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Higher order modular forms and mixed Hodge theory

by

Ramesh Sreekantan (Bangalore)

Introduction. In the theory of automorphic forms, the classical holo-
morphic modular forms and their complex conjugates play a special role:
they are the forms most closely linked to geometry. Spaces of such modular
forms can be identified with the cohomology groups of certain locally con-
stant sheaves on modular curves. From this point of view certain things, like
Hecke operators, become very natural and this is the first step in associating
a motive to a modular form.

Second order modular forms were introduced by Goldfeld and have been
studied in some detail by several people. Examples of such forms we also
discovered in a different context by Kleban and Zagier [KZ03]. In [CDO02],
the notion of a higher order automorphic form was considered and the spaces
of such forms were studied. One can speculate as to whether there is any
geometry underlying these spaces of automorphic forms. In general, these
spaces can be rather large and one cannot expect much. However, in this
paper we consider certain subspaces with additional structure that can be
understood as the generalization of the space of classical holomorphic mod-
ular forms. We show that these spaces can be identified with certain spaces
coming from the fundamental groups of modular curves.

In weight 0, the spaces we consider are the spaces of anti-derivatives of
iterated integrals of smooth 1-forms. In the classical situation the Eichler–
Shimura isomorphism identifies the spaces of holomorphic modular forms
along with the conjugates of cusp forms with the cohomology groups of
locally constant sheaves on a modular curve and these spaces have mixed
Hodge structures. We show that our spaces can be identified with graded
quotients of the dual of the group ring of the fundamental group of the
modular curve generalizing the Eichler–Shimura theorem. These quotients
have mixed Hodge structures due to Hain [Hai87] and Morgan. Using this,
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we can define a mixed Hodge structure on the space of weight 0 higher order
forms. In general, this Hodge structure depends on the base point. Deligne
and Goncharov [DG05] show that this Hodge structure is the same as that
on a cohomology group of a pair.

For higher weights, we generalize a construction of Goldfeld and O’Sulli-
van [GO03] using twisted Poincaré series to construct some higher order
higher weight forms. We show that, when the weight k is greater than 2, the
spaces of such forms also have a mixed Hodge structure.

One purpose of relating the higher order forms to the geometry of the
modular curve is to define a Hecke theory. Classically, the Hecke operators
are the operators induced on the cohomology groups by certain algebraic
correspondences. In the higher order case, however, one cannot use this, as
Hecke correspondences do not induce maps between homotopy groups or on
the corresponding Hodge structures. This perhaps explains why there is no
satisfactory Hecke theory for higher order forms.

In weight 0, much of the theory is analogous to the theory of multiple zeta
values and the geometry of P1−{0, 1,∞} due to Deligne, Goncharov [DG05]
and others. From this point of view the higher order modular forms can be
viewed as generalizations of the single variable multiple polylogarithms.

1. Higher order automorphic forms. Let Γ be a discrete subgroup
of SL2(R) with no elliptic fixed points, so Γ is isomorphic to the fundamental
group π1(X,x0) of X = Γ\H at some point x0 ∈ X. Let Z[Γ ] be the group
ring and J = Jx0 = 〈γ − 1〉 the augmentation ideal of Z[Γ ] which fits in the
exact sequence

0→ J → Z[Γ ]
deg−→ Z→ 0.

If f : H→ C is a function and k ∈ Z, define

(f |kγ)(z) = j(γ, z)−kf(γz)

where γ =
(
a b
c d

)
is in SL2(R) and j(γ, z) = (cz+d) is the usual automorphy

factor. We extend this to an action of Z[Γ ] on the space of functions by
defining

f |k
∑

aiγi =
∑

aif |kγi.

An automorphic form of weight k for Γ is a function such that

f |kγ = 0

for all γ in J . More generally, for s ∈ N, we define a higher order automorphic
form of weight k and order s for Γ to be a function f : H→ C such that

f |kγ = 0

for all γ in Js. Let M s
k = M s

k(Γ ) denote the space of higher order automor-
phic forms of order s. We further define M0

k (Γ ) to be the constants C. For
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s = 1 with the added conditions of holomorphy and growth at the cusps,
this gives the classical modular forms of weight k. For a fixed weight k there
is a natural filtration by order

M0
k ⊆M1

k ⊆M2
k ⊆ · · · .

These spaces can be rather large, so one cannot expect much structure. In
this paper we study certain subspaces of the space of these forms which have
a lot more structure.

2. Iterated integrals. Let X be a smooth manifold with a point x0.
Let P (X) = P (X,x0) denote the space of loops on X based at x0, that is,
continuous functions

γ : [0, 1]→ X, γ(0) = γ(1) = x0.

A function φ : P (X)→ R, where R is a ring, is said to be a homotopy func-
tional if φ depends only on the homotopy class of γ. That is, it defines a func-
tion on Γ = π1(X,x0) or equivalently an element of HomAbGrps(Z[Γ ], R).

Let E•(X) denote the de Rham complex of smooth forms on X. It is a
differential graded algebra (dga), that is, a graded algebra A with a degree 1
map d : A→ A such that

• d ◦ d = 0,
• d(a · b) = d(a) · b+ (−1)deg(a)a · d(b).

Let ω be a 1-form in A1(X), where A•(X) is a sub-dga of E•(X). The map

γ 7→
�

γ

ω =
1�

0

f(t) dt,

where γ∗(ω) = f(t) dt, defines a function on P (X). This defines an element
of Hom(Z[Γ ],R) if and only if ω is closed. Hence this only detects elements of
Γ visible in the homology of X. It vanishes on J2, since if (α−1)(β−1) ∈ J2,
then �

αβ

ω =
�

α

ω +
�

β

ω

so �

αβ

ω −
�

α

ω −
�

β

ω +
�

1

ω = 0.

The iterated integrals studied by Chen [Che71] detect more elements of
the group ring. Suppose ω1, . . . , ωr are smooth 1-forms in A1(X) and γ is a
path on X. Define

(1)
�

γ

ω1 . . . ωr =
�
. . .

�

0≤t1≤···≤tr≤1

f1(t1) . . . fr(tr) dt1 . . . dtr



324 R. Sreekantan

where γ∗(ωi) = fi(t) dt. This defines a function on the space of paths of X
which will be denoted by

	
ω1 . . . ωr and is called an iterated line integral of

length r. A linear combination of such functions is called an iterated integral
and its length is the length of the longest line integral. Length 0 iterated
integrals are defined to be constant functions. Let Bs(A•(X)) denote the
space of iterated integrals of length ≤ s coming from forms in A•.

An iterated integral is not necessarily invariant under homotopy. Chen
[Che71] formulated a condition in terms of differential graded algebras under
which iterated integrals which are homotopy functionals are closed with
respect to a certain differential. However, we have no use for that formalism
in what follows so we will not describe it. It does underlie the following
notation though. Let H0(Bs(A•(X)), x0) be the space of iterated integrals
of length ≤ s which are homotopy functionals on loops based at a point x0

on X modulo those iterated integrals which integrate to 0 along any path.
We shorten this to H0(Bs(X), x0) if A•(X) is E•(X).

If I is in Bs(A•(X)) and γ in Γ , let

〈I, γ〉 =
�

γ

I

denote the evaluation map. This can be extended by linearity to all of Z[Γ ].
LetH0(B̄s(A•(X)), x0) denote the subspace ofH0(Bs(A•(X)), x0) such that

〈I, ηx0〉 = 0

where ηx0 denotes the constant loop at x0. Namely, these are iterated inte-
grals with constant term being 0.

We have the following propositions that can be found in [Hai87]. As we
will have to appeal to them several times we find it useful to repeat them
here.

Proposition 2.1 (Hain [Hai87, Proposition 2.9]). Let
	
ω1 . . . ωs be an

iterated line integral and α and β two paths such that α(1) = β(0). Then
�

αβ

ω1 . . . ωs =
s∑
i=0

�

α

ω1 . . . ωi
�

β

ωi+1 . . . ωs

where an empty integral is to be understood as 1.

As a corollary one has

Corollary 2.2. If αi are loops and β(0) = αi(1), then
�

Q
k(αk−1)β

ω1 . . . ωs =
s∑
i=1

�
Q

k(αk−1)

ω1 . . . ωi
�

β

ωi+1 . . . ωs.
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Let
ps : H0(Bs(X), x0)→

⊗s
H1(X,C)

be defined as follows. For α1 ⊗ · · · ⊗ αs ∈
⊗
H1(X,C), where αi are loops

based at x0,

ps(I)
(⊗s

i=1
αi

)
=
〈
I,
∏

(αi − 1)
〉
.

Proposition 2.3 (Hain [Hai87, Props. 2.10, 2.13]). If ω1 . . . ωr are
smooth one-forms on X and α1, . . . , αs are loops based at x0 then

(2)
〈 �
ω1 . . . ωr,

s∏
i=1

(αi − 1)
〉

=
{∏s

i=1

	
αj
ωj if r = s,

0 if r < s.

Finally, we state another proposition which allows us to reduce the length
of an iterated integral if one of the terms is exact.

Proposition 2.4 (Hain [Hai87, Prop. 1.3]). Suppose ω1, . . . , ωs are 1-
forms on X and γ is a path on X. If f is a function on M then

�

γ

df ω1 . . . ωs =
�

γ

(fω1)ω2 . . . ωs − f(γ(0))
�

γ

ω1 . . . ωs,

�

γ

ω1 . . . ωi−1 df ωi . . . ωs =
�

γ

ω1 . . . (fωi)ωi+1 . . . ωs −
�

γ

ω1 . . . (fωi−1)ωi . . . ωs,

�

γ

ω1 . . . ωs df = f(γ(1))
�

γ

ω1 . . . ωs −
�

γ

ω1 . . . ωs−1(fωs).

This shows there exist non-trivial iterated integrals which integrate to 0
along any path.

3. Higher order modular forms of geometric origin. Now let X =
Γ\H where Γ is an arithmetic subgroup of SL2(R), and let π : H→ X be the
canonical map. Let x0 be a point on X. We further assume that Γ has no
elliptic fixed points, so Γ ' π1(X,x0). In this section we define a subspace
of the space of higher order automorphic forms of weight 0 for Γ which has
an additional structure coming from the geometry of the curve X. As X is
a curve, it has the cuspidal compactification X̄ = Γ\(H ∪ P1(Q)), which is
a smooth projective curve. We also define a subspace of this space coming
from X̄ which generalize the classical cusp forms. Let D = Γ\P1(Q) be the
set of cusps; then X̄ = X ∪D.

We have the following theorem.

Theorem 3.1. Let I be an iterated integral on X of length ≤ s which is
a homotopy functional. Let x0 denote a point on X. Let z0 denote a point
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of H lying in the fibre over x0. Then the function FI on H defined by

FI(z) =
z�

z0

π∗(I) :=
z�

z0

I

is a higher order modular form of order s + 1. Further , this gives a well
defined injective linear map

H0(Bs(X), x0) Ψ→M s+1
0 (Γ ).

Here and from now on, by abuse of notation, we use I to denote both
the integral on X as well as its pullback π∗(I) on H. As before we define an
empty integral to be 1 and hence integrals of iterated integrals of length 0,
i.e. constants, are just constants.

Proof ot Theorem 3.1. Let I be homotopy functional of length ≤ s. This
has an expression of the form

I =
∑
|J |≤s

ωJ

where
	
ωJ =

	
ωj1 . . . ωjr are iterated line integrals. We need to show that

for any γ1, . . . , γs+1 ∈ Γ ,

FI |Qs+1
i=1 (γi−1)(z) = 0.

Let η be a path from z0 to z on H. If γ is a loop on X based at x0, then
one has a composite path γπ(η) on X from x0 to π(z). This can be lifted
to a unique path on H from z0 to γz passing through γz0. We denote it
by γη.

Notice that

FI |γ1−1(z) =
γ1z�

z0

I −
z�

z0

I =
�

γ1η

I −
�

η

I =
�

(γ1−1)η

I

as
γz�

γz0

I =
z�

z0

I

since I is Γ -invariant.
For each iterated line integral

	
ωJ =

	
ωj1 . . . ωjr appearing in I we can

apply Corollary 2.2 and Proposition 2.3 to get
�

Qs
i=1(γi−1)η

ωJ =
s∑
i=1

�
Qs

k=1(γi−1)

ωj1 . . . ωji

�

η

ωji+1 . . . ωjs

=
{∏s

i=1

	
γi
ωji if r = s,

0 if r < s.
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Therefore

FI |Qs
i=1(γi−1)(z) =

∑
|J |=s

s∏
i=1

�

γi

ωji

and this expression is independent of z. In particular, applying γs+1 − 1
annihilates it, so FI |Js+1 ≡ 0.

It should be remarked that since I is a homotopy functional, FI(z) does
not depend on the path from z0 to z but the iterated line integrals ωJ need
not be homotopy invariant and hence we had to choose paths. However, by
construction, the sums of iterated line integrals that appear in the expression
of FI |γ1−1(z) as a sum of products of iterated line integrals are homotopy
functionals. That is, we can collect terms together in such a way that

γ1z�

z0

I −
z�

z0

I =
�

(γ1−1)η

I =
s∑
r=1

γ1z0�

z0

Ir1

z�

z0

Ir2

where Ir1 and Ir2 are homotopy functionals. Note that Is2 = I0
1 = I.

To prove injectivity, suppose I is of order s and FI ≡ 0. Then in partic-
ular, for any γ in Γ ,

FI(γz0) =
γz0�

z0

I = 0,

so I is 0 as a homotopy functional. Hence I = 0 in H0(Bs(X), x0).

3.1. The space of geometric higher order modular forms. A higher order
automorphic form is said to be of geometric origin if it lies in the image of
the map

Ψ : H0(Bs(X), x0)→M s+1
0 (Γ ).

The space of such geometric higher order modular forms will be denoted by
M s+1

geom,0(Γ, x0).
We have an inclusion map

i : H0(Bs(X̄), x0)→ H0(Bs(X), x0).

A geometric higher order modular form is said to be cuspidal if it lies in the
image of

Ψ ◦ i : H0(Bs(X̄), x0)→M s+1
0 (Γ ).

We denote the space of geometric cuspidal forms by Ss+1
geom,0(Γ, x0).

If K is in H0(Bs(X̄), x0) then for all σ in Γa, where Γa denotes the
stabilizer of the cusp a,

σx0�

x0

K = a
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where a is a constant. This is because K = I+a, where I is in H0(B̄(X̄), x0)
and a is a constant, and

σx0�

x0

I = 0

as the loop {x0, σx0} on X is homotopic to the constant path on X̄.
A consequence of this is the following lemma, which we will have occasion

to use later.

Lemma 3.2. For K in H0(Bs(X̄), x0) we have
σz�

z0

K −
z�

z0

K = 0

for all parabolic σ ∈ Γa and all cusps a. In particular , for a geometric higher
order cusp form f we have

f |σ−1 ≡ 0

for all parabolic σ ∈ Γa and all cusps a.

Proof. Any K in H0(Bs(X̄), x0) is of the form I+a, where a is a constant
and I is in H0(B̄(X̄), x0). Hence

σz�

z0

K −
z�

z0

K =
(
a+

σz�

z0

I
)
−
(
a+

z�

z0

I
)

=
σz�

z0

I −
z�

z0

I.

From Proposition 2.1 we have
σz�

z0

I =
z�

z0

I +
σz�

z

I +
s−1∑
r=1

z�

z0

I ′r

σz�

z

I ′′r ,

where I ′r and I ′′r are certain iterated integrals which are homotopy func-
tionals but of order between 1 and s − 1. This calculation concerns forms
on X̄, so I, I ′r and I ′′r are all in H0(B̄s(X̄), π(z)). Explicitly, this expansion
comes from a repeated application of Proposition 2.1—so the forms which
constitute the I ′rs, and I ′′r s are the forms which constitute I, and I is made
up of forms on X̄. Hence all the iterated integrals are in B̄s(X̄). Since we
also know they are homotopy invariant, they are in H0(B̄s(X̄), π(z)).

Since σ ∈ Γa one has
σz�

z

I = 0 and
σz�

z

I ′′r = 0,

most of the terms vanish and
σz�

z0

I =
z�

z0

I.
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A geometric cusp form is of the form f(z) =
	z
z0
K for some K in

H0(Bs(X̄), x0) for some s. Hence for all z,

f |σ−1(z) =
σz�

z0

K −
z�

z0

K = 0.

From the work of Chen [Che71] there is an isomorphism

H0(Bs(A•(X)), x0)→ Hom(Q[π1(X,x0)]/Js+1,C)

and an isomorphism

H0(B̄s(A•(X)), x0)→ Hom(J/Js+1,C)

where A• is any complex quasi-isomorphic to the de Rham complex E•.
Hence we can relate these spaces of modular forms to quotients of the group
ring of the fundamental group of X. This motivates the phrase “geometric
origin”. Special cases of such forms were considered in [DS06b].

The second graded piece of H0(B̄s(X), x0) is isomorphic to the first
cohomology group of the modular curve X:

Hom(J/J2,C) ' H1(X,C),

and this corresponds to the fact that the space of classical modular forms
of weight 2 is isomorphic to the space of second order modular forms of
weight 0 via the map f 7→ F (z) =

	z
z0
f(t) dt. Similarly, the classical cusp

forms of weight 2 correspond to cusp forms of weight 0 and exact order 2 via
the same map—though in that case J is the augmentation ideal of π1(X̄, x0).

More generally, one can consider the completion of the group ring with
respect to the augmentation ideal

Q̂[π(X,x0)] = lim←−
s

Q[π(X,x0)]/Js.

This is called the Mal’tsev completion of the group ring. The space of all
modular forms of weight 0 and geometric origin can be interpreted as the
dual of this space.

3.2. Hodge structures. Hain (and independently, Morgan) showed that
the quotients of the group ring with respect to powers of the augmentation
ideal J have a mixed Hodge structure.

Proposition 3.3 (Hain and Morgan, [Hai87]). If X is an algebraic
variety over C and x0 is a point on X, then there is a mixed Hodge structure
on the space

H0(Bs(X), x0) = Hom(Q[π1(X,x0)]/Js+1,C)

which is natural with respect to morphisms of pointed varieties. Further , if
X is smooth and projective, then the length and weight filtrations coincide.
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In particular, this holds for the algebraic curves X = Γ\H and their
compactifications X̄. Hence the spaces of geometric higher order modular
forms M s+1

geom,0(Γ, x0) and cusp forms Ss+1
geom,0(Γ, x0) also inherit mixed Hodge

structures.
A rough outline of how the Hodge structure is obtained is as follows, at

least when X is a smooth curve as in our case. Essentially the same proce-
dure works for a smooth quasi-projective variety. We follow Hain [Hai87].
Let X̄ denote the smooth compactification as above and D = X̄ −X. Let
E•(X logD) denote the log-complex of smooth forms with log singularities.
This complex is quasi-isomorphic to the de Rham complex E•C(X), hence
the result of Chen [Che71] implies that all homotopy functionals can be ob-
tained by iterated integrals of such forms. So it suffices to use such forms to
define the Hodge structure.

One first defines the Hodge structure on the log-complex as follows:

F pE•(X logD) = {forms with ≥ p differentials dz′},

WlE
•(X logD) =

{
forms with ≤ l quotients

dz

z

′}
,

and Deligne [Del71] showed that this induces a Hodge structure on the
cohomology of X by defining the Hodge and weight filtrations to be the
image of the cohomology of these filtrations in the cohomology of X.

Define the filtrations on Bs(E•(X logD)) as follows:

F pBs(E•(X logD)) = span
{ �

ω1 . . . ωr

∣∣∣ ωi ∈ F pi and
r∑
i=1

pi ≥ p
}
,

WlBs(E•(X logD)) = span
{ �

ω1 . . . ωr

∣∣∣ ωi ∈Wli and r +
r∑
i=1

li ≤ l
}
.

The Hodge and weight filtrations on Bs(E•(X logD)) induce filtrations
on H0(Bs(E•(X logD))) and these define a mixed Hodge structure. Using
the map Ψ we get a mixed Hodge structure on the space of geometric higher
order modular forms of weight 0.

If X = X̄ is a smooth projective curve then the weight filtration on
E1(X̄) is given by

0 = W−1 ⊂W0 = E1(X̄),

hence

WlBs(E•(X̄)) =
{
Bl(E•(X̄)) if l ≤ s,
Bs(E•(X̄)) if l ≥ s.

Therefore

GrW•
s H0(Bs(E•(X̄)), x0) = H0(Bs(E•(X̄)), x0)/H0(Bs−1(E•(X̄)), x0),
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so the filtration by length coincides with the weight filtration and the length
graded pieces have a pure Hodge structure. Hence the space of geometric
cusp forms of exact order s has a pure Hodge structure.

In general that is not true, as for example, if X is not compact and has
more than one cusp,

H0(B1(X), x0)/H0(B0(X), x0) ' H1(X,C)

does not have a pure Hodge structure, since the integral of an Eisenstein
series lies in the weight 2 graded part of the weight filtration. So one sees
that the space of higher order modular forms of weight 0 and order exactly 2
does not have a pure Hodge structure.

The Hodge structure generalizes the classical Eichler–Shimura Hodge
structure on the space of classical modular forms of weight 2 as that can
be identified with H0(B̄1(X), x0). In this case the Hodge structure does not
depend on the choice of x0, but in general it does.

Remark 3.4. More generally, one can construct the motive underlying
this Hodge structure as the motive underlying the Hodge structure on the
fundamental group is understood. This is described in the paper of Deligne
and Goncharov [DG05, Proposition 3.4]. There they show that the Hodge
structure on the graded pieces of the group ring of the fundamental group
can be realized as the Hodge structure on the relative cohomology groups
of pairs (Xs,

⋃s
i=0Xi), where

• Xs = X × · · · ×X (s times);
• X0 is the subvariety given by t1 = x0, i.e. x0 ×Xs−1;
• Xi is the subvariety given by ti = ti+1 for 0 < i < s, i.e. Xi−1 ×∆×
Xs−(i+1), where ∆ is the diagonal in X ×X in the ith and (i + 1)st
places;
• Xs is given by ts = x0, i.e. Xs−1 × x0.

We have

Hs
(
Xs/

s⋃
i=0

Xi,C
)
' Hom(J/Js+1,C) = H0(B̄s(X), x0)

so precisely we get the space of weight 0 geometric modular forms of order s
modulo those of order 0. For example, when s = 1 we have

H1(X/{x0},C) ' H1(X,C) ' Hom(J/J2,C).

Hence the motive underlying the Hodge structure on the space of geometric
higher order modular forms of weight 0 and order s and base point x0 is the
motive associated to the pair (Xs,

⋃s
i=0Xi). Namely, to this object one can

associate de Rham, étale and Betti realization which are isomorphic when
the field of coefficients is large enough.
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Remark 3.5. Classically, one way of understanding Hecke operators is
as follows. The space of classical modular forms of weight k along with
the complex conjugates of the cusp forms is, via the Eichler–Shimura map,
identified with the cohomology of a local system on the modular curve, and
this imposes a Hodge structure on this space. Hecke operators can then be
understood as the morphisms of this Hodge structure induced by certain
algebraic correspondences called Hecke correspondences.

One might hope that the same algebraic correspondences would induce
morphisms on the Hodge structure of the space of geometric higher order
modular forms of weight 0, thus suggesting a way to define Hecke operators
on these forms. However, unfortunately they do not, as, for example, they
do not preserve base points and the Hodge structure does depend on the
base point for s > 2. Hence one cannot get notions of Hecke eigenfunctions
or Hecke eigenspaces using Hecke correspondences and, as things stand, one
cannot use this approach to define a motive of a higher order modular form.

3.2.1. Product structure. Let

M̂geom,0(X,x0) = lim−→
s

M s
geom,0(X,x0).

This space has a product structure induced by the product structure of
iterated integrals

Bs1(X)⊗Bs2(X)→ Bs1+s2−1(X).

Explicitly, this is given by the shuffle product [Hai87, Lemma 2.11].
For example, for two closed 1-forms ω1 and ω2 with Fωi(z) =

	z
z0
ωi we

have
Fω1(z)Fω2(z) = Fω1ω2(z) + Fω2ω1(z).

4. Higher weights. We now consider the problem of constructing
higher weight, higher order forms. Let X and x0 be as above. We have
the following inductive definition for cuspidal higher order forms. A higher
order form f is said to be cuspidal if

• f |γ−1 is cuspidal;
• f |φ−1 ≡ 0 for all parabolic elements φ of Γ , that is,

φ ∈ Ker{π1(X,x0)→ π1(X̄, x0)};

• f satisfies a cuspidal growth condition: for all cusps a one has

f |k(σa)(z)� e−cy as y →∞ uniformly in x for some constant c > 0,

where σa is an element of SL2(Z) such that

σa(∞) = a.
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A standard way of constructing classical modular forms is by Poincaré
series. They are defined as follows. Let a be a cusp and σa as above, so the
stabilizer of a is Γa = σaΓ∞σ

−1
a . Let m > 0 be an integer. For k > 2, the

Poincaré series Pm,a(z) = Pm,a,k(z) of weight k is defined as follows:

(3) Pm,a(z) =
∑

γ∈Γa\Γ

e(mσ−1
a γz)

j(σ−1
a γ, z)k

where e(z) = exp(2πiz). This is a cusp form. We can also define this when
m = 0, where this then gives the Eisenstein series of weight k corresponding
to the cusp a. The Poincaré series and Eisenstein series span the space of
modular forms for Γ as one varies m and the cusps and in fact, for a fixed
cusp, one can get a basis for the cusp forms by varying m [Sar90].

We have the following generalization of Poincaré series, called twisted
Poincaré series, which give rise to higher order forms. For order 2 this is due
to Goldfeld and O’Sullivan ([Gol99], [GO03]). In what follows we suppress
the weight k in the notation.

Proposition 4.1. Let k > 2 be an even integer and let I be an element
of H0(Bs(X̄), x0) and z0 a point on H lying in the fibre over x0. Then,
for every cusp a and non-negative integer m, we get three twisted Poincaré
series:

P 1
m,a(z, I) =

∑
γ∈Γa\Γ

( z�

z0

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k
,

P 2
m,a(z, I) =

∑
γ∈Γa\Γ

( γz0�
z0

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k
,

P 3
m,a(z, I) =

∑
γ∈Γa\Γ

( γz�
z

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k
.

All of these are weight k, order s+ 1 modular forms and when m > 0 they
are cusp forms.

Further , there are relations between these modular forms coming from
the fact that the integral of I over the path {z0, γz0} can be expressed , using
Proposition 2.1, as a sum of products of integrals over {z0, z}, {z, γz} and
{γz, γz0}, where {z0, z1} denotes a path from z0 to z1 in H:

OO

//

��

//
γz0z0

z γz
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Proof. We first show that the summand is well defined. For P 1 there
is no question. The arguments for P 2 and P 3 are similar and we have the
following argument which we give for P 2.

It suffices to show that the term
	γz0
z0

I is well defined on Γa\Γ . Let σ ∈ Γa

and γ ∈ Γ . Since I is in H0(Bs(X̄), x0) and σ ∈ Γa, from Lemma 3.2, we
have

σz�

z0

I −
z�

z0

I = 0.

In particular, if z = γz0 we have
σγz0�

z0

I −
γz0�

z0

I = 0.

Hence the summand
	γz0
z0

I is well defined on Γa\Γ .
We now have a lemma regarding convergence.

Lemma 4.2. The series P i(z, I) converge for k > 2.

Proof. For i = 1, the series P 1 is simply a product of the classical
Poincaré series and

	z
z0
I, both of which converge for k > 2.

For P 3(z, I) the argument is similar to the case of I = f in [DO06].
We can assume I is in H0(B̄s(X̄), x0) since an element of H0(Bs(X̄), x0)
differs from such an I by a constant, and in the twisted Poincaré series this
amounts to adding a constant multiple of a classical Poincaré series.

We use the estimate [DKMO06, Lemma 3]: for a classical cusp form f
of weight 2, and any cusp a,

z�

z0

f(w) dw � |log(Im(σaz))|+ 1.

To simplify exposition, we use the notation ya(z) for Im(σa(z)). Using the
above estimate repeatedly, we deduce that for an iterated integral I of
length r,

(4)
z�

z0

I � |logr(ya(z))|
r!

+
|logr−1(ya(z))|

(r − 1)!
+ · · ·+ 1.

Observe that

|logr(ya(z))|
r!

+
|logr−1(ya(z))|

(r − 1)!
+ · · ·+ 1 < exp(|log(ya(z))|)(5)

< ya(z) + ya(z)−1

as exp(|log(x)|) = x or x−1. Replacing ya(z) by ya(z)ε, we have, for 0< ε< 1,
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using the fact that εr < ε,

(6)
z�

z0

I � ε−r(ya(z)ε + ya(z)−ε).

To apply this to the convergence of the twisted Poincaré series we need an
estimate for

	γz
z I. We have

(7)
γz�

z

I =
r∑
j=0

z0�

z

Ij

γz�

z0

I ′j

where Ij and I ′j are iterated integrals of lengths j and r − j respectively.
From (6) and (7) we have

(8)
∣∣∣ γz�
z

I
∣∣∣� ε−r(r + 1)(ya(z)ε + ya(z)−ε)(ya(γz)ε + ya(γz)−ε).

Therefore

P 3
a (z, I)�

∑
γ∈Γa\Γ

(ya(z)ε + ya(z)−ε)(ya(γz)ε + ya(γz)−ε)
j(γ, z)−k

.

We have ya(γz) = ya(z)/j(γ, z)2. Replacing j(γ, z)−k by (ya(γz)/ya(z))k/2

in the expression above, we get

P 3
a (z, I)� ya(z)ε−k/2

( ∑
γ∈Γa\Γ

ya(γz)k/2+ε +
∑

γ∈Γa\Γ

ya(γz)k/2−ε
)

+ ya(z)−ε−k/2
( ∑
γ∈Γa\Γ

ya(γz)k/2+ε +
∑

γ∈Γa\Γ

ya(γz)k/2−ε
)
.

The sum
Ea(z, s) =

∑
γ∈Γa\Γ

ya(γz)s

is the classical non-holomorphic Eisenstein series for the cusp a and is known
to be absolutely convergent in the region Re(s) > 1. So as long as k/2−ε > 1,
that is, k > 2, our series will converge.

Using the change of basepoint formula, P 2(z, I) can be expressed as a
finite linear combination of terms of the form P 1(z, I ′)P 3(z, I ′′) for some
iterated integrals I ′ and I ′′, so converges in the same region.

It remains to show the invariance property.

Lemma 4.3. The P i(z, I) are higher order modular forms of weight k
and order s+ 1.

Proof. For P 1 this is immediate from the earlier proposition, as
	z
z0
I is

a weight 0 order s+ 1 form, while P (z) is order 1, weight k, so the product
is order s + 1, weight k. For the second one, let P (z, I) = P 2

m,a(z, I). We
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will show that P (z, I)|β−1 can be expressed as a linear combination of terms
of the form P (z, I ′) where I ′ is an iterated integral which is a homotopy
functional, but of length strictly less than that of I. The theorem will then
follow by induction.

We have

(9) P (βz, I)j(β, z)−k − P (z, I)

=
∑

γ∈Γa\Γ

( γz0�
z0

I
) e(mσ−1

a γβz)
j(σ−1

a γ, βz)kj(β, z)k
−

∑
γ∈Γa\Γ

( γz0�
z0

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k

=
∑

γ∈Γa\Γ

( γz0�
z0

I
)e(mσ−1

a γβz)
j(σ−1

a γβ, z)k
−

∑
γ∈Γa\Γ

( γz0�
z0

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k

=
∑

γ∈Γa\Γ

( γβ−1z0�

z0

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k
−

∑
γ∈Γa\Γ

( γz0�
z0

I
)e(mσ−1

a γz)
j(σ−1

a γ, z)k
.

We can once more apply Proposition 2.1 with α = {z0, γz0} and β =
{γz0, γβ−1z0}. Since {γz0, γβ−1z0} is homotopic to {z0, β−1z0} on Γ\H,
and I is homotopy invariant, we obtain

(10)
γβ−1z0�

z0

I −
γz0�

z0

I =
β−1z0�

z0

I +
s−1∑
r=1

γz0�

z0

Ir1

β−1z0�

z0

Ir2 ,

where Ir1 and Ir2 are sums of iterated line integrals appearing in the proof of
Theorem 3.1. They are homotopy functionals by construction.

Combining this with (9) we have

(11) P (βz, I)j(β, z)−k − P (z, I)

=
( β−1z0�

z0

I
)
P (z) +

s−1∑
r=1

( β−1z0�

z0

Ir2

)
P (z, Ir1).

This, by induction on s, is a higher order modular form of weight k and
order s. Hence P (z, I) is a higher order modular form of weight k and order
s+ 1.

The third type of Poincaré series is a higher order modular form, as the
iterated integral can be expressed in terms of the first two and products of
lower order integrals using the change of basepoint formula which comes out
of Proposition 2.1 and the fact that

z�

z0

I =
γz�

γz0

I

for γ ∈ Γ .
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To show that Pm,a(z, I) is cuspidal for m > 0, using (11) we find, by in-
duction, that Pm,a(z, I)|β−1 is cuspidal. Further, if φ is a parabolic element,
then Pm,a(z, I)|φ−1 = 0 as

	φz0
z0

Ir2 = 0 since all the Ii2 lie in H0(Bs(X̄, x0)).
In fact, this condition is also satisfied for m = 0 when s > 0.

This completes the proof that the twisted Poincaré series give higher
order modular forms.

For example, when I = f , where f is a weight 2 cusp form, either holo-
morphic or anti-holomorphic, then P 2(z, f) = −P 3(z, f) as in this case the
integrals do not depend on the base point. In general, however, these forms
could be different, but they are related.

In [JO06] certain higher order non-holomorphic Eisenstein series are con-
structed by twisting Eisenstein series by products of modular symbols. One
can also twist non-holomorphic Eisenstein series by iterated integrals to
get higher order non-holomorphic Eisenstein series. The ones constructed
by Jorgenson and O’Sullivan are then special cases of this construction be-
cause the product of modular symbols can be expressed as a sum of iterated
integrals via the shuffle product of iterated integrals.

4.1. Weight 2. The case of weight 2 modular forms requires a little more
delicate handling as the Poincaré series do not converge. An approach to
resolving this is to use the ideas of Diamantis and O’Sullivan [DO06]. They
overcome this problem by defining it as a function obtained as a special value
of the analytic continuation of a certain Poincaré series with an additional
factor which makes it converge.

Precisely, for an integer m and a cusp a, define

Zm,a(z, s, I) =
∑

γ∈Γa\Γ

( γz0�
z0

I
)e(mσ−1

a γz) Im(σ−1
a γz)s

j(σ−1
a γ, z)2

.

As a function of s this has an analytic continuation to the entire complex
plane. In particular, one can put s = 0 and the resulting function

Pm,a(z, I) = Zm,a(z, 0, I)

is a weight 2, order s + 1 modular form. The argument is similar to that
of Diamantis and Sim [DS06a]. However, as the details are complicated, we
will not deal with this case in the remaining part of our paper.

4.2. Spaces of higher order and higher weight modular forms. In the
previous sections we constructed some examples of higher weight, higher
order forms. We would like to define the space M s+1

geom,k(Γ, x0) to be the
largest space we can get from the constructions above. For that we first
define a space of primitive forms.
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The space of primitive cusp forms SPMs+1
geom,k(Γ, x0) is defined to be the

space spanned by the forms Pm,a(z, I) and their complex conjugates over all
cusps a and all positive integers m. The space of primitive modular forms
PMs+1

geom,k(Γ, x0) is then the space spanned by SPMs+1
geom,k and the Eisenstein

series Ea(z, I) = P0,a(z, I) over all cusps a where I is in H0(Bs(X̄), z0).
As the space of smooth modular forms of order s and weight k is finite-
dimensional, this space is finite-dimensional. In weight 0 all the forms con-
structed above as anti-derivatives of iterated integrals are said to be primi-
tive.

There is a product structure on the space of modular forms of higher
order. This was first introduced by O’Sullivan. If F is a modular form of
weight k1 and order s1 and G is a modular form of weight k2 and order s2,
then from [CD06], using the Rankin–Cohen bracket for N = 0, we find that
FG is a modular form of weight k1 + k2 and order s1 + s2 − 1.

We can see this easily in the weight 0 case: the product of two iterated
integrals of orders s1 and s2, which correspond to modular forms of order
si + 1, is an iterated integral of order s1 + s2 whose anti-derivative is a
modular form of order s1 + s2 + 1 = (s1 + 1) + (s2 + 1)− 1.

So we finally define the space of geometric higher order modular forms
of order s and weight k, M s

geom,k(Γ, x0), to be the algebra generated by
the primitive forms, and similarly the space of geometric higher order cusp
forms SMs

geom,k(Γ, x0) to be the subalgebra generated by the primitive cusp
forms. A weight k form, therefore, is a sum of products of lower weight
primitive forms. To study this space in more detail we have to include the
space of weight 2 higher order forms, which, as mentioned above, requires
more delicate handling, so in what follows we will only consider the primitive
spaces.

4.3. Hodge structures. We can define an ad hoc Hodge structure on
the spaces of primitive modular forms, PMs

geom,k. The weight and Hodge
filtrations are defined as follows. Recall that on H0(Bs(X̄), x0), the (Hodge)
weight filtration and filtration by length coincide. Define

• WlPMs+1
geom,k = span of Pm,a,k(z, I), P̄m,a,k(z, I) and Ea,k(z,K) such

that I ∈Wl−(k−1)H
0(Bs(X̄), x0),m > 0 and K ∈Wl−kH

0(Bs(X̄), x0)
and where all the Poincaré and Eisenstein series are of weight k.
• F pPMgeom,ks+1 = span of Pm,a,k(z, I), P̄m,a,k(z, J) and Ea,k(z,K) such

that m > 0, I ∈ F p−(k−1)H0(Bs(X̄), x0), J ∈ F pH0(Bs(X̄), x0) and
K ∈ F p−k/2H0(Bs(X̄), x0).

So, for example, if k = 4, s = 2, the weight filtration on PM3
geom,4 is as

follows:
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• W0 = W1 = W2 = 0.
• W3 = span of Pm,a(z) and P̄m,a(z) = holomorphic and anti-holomor-

phic cusp forms of weight 4.
• W4 = span of Eisenstein series Ea(z) of weight 4 and span of Pm,a(z, I)

and P̄m,a(z, I), where I is in H0(B1(X̄), z0).
• W5 = span of W4, Pm,a(z, I), P̄m,a(z, I) where I is in H0(B2(X̄), x0),

and Ea(z, J) where J is in H0(B1(X̄), z0).
• W6 = PM3

geom,4 = Wi, i ≥ 6 = span of W5 and Ea(z, J) where J is in
H0(B2(X̄), x0).

The Hodge filtration is given as follows:

• F 0 = PM3
geom,4.

• F 1 = span of P̄m,a(z, I) where I ∈ F 1H0(B2(X̄), x0), Pm,a(z, J) where
J ∈ H0(B2(X̄), x0), and Ea(z,K) where K ∈ H0(B2(X̄), x0).
• F 2 = span of P̄m,a(z, I) where I ∈ F 2H0(B2(X̄), x0), Pm,a(z, J) where
J ∈ H0(B2(X̄), x0), and Ea(z,K) where K ∈ H0(B2(X̄), x0).
• F 3 = span of Pm,a(z, J) where J ∈ H0(B2(X̄), x0), and Ea(z,K)

where K ∈ F 1H0(B2(X̄), x0).
• F 4 = span of Pm,a(z, J) where J ∈ F 1H0(B2(X̄), x0), and Ea(z,K)

where K ∈ F 2H0(B2(X̄), x0).
• F 5 = span of Pm,a(z, J) where J ∈ F 2H0(B2(X̄), x0).
• F i = 0, i ≥ 6.

We expect that this Hodge structure can be used to define a Hodge
structure on the full space of geometric higher order forms using the fact
that it is the algebra generated by these forms, but since that requires the
weight 2 case as well, we will not consider it here.

At the moment it is not clear whether there is some natural geometric
structure underlying this Hodge structure, and so one cannot say anything
about naturality or functoriality. However, there is some recent work of
Anton Dietmar [Die08] relating higher order forms with Lie algebra coho-
mology, and one might hope that this Hodge structure is related to a natural
Hodge structure on those cohomology groups.
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