≥ n−θm, or 2 deg V <
n −m + 2 degU and in this case 2 degU > m − θn + 2θ deg V ≥ m − θn.
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Hence,

(4)
∑

(U,V )∈E′
(U,V )6∈E

H ′(m− 2 degU, n− 2 deg V )

≤ qm+n+2(q−(n−θm)/2 + q−(m−θn)/2).

Let

(5) H(m,n) =
∑

(U,V )∈E
H ′(m− 2 degU, n− 2 deg V ).

Then, by (2) and (4),

(6) |H(m,n)−H(m,n)| ≤ 4qm+n+2−%n/6.

If (U, V ) ∈ E , then

min(m− 2 degU, n− 2 deg V ) ≥ θmax(m− 2 degU, n− 2 deg V ) > 0

and we may apply Theorem 4.1 to H ′(m− 2 degU, n− 2 deg V ), obtaining

(7)
∣∣∣∣H(m,n)− χ(m,n)C(q − 1)3

π
qm+n−1H∗(m,n)

∣∣∣∣ ≤ β′(%)
qm+n

n2 ,

with

(8) H∗(m,n) =
∑

(U,V )∈E
|U |−2|V |−2(m− 2 degU)−1/2(n− 2 deg V )−1/2,

χ(m,n) defined as in the proof of Theorem 4.1 and β ′(%) a constant. By
easy computations we get

(9) 0 ≤ H∗(m,n)−
∑

(U,V )∈E
|U |−2|V |−2m−1/2n−1/2 ≤ β′′(%)n−2,

with β′′(%) a constant. Finally, as above we get
∣∣∣

∑

(U,V )∈M×M
|U |−2|V |−2 −

∑

(U,V )∈E
|U |−2|V |−2

∣∣∣ ≤ 2
(

q

q − 1

)2

q−(m−θn)/2

≤ 2
(

q

q − 1

)2

q−%n/6.

We conclude by applying (6), (7) and (9).
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