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Arithmetic Clifford’s theorem
for Hermitian vector bundles
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Tohru Nakashima (Tokyo)

1. Introduction. Let K be a number field and let OK denote its ring
of integers. A Hermitian vector bundle E on an arithmetic curve SpecOK
is a projective OK-module E equipped with a Hermitian metric E ⊗v C
for each infinite place v : K ↪→ C. We expect that Hermitian bundles have
properties similar to those of vector bundles on an algebraic curve defined
over a field.

Recently the notion of size h0(L) has been introduced for a Hermitian
line bundle L on an arithmetic curve. This invariant may be considered as
an arithmetic analogue of the dimension of the space of global sections. For
example, a Riemann–Roch type theorem holds for them ([GS]).

In [G] Groenewegen has proved an arithmetic analogue of Clifford’s the-
orem by means of the size function. The purpose of this note is to generalize
the result to semistable Hermitian vector bundles. We notice that this is
also an arithmetic analogue of a theorem obtained in [BGN] in the geo-
metric case. We also consider an example of a semistable Hermitian bundle
which comes from arithmetic abelian schemes ([B]).

The author thanks the referee for correcting mistakes in the original
manuscript and for valuable suggestions.

2. Statement of the result. Let K be a number field and let S∞

denote the set of infinite places of K. The scheme S = SpecOK is said to
be an arithmetic curve. If we denote by r1 and r2 the number of real resp.
complex embeddings of K, then n = [K : Q] = r1 + 2r2.

Let E be a Hermitian vector bundle of rank r on S. In other words, E
is a projective OK-module of rank r equipped with Hermitian metrics ‖ ‖v
on the complex vector spaces Ev = E ⊗v C associated with the embeddings
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v ∈ S∞. Let
EC ∼=

⊕

v∈S∞
Ev.

Let E⊗ZR denote the real subspace of EC fixed under complex conjugation.
We equip ER with the norm which is the restriction of the norm on EC which
is defined for x ∈ EC as follows:

‖x‖2 =
∑

v∈S∞
‖x‖2v.

We consider E as a lattice of rank rn in ER.
The arithmetic degree of a Hermitian line bundle L is defined by

d̂egL = log ](L/OKs)−
∑

v∈S∞
log ‖s‖v

where s is a nonzero element of L. For a general Hermitian bundle E, we
define d̂egE by

d̂egE = d̂eg detE.

We have the equality

d̂egE = − log covolE +
r log |∆K |

2
where we denote by covolE the covolume of E and by ∆K the discriminant
of K. We define the norm of E by

N(E) = ed̂egE .

The OK-module
ωS = HomZ(OK ,Z)

is locally free of rank one. We equip ωS with the Hermitian metric which is
defined, for each v ∈ S∞, by ‖Tr‖v = 1 for the trace map Tr ∈ ωS . Let ωS
denote the resulting Hermitian line bundle. Then we have

d̂egωS = log |∆K |.
For a Hermitian vector bundle E, we denote by E∨ = HomOK (E,OK) the
dual vector bundle equipped with the dual metric. We let

E∗ = E∨ ⊗ ωS
denote the Hermitian bundle equipped with the tensor product of the dual
metric and the metric on ωS defined above. Its degree is given by

d̂egE∗ = −d̂egE + rd̂egωS .

Following [GS], we define the effectivity of E to be the number

k0(E) =
∑

x∈E
e−π‖x‖

2
.
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Then the size of E is defined as follows:

h0(E) = log k0(E).

h0(E) may be considered as an arithmetic analogue of the dimension of the
space of global sections in the geometric case. For example, as a consequence
of the Poisson summation formula we have the following result, which is
stated in [GS, 9] in a different form.

Proposition 2.1 (Riemann–Roch). Let E be a Hermitian vector bundle
of rank r on S. Then

h0(E)− d̂egE/2 = h0(E∗)− d̂egE∗/2.

For a Hermitian bundle E, we define its slope µ̂(E) by

µ̂(E) = d̂egE/rkE.

E is said to be semistable if µ̂(F ) ≤ µ̂(E) for every subbundle F of E with
the induced metric.

The main result of this note is the following

Theorem 2.2. Let E be a semistable Hermitian vector bundle of rank r
on S = SpecOK .

(1) If d̂egE ≤ 0, then

h0(E) <
3rnπ

π − r log 3
e−πe

−2(d̂egE)/(rn)
.

(2) If d̂egE ≥ 0, then

h0(E) ≤ rn(logω + log r + 2−1 logn) + d̂egE.

(3) If 0 ≤ µ̂(E) ≤ d̂egωS , then

h0(E) ≤ rn(logω + log r + logn) + d̂egE/2.

We notice that the above theorem has a geometric counterpart. Let C be
a smooth projective curve over C and let E be a semistable vector bundle of
rank r on C. Let µ(E) = degE/r denote its slope. Then h0(E) = dimH0(E)
has the following properties.

Proposition 2.3. (1) If degE < 0, then h0(E) = 0.
(2) If degE ≥ 0, then h0(E) ≤ r + degE.
(3) If 0 ≤ µ(E) ≤ 2g − 2, then h0(E) ≤ r + degE/2.

Proof. (1) is clear from the definition and (3) has been proved in [BGN,
Theorem 2.1]. We prove (2) by induction on r, following the argument
in loc.cit. The case r = 1 is easy. Assume that the inequality holds for
semistable bundles of rank less than r. Let E1 denote a subbundle of E which
has the maximal slope among all proper subbundles. Let E2 = E/E1. It is
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clear that E1, E2 are both semistable. Since we may assume that h0(E) > 0,
we obtain µ(E1) ≥ 0. We also have µ(E1) ≥ µ(E) ≥ 0 by the semistability
of E. Hence by the induction assumption we obtain

h0(E) ≤ h0(E1) + h0(E2) ≤ rkE1 + degE1 + rkE2 + degE2 = r+ degE.

3. Proof of Theorem 2.2. For a lattice Λ, its minimum is defined to
be the minimum norm of nonzero elements in Λ. The following result has
been proved by Groenewegen ([G, Proposition 5.4, Corollary 5.7]).

Lemma 3.1. Let Λ be a lattice of rank n with minimum λ and let Λ∗

denote the dual lattice with minimum λ∗. Let ω = k0(Z) where Z is equipped
with the trivial metric. For 1 ≤ i ≤ n, let γi denote the ith Hermite constant.
Then

k0(Λ) ≤ ωn
n∏

i=1

max{1, γi/λ}.

Furthermore, we have either

k0(Λ) ≤ ωn max{1, 1/λ}n/2nn or k0(Λ∗) ≤ ωn max{1, 1/λ∗}n/2nn.
Lemma 3.2. If E is a semistable Hermitian bundle, then E∗ is also

semistable.

Proof. Assume that E is semistable and let F ⊂ E∗ be a sub-OK-module
with the induced metric. Considering the saturation of F , we may assume
that E∗/F is projective. Then we obtain an injection (E∗/F )∗ ↪→ E. Since
E is assumed to be semistable, we have µ̂((E∗/F )∗) ≤ µ̂(E), which implies
µ̂(F ) ≤ µ̂(E∗) as desired.

Let λ (resp. λ∗) denote the minimum of E (resp. E∗). Since E is semi-
stable, so is E∗ by Lemma 3.2. For any nonzero s ∈ E, let L denote the
Hermitian line bundle which is generated by s in E, with the induced metric.
Then

µ̂(E) ≥ d̂egL ≥ −
∑

v∈S∞
log ‖s‖v.

Hence, by the geometric-arithmetic mean inequality, we have

‖s‖2 =
∑

v∈S∞
‖sv‖2v ≥ n

( ∏

v∈S∞
‖s‖2v

)1/n
≥ ne−2d̂egE/(rn) = nN(E)−2/(rn).

This yields
λ ≥ √nN(E)−1/(rn).

Similarly, by Lemma 3.2,

λ∗ ≥ √nN(E∗)−1/(rn).
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If d̂egE ≤ 0, then N(E) ≤ 1 and hence λ ≥ √n. By [G, Prop. 4.4], we
obtain

k0(E) ≤ 1 +
3rnπ

π − log 3
e−πλ

2
.

This implies (1).
Since γi ≤ rn for all i, Lemma 3.1 yields

k0(E) ≤ ωrn max{1, (rn/λ)rn}.
If d̂egE ≥ 0, then max{1, (rn/λ)rn} ≤ (r

√
n)rned̂egE . Thus (2) follows.

To prove (3), we note that, by Lemma 3.1 we have either

(∗) k0(E) ≤ ωrn max{1, 1/λ}rn/2(rn)rn

or

(∗∗) k0(E∗) ≤ ωrn max{1, 1/λ∗}rn/2(rn)rn.

By the assumption 0 ≤ µ̂(E) ≤ d̂egωS , we have d̂egE ≥ 0 and d̂egE∗ ≥ 0.
Assume that (∗) holds. Since max{1, 1/λ} = 1/λ, we have

h0(E) ≤ rn(logω + log rn) + d̂egE/2.

Hence we are done in this case. Similarly, if (∗∗) holds, we obtain

h0(E∗) ≤ rn(logω + log rn) + d̂egE∗/2,

which yields, by Riemann–Roch,

h0(E) ≤ rn(logω + log rn) + d̂egE/2.

This completes the proof.

4. An example. In this section we shall give an example of semistable
Hermitian bundle due to J.-B. Bost. For higher-dimensional Arakelov geom-
etry, we refer to [SABK].

Let A be an abelian variety of dimension g over a number field K with
n = [K : Q]. Let L be an ample symmetric line bundle on A and let χ(A,L)
denote its Euler characteristic. Then, by Riemann–Roch,

χ(A,L) = Lg/g!.

Assume that A has good reduction and let the abelian scheme

π : A → S = SpecOK
denote a model of A over S and let L be a line bundle A extending L.
Let ε : S → A be a zero section. For each v ∈ S∞ there exists an F∞-
invariant Hermitian metric ‖ ‖v on Lv such that its curvature form is trans-
lation invariant. This metric is unique up to multiplication by positive con-
stants. Let L denote the Hermitian line bundle equipped with this met-
ric, normalized so that ε∗L is isometric to the trivial line bundle OS with
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the trivial metric. Then π∗L is a vector bundle of rank χ(A,L) on S. We
equip it with the metric which is defined as follows. For each v ∈ S∞ and
s ∈ (π∗L)v ∼= H0(Av(C),Lv), one sets

‖s‖v =
�

Av(C)

‖s‖2L dµ,

where dµ denotes the Haar measure of total volume one onAv(C). J.-B. Bost
proved that the resulting Hermitian bundle π∗L is semistable and its slope
is given by

µ̂(π∗L) = −1
2
h(A) +

1
4

log
(
χ(A,L)
(2π)g

)
,

where h(A) denotes the Faltings height of A ([B,Théorème 4.2]). Thus, we
may apply Theorem 2.2 to π∗L to see that if

log
(
χ(A,L)
(2π)g

)
≥ 2h(A),

then

h0(π∗L) ≤ χ(A,L)
{
n

(
logω +

1
2

logn+ logχ(A,L)
)

− 1
2
h(A) +

1
4

log
(
χ(A,L)
(2π)g

)}
.
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